GNU Linux-libre 4.19.304-gnu1
[releases.git] / arch / powerpc / kvm / book3s_hv_ras.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7  */
8
9 #include <linux/types.h>
10 #include <linux/string.h>
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <asm/opal.h>
15 #include <asm/mce.h>
16 #include <asm/machdep.h>
17 #include <asm/cputhreads.h>
18 #include <asm/hmi.h>
19 #include <asm/kvm_ppc.h>
20
21 /* SRR1 bits for machine check on POWER7 */
22 #define SRR1_MC_LDSTERR         (1ul << (63-42))
23 #define SRR1_MC_IFETCH_SH       (63-45)
24 #define SRR1_MC_IFETCH_MASK     0x7
25 #define SRR1_MC_IFETCH_SLBPAR           2       /* SLB parity error */
26 #define SRR1_MC_IFETCH_SLBMULTI         3       /* SLB multi-hit */
27 #define SRR1_MC_IFETCH_SLBPARMULTI      4       /* SLB parity + multi-hit */
28 #define SRR1_MC_IFETCH_TLBMULTI         5       /* I-TLB multi-hit */
29
30 /* DSISR bits for machine check on POWER7 */
31 #define DSISR_MC_DERAT_MULTI    0x800           /* D-ERAT multi-hit */
32 #define DSISR_MC_TLB_MULTI      0x400           /* D-TLB multi-hit */
33 #define DSISR_MC_SLB_PARITY     0x100           /* SLB parity error */
34 #define DSISR_MC_SLB_MULTI      0x080           /* SLB multi-hit */
35 #define DSISR_MC_SLB_PARMULTI   0x040           /* SLB parity + multi-hit */
36
37 /* POWER7 SLB flush and reload */
38 static void reload_slb(struct kvm_vcpu *vcpu)
39 {
40         struct slb_shadow *slb;
41         unsigned long i, n;
42
43         /* First clear out SLB */
44         asm volatile("slbmte %0,%0; slbia" : : "r" (0));
45
46         /* Do they have an SLB shadow buffer registered? */
47         slb = vcpu->arch.slb_shadow.pinned_addr;
48         if (!slb)
49                 return;
50
51         /* Sanity check */
52         n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
53         if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
54                 return;
55
56         /* Load up the SLB from that */
57         for (i = 0; i < n; ++i) {
58                 unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
59                 unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
60
61                 rb = (rb & ~0xFFFul) | i;       /* insert entry number */
62                 asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
63         }
64 }
65
66 /*
67  * On POWER7, see if we can handle a machine check that occurred inside
68  * the guest in real mode, without switching to the host partition.
69  *
70  * Returns: 0 => exit guest, 1 => deliver machine check to guest
71  */
72 static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
73 {
74         unsigned long srr1 = vcpu->arch.shregs.msr;
75         struct machine_check_event mce_evt;
76         long handled = 1;
77
78         if (srr1 & SRR1_MC_LDSTERR) {
79                 /* error on load/store */
80                 unsigned long dsisr = vcpu->arch.shregs.dsisr;
81
82                 if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
83                              DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
84                         /* flush and reload SLB; flushes D-ERAT too */
85                         reload_slb(vcpu);
86                         dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
87                                    DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
88                 }
89                 if (dsisr & DSISR_MC_TLB_MULTI) {
90                         tlbiel_all_lpid(vcpu->kvm->arch.radix);
91                         dsisr &= ~DSISR_MC_TLB_MULTI;
92                 }
93                 /* Any other errors we don't understand? */
94                 if (dsisr & 0xffffffffUL)
95                         handled = 0;
96         }
97
98         switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
99         case 0:
100                 break;
101         case SRR1_MC_IFETCH_SLBPAR:
102         case SRR1_MC_IFETCH_SLBMULTI:
103         case SRR1_MC_IFETCH_SLBPARMULTI:
104                 reload_slb(vcpu);
105                 break;
106         case SRR1_MC_IFETCH_TLBMULTI:
107                 tlbiel_all_lpid(vcpu->kvm->arch.radix);
108                 break;
109         default:
110                 handled = 0;
111         }
112
113         /*
114          * See if we have already handled the condition in the linux host.
115          * We assume that if the condition is recovered then linux host
116          * will have generated an error log event that we will pick
117          * up and log later.
118          * Don't release mce event now. We will queue up the event so that
119          * we can log the MCE event info on host console.
120          */
121         if (!get_mce_event(&mce_evt, MCE_EVENT_DONTRELEASE))
122                 goto out;
123
124         if (mce_evt.version == MCE_V1 &&
125             (mce_evt.severity == MCE_SEV_NO_ERROR ||
126              mce_evt.disposition == MCE_DISPOSITION_RECOVERED))
127                 handled = 1;
128
129 out:
130         /*
131          * For guest that supports FWNMI capability, hook the MCE event into
132          * vcpu structure. We are going to exit the guest with KVM_EXIT_NMI
133          * exit reason. On our way to exit we will pull this event from vcpu
134          * structure and print it from thread 0 of the core/subcore.
135          *
136          * For guest that does not support FWNMI capability (old QEMU):
137          * We are now going enter guest either through machine check
138          * interrupt (for unhandled errors) or will continue from
139          * current HSRR0 (for handled errors) in guest. Hence
140          * queue up the event so that we can log it from host console later.
141          */
142         if (vcpu->kvm->arch.fwnmi_enabled) {
143                 /*
144                  * Hook up the mce event on to vcpu structure.
145                  * First clear the old event.
146                  */
147                 memset(&vcpu->arch.mce_evt, 0, sizeof(vcpu->arch.mce_evt));
148                 if (get_mce_event(&mce_evt, MCE_EVENT_RELEASE)) {
149                         vcpu->arch.mce_evt = mce_evt;
150                 }
151         } else
152                 machine_check_queue_event();
153
154         return handled;
155 }
156
157 long kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
158 {
159         return kvmppc_realmode_mc_power7(vcpu);
160 }
161
162 /* Check if dynamic split is in force and return subcore size accordingly. */
163 static inline int kvmppc_cur_subcore_size(void)
164 {
165         if (local_paca->kvm_hstate.kvm_split_mode)
166                 return local_paca->kvm_hstate.kvm_split_mode->subcore_size;
167
168         return threads_per_subcore;
169 }
170
171 void kvmppc_subcore_enter_guest(void)
172 {
173         int thread_id, subcore_id;
174
175         thread_id = cpu_thread_in_core(local_paca->paca_index);
176         subcore_id = thread_id / kvmppc_cur_subcore_size();
177
178         local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
179 }
180
181 void kvmppc_subcore_exit_guest(void)
182 {
183         int thread_id, subcore_id;
184
185         thread_id = cpu_thread_in_core(local_paca->paca_index);
186         subcore_id = thread_id / kvmppc_cur_subcore_size();
187
188         local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
189 }
190
191 static bool kvmppc_tb_resync_required(void)
192 {
193         if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT,
194                                 &local_paca->sibling_subcore_state->flags))
195                 return false;
196
197         return true;
198 }
199
200 static void kvmppc_tb_resync_done(void)
201 {
202         clear_bit(CORE_TB_RESYNC_REQ_BIT,
203                         &local_paca->sibling_subcore_state->flags);
204 }
205
206 /*
207  * kvmppc_realmode_hmi_handler() is called only by primary thread during
208  * guest exit path.
209  *
210  * There are multiple reasons why HMI could occur, one of them is
211  * Timebase (TB) error. If this HMI is due to TB error, then TB would
212  * have been in stopped state. The opal hmi handler Will fix it and
213  * restore the TB value with host timebase value. For HMI caused due
214  * to non-TB errors, opal hmi handler will not touch/restore TB register
215  * and hence there won't be any change in TB value.
216  *
217  * Since we are not sure about the cause of this HMI, we can't be sure
218  * about the content of TB register whether it holds guest or host timebase
219  * value. Hence the idea is to resync the TB on every HMI, so that we
220  * know about the exact state of the TB value. Resync TB call will
221  * restore TB to host timebase.
222  *
223  * Things to consider:
224  * - On TB error, HMI interrupt is reported on all the threads of the core
225  *   that has encountered TB error irrespective of split-core mode.
226  * - The very first thread on the core that get chance to fix TB error
227  *   would rsync the TB with local chipTOD value.
228  * - The resync TB is a core level action i.e. it will sync all the TBs
229  *   in that core independent of split-core mode. This means if we trigger
230  *   TB sync from a thread from one subcore, it would affect TB values of
231  *   sibling subcores of the same core.
232  *
233  * All threads need to co-ordinate before making opal hmi handler.
234  * All threads will use sibling_subcore_state->in_guest[] (shared by all
235  * threads in the core) in paca which holds information about whether
236  * sibling subcores are in Guest mode or host mode. The in_guest[] array
237  * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset
238  * subcore status. Only primary threads from each subcore is responsible
239  * to set/unset its designated array element while entering/exiting the
240  * guset.
241  *
242  * After invoking opal hmi handler call, one of the thread (of entire core)
243  * will need to resync the TB. Bit 63 from subcore state bitmap flags
244  * (sibling_subcore_state->flags) will be used to co-ordinate between
245  * primary threads to decide who takes up the responsibility.
246  *
247  * This is what we do:
248  * - Primary thread from each subcore tries to set resync required bit[63]
249  *   of paca->sibling_subcore_state->flags.
250  * - The first primary thread that is able to set the flag takes the
251  *   responsibility of TB resync. (Let us call it as thread leader)
252  * - All other threads which are in host will call
253  *   wait_for_subcore_guest_exit() and wait for in_guest[0-3] from
254  *   paca->sibling_subcore_state to get cleared.
255  * - All the primary thread will clear its subcore status from subcore
256  *   state in_guest[] array respectively.
257  * - Once all primary threads clear in_guest[0-3], all of them will invoke
258  *   opal hmi handler.
259  * - Now all threads will wait for TB resync to complete by invoking
260  *   wait_for_tb_resync() except the thread leader.
261  * - Thread leader will do a TB resync by invoking opal_resync_timebase()
262  *   call and the it will clear the resync required bit.
263  * - All other threads will now come out of resync wait loop and proceed
264  *   with individual execution.
265  * - On return of this function, primary thread will signal all
266  *   secondary threads to proceed.
267  * - All secondary threads will eventually call opal hmi handler on
268  *   their exit path.
269  *
270  * Returns 1 if the timebase offset should be applied, 0 if not.
271  */
272
273 long kvmppc_realmode_hmi_handler(void)
274 {
275         bool resync_req;
276
277         __this_cpu_inc(irq_stat.hmi_exceptions);
278
279         if (hmi_handle_debugtrig(NULL) >= 0)
280                 return 1;
281
282         /*
283          * By now primary thread has already completed guest->host
284          * partition switch but haven't signaled secondaries yet.
285          * All the secondary threads on this subcore is waiting
286          * for primary thread to signal them to go ahead.
287          *
288          * For threads from subcore which isn't in guest, they all will
289          * wait until all other subcores on this core exit the guest.
290          *
291          * Now set the resync required bit. If you are the first to
292          * set this bit then kvmppc_tb_resync_required() function will
293          * return true. For rest all other subcores
294          * kvmppc_tb_resync_required() will return false.
295          *
296          * If resync_req == true, then this thread is responsible to
297          * initiate TB resync after hmi handler has completed.
298          * All other threads on this core will wait until this thread
299          * clears the resync required bit flag.
300          */
301         resync_req = kvmppc_tb_resync_required();
302
303         /* Reset the subcore status to indicate it has exited guest */
304         kvmppc_subcore_exit_guest();
305
306         /*
307          * Wait for other subcores on this core to exit the guest.
308          * All the primary threads and threads from subcore that are
309          * not in guest will wait here until all subcores are out
310          * of guest context.
311          */
312         wait_for_subcore_guest_exit();
313
314         /*
315          * At this point we are sure that primary threads from each
316          * subcore on this core have completed guest->host partition
317          * switch. Now it is safe to call HMI handler.
318          */
319         if (ppc_md.hmi_exception_early)
320                 ppc_md.hmi_exception_early(NULL);
321
322         /*
323          * Check if this thread is responsible to resync TB.
324          * All other threads will wait until this thread completes the
325          * TB resync.
326          */
327         if (resync_req) {
328                 opal_resync_timebase();
329                 /* Reset TB resync req bit */
330                 kvmppc_tb_resync_done();
331         } else {
332                 wait_for_tb_resync();
333         }
334         return 0;
335 }