arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / arch / powerpc / kvm / book3s_hv_nested.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corporation, 2018
4  * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com>
5  *         Paul Mackerras <paulus@ozlabs.org>
6  *
7  * Description: KVM functions specific to running nested KVM-HV guests
8  * on Book3S processors (specifically POWER9 and later).
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/llist.h>
14 #include <linux/pgtable.h>
15
16 #include <asm/kvm_ppc.h>
17 #include <asm/kvm_book3s.h>
18 #include <asm/mmu.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pte-walk.h>
21 #include <asm/reg.h>
22 #include <asm/plpar_wrappers.h>
23 #include <asm/firmware.h>
24
25 static struct patb_entry *pseries_partition_tb;
26
27 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
28 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free);
29
30 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
31 {
32         struct kvmppc_vcore *vc = vcpu->arch.vcore;
33
34         hr->pcr = vc->pcr | PCR_MASK;
35         hr->dpdes = vc->dpdes;
36         hr->hfscr = vcpu->arch.hfscr;
37         hr->tb_offset = vc->tb_offset;
38         hr->dawr0 = vcpu->arch.dawr0;
39         hr->dawrx0 = vcpu->arch.dawrx0;
40         hr->ciabr = vcpu->arch.ciabr;
41         hr->purr = vcpu->arch.purr;
42         hr->spurr = vcpu->arch.spurr;
43         hr->ic = vcpu->arch.ic;
44         hr->vtb = vc->vtb;
45         hr->srr0 = vcpu->arch.shregs.srr0;
46         hr->srr1 = vcpu->arch.shregs.srr1;
47         hr->sprg[0] = vcpu->arch.shregs.sprg0;
48         hr->sprg[1] = vcpu->arch.shregs.sprg1;
49         hr->sprg[2] = vcpu->arch.shregs.sprg2;
50         hr->sprg[3] = vcpu->arch.shregs.sprg3;
51         hr->pidr = vcpu->arch.pid;
52         hr->cfar = vcpu->arch.cfar;
53         hr->ppr = vcpu->arch.ppr;
54         hr->dawr1 = vcpu->arch.dawr1;
55         hr->dawrx1 = vcpu->arch.dawrx1;
56 }
57
58 /* Use noinline_for_stack due to https://bugs.llvm.org/show_bug.cgi?id=49610 */
59 static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs)
60 {
61         unsigned long *addr = (unsigned long *) regs;
62
63         for (; addr < ((unsigned long *) (regs + 1)); addr++)
64                 *addr = swab64(*addr);
65 }
66
67 static void byteswap_hv_regs(struct hv_guest_state *hr)
68 {
69         hr->version = swab64(hr->version);
70         hr->lpid = swab32(hr->lpid);
71         hr->vcpu_token = swab32(hr->vcpu_token);
72         hr->lpcr = swab64(hr->lpcr);
73         hr->pcr = swab64(hr->pcr) | PCR_MASK;
74         hr->amor = swab64(hr->amor);
75         hr->dpdes = swab64(hr->dpdes);
76         hr->hfscr = swab64(hr->hfscr);
77         hr->tb_offset = swab64(hr->tb_offset);
78         hr->dawr0 = swab64(hr->dawr0);
79         hr->dawrx0 = swab64(hr->dawrx0);
80         hr->ciabr = swab64(hr->ciabr);
81         hr->hdec_expiry = swab64(hr->hdec_expiry);
82         hr->purr = swab64(hr->purr);
83         hr->spurr = swab64(hr->spurr);
84         hr->ic = swab64(hr->ic);
85         hr->vtb = swab64(hr->vtb);
86         hr->hdar = swab64(hr->hdar);
87         hr->hdsisr = swab64(hr->hdsisr);
88         hr->heir = swab64(hr->heir);
89         hr->asdr = swab64(hr->asdr);
90         hr->srr0 = swab64(hr->srr0);
91         hr->srr1 = swab64(hr->srr1);
92         hr->sprg[0] = swab64(hr->sprg[0]);
93         hr->sprg[1] = swab64(hr->sprg[1]);
94         hr->sprg[2] = swab64(hr->sprg[2]);
95         hr->sprg[3] = swab64(hr->sprg[3]);
96         hr->pidr = swab64(hr->pidr);
97         hr->cfar = swab64(hr->cfar);
98         hr->ppr = swab64(hr->ppr);
99         hr->dawr1 = swab64(hr->dawr1);
100         hr->dawrx1 = swab64(hr->dawrx1);
101 }
102
103 static void save_hv_return_state(struct kvm_vcpu *vcpu,
104                                  struct hv_guest_state *hr)
105 {
106         struct kvmppc_vcore *vc = vcpu->arch.vcore;
107
108         hr->dpdes = vc->dpdes;
109         hr->purr = vcpu->arch.purr;
110         hr->spurr = vcpu->arch.spurr;
111         hr->ic = vcpu->arch.ic;
112         hr->vtb = vc->vtb;
113         hr->srr0 = vcpu->arch.shregs.srr0;
114         hr->srr1 = vcpu->arch.shregs.srr1;
115         hr->sprg[0] = vcpu->arch.shregs.sprg0;
116         hr->sprg[1] = vcpu->arch.shregs.sprg1;
117         hr->sprg[2] = vcpu->arch.shregs.sprg2;
118         hr->sprg[3] = vcpu->arch.shregs.sprg3;
119         hr->pidr = vcpu->arch.pid;
120         hr->cfar = vcpu->arch.cfar;
121         hr->ppr = vcpu->arch.ppr;
122         switch (vcpu->arch.trap) {
123         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
124                 hr->hdar = vcpu->arch.fault_dar;
125                 hr->hdsisr = vcpu->arch.fault_dsisr;
126                 hr->asdr = vcpu->arch.fault_gpa;
127                 break;
128         case BOOK3S_INTERRUPT_H_INST_STORAGE:
129                 hr->asdr = vcpu->arch.fault_gpa;
130                 break;
131         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
132                 hr->hfscr = ((~HFSCR_INTR_CAUSE & hr->hfscr) |
133                              (HFSCR_INTR_CAUSE & vcpu->arch.hfscr));
134                 break;
135         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
136                 hr->heir = vcpu->arch.emul_inst;
137                 break;
138         }
139 }
140
141 static void restore_hv_regs(struct kvm_vcpu *vcpu, const struct hv_guest_state *hr)
142 {
143         struct kvmppc_vcore *vc = vcpu->arch.vcore;
144
145         vc->pcr = hr->pcr | PCR_MASK;
146         vc->dpdes = hr->dpdes;
147         vcpu->arch.hfscr = hr->hfscr;
148         vcpu->arch.dawr0 = hr->dawr0;
149         vcpu->arch.dawrx0 = hr->dawrx0;
150         vcpu->arch.ciabr = hr->ciabr;
151         vcpu->arch.purr = hr->purr;
152         vcpu->arch.spurr = hr->spurr;
153         vcpu->arch.ic = hr->ic;
154         vc->vtb = hr->vtb;
155         vcpu->arch.shregs.srr0 = hr->srr0;
156         vcpu->arch.shregs.srr1 = hr->srr1;
157         vcpu->arch.shregs.sprg0 = hr->sprg[0];
158         vcpu->arch.shregs.sprg1 = hr->sprg[1];
159         vcpu->arch.shregs.sprg2 = hr->sprg[2];
160         vcpu->arch.shregs.sprg3 = hr->sprg[3];
161         vcpu->arch.pid = hr->pidr;
162         vcpu->arch.cfar = hr->cfar;
163         vcpu->arch.ppr = hr->ppr;
164         vcpu->arch.dawr1 = hr->dawr1;
165         vcpu->arch.dawrx1 = hr->dawrx1;
166 }
167
168 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
169                                    struct hv_guest_state *hr)
170 {
171         struct kvmppc_vcore *vc = vcpu->arch.vcore;
172
173         vc->dpdes = hr->dpdes;
174         vcpu->arch.hfscr = hr->hfscr;
175         vcpu->arch.purr = hr->purr;
176         vcpu->arch.spurr = hr->spurr;
177         vcpu->arch.ic = hr->ic;
178         vc->vtb = hr->vtb;
179         vcpu->arch.fault_dar = hr->hdar;
180         vcpu->arch.fault_dsisr = hr->hdsisr;
181         vcpu->arch.fault_gpa = hr->asdr;
182         vcpu->arch.emul_inst = hr->heir;
183         vcpu->arch.shregs.srr0 = hr->srr0;
184         vcpu->arch.shregs.srr1 = hr->srr1;
185         vcpu->arch.shregs.sprg0 = hr->sprg[0];
186         vcpu->arch.shregs.sprg1 = hr->sprg[1];
187         vcpu->arch.shregs.sprg2 = hr->sprg[2];
188         vcpu->arch.shregs.sprg3 = hr->sprg[3];
189         vcpu->arch.pid = hr->pidr;
190         vcpu->arch.cfar = hr->cfar;
191         vcpu->arch.ppr = hr->ppr;
192 }
193
194 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr)
195 {
196         /* No need to reflect the page fault to L1, we've handled it */
197         vcpu->arch.trap = 0;
198
199         /*
200          * Since the L2 gprs have already been written back into L1 memory when
201          * we complete the mmio, store the L1 memory location of the L2 gpr
202          * being loaded into by the mmio so that the loaded value can be
203          * written there in kvmppc_complete_mmio_load()
204          */
205         if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR)
206             && (vcpu->mmio_is_write == 0)) {
207                 vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr +
208                                            offsetof(struct pt_regs,
209                                                     gpr[vcpu->arch.io_gpr]);
210                 vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR;
211         }
212 }
213
214 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu,
215                                            struct hv_guest_state *l2_hv,
216                                            struct pt_regs *l2_regs,
217                                            u64 hv_ptr, u64 regs_ptr)
218 {
219         int size;
220
221         if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version,
222                                 sizeof(l2_hv->version)))
223                 return -1;
224
225         if (kvmppc_need_byteswap(vcpu))
226                 l2_hv->version = swab64(l2_hv->version);
227
228         size = hv_guest_state_size(l2_hv->version);
229         if (size < 0)
230                 return -1;
231
232         return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) ||
233                 kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs,
234                                     sizeof(struct pt_regs));
235 }
236
237 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu,
238                                             struct hv_guest_state *l2_hv,
239                                             struct pt_regs *l2_regs,
240                                             u64 hv_ptr, u64 regs_ptr)
241 {
242         int size;
243
244         size = hv_guest_state_size(l2_hv->version);
245         if (size < 0)
246                 return -1;
247
248         return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) ||
249                 kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs,
250                                      sizeof(struct pt_regs));
251 }
252
253 static void load_l2_hv_regs(struct kvm_vcpu *vcpu,
254                             const struct hv_guest_state *l2_hv,
255                             const struct hv_guest_state *l1_hv, u64 *lpcr)
256 {
257         struct kvmppc_vcore *vc = vcpu->arch.vcore;
258         u64 mask;
259
260         restore_hv_regs(vcpu, l2_hv);
261
262         /*
263          * Don't let L1 change LPCR bits for the L2 except these:
264          */
265         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | LPCR_MER;
266
267         /*
268          * Additional filtering is required depending on hardware
269          * and configuration.
270          */
271         *lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm,
272                                       (vc->lpcr & ~mask) | (*lpcr & mask));
273
274         /*
275          * Don't let L1 enable features for L2 which we don't allow for L1,
276          * but preserve the interrupt cause field.
277          */
278         vcpu->arch.hfscr = l2_hv->hfscr & (HFSCR_INTR_CAUSE | vcpu->arch.hfscr_permitted);
279
280         /* Don't let data address watchpoint match in hypervisor state */
281         vcpu->arch.dawrx0 = l2_hv->dawrx0 & ~DAWRX_HYP;
282         vcpu->arch.dawrx1 = l2_hv->dawrx1 & ~DAWRX_HYP;
283
284         /* Don't let completed instruction address breakpt match in HV state */
285         if ((l2_hv->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
286                 vcpu->arch.ciabr = l2_hv->ciabr & ~CIABR_PRIV;
287 }
288
289 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
290 {
291         long int err, r;
292         struct kvm_nested_guest *l2;
293         struct pt_regs l2_regs, saved_l1_regs;
294         struct hv_guest_state l2_hv = {0}, saved_l1_hv;
295         struct kvmppc_vcore *vc = vcpu->arch.vcore;
296         u64 hv_ptr, regs_ptr;
297         u64 hdec_exp, lpcr;
298         s64 delta_purr, delta_spurr, delta_ic, delta_vtb;
299
300         if (vcpu->kvm->arch.l1_ptcr == 0)
301                 return H_NOT_AVAILABLE;
302
303         if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
304                 return H_BAD_MODE;
305
306         /* copy parameters in */
307         hv_ptr = kvmppc_get_gpr(vcpu, 4);
308         regs_ptr = kvmppc_get_gpr(vcpu, 5);
309         kvm_vcpu_srcu_read_lock(vcpu);
310         err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
311                                               hv_ptr, regs_ptr);
312         kvm_vcpu_srcu_read_unlock(vcpu);
313         if (err)
314                 return H_PARAMETER;
315
316         if (kvmppc_need_byteswap(vcpu))
317                 byteswap_hv_regs(&l2_hv);
318         if (l2_hv.version > HV_GUEST_STATE_VERSION)
319                 return H_P2;
320
321         if (kvmppc_need_byteswap(vcpu))
322                 byteswap_pt_regs(&l2_regs);
323         if (l2_hv.vcpu_token >= NR_CPUS)
324                 return H_PARAMETER;
325
326         /*
327          * L1 must have set up a suspended state to enter the L2 in a
328          * transactional state, and only in that case. These have to be
329          * filtered out here to prevent causing a TM Bad Thing in the
330          * host HRFID. We could synthesize a TM Bad Thing back to the L1
331          * here but there doesn't seem like much point.
332          */
333         if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) {
334                 if (!MSR_TM_ACTIVE(l2_regs.msr))
335                         return H_BAD_MODE;
336         } else {
337                 if (l2_regs.msr & MSR_TS_MASK)
338                         return H_BAD_MODE;
339                 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK))
340                         return H_BAD_MODE;
341         }
342
343         /* translate lpid */
344         l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true);
345         if (!l2)
346                 return H_PARAMETER;
347         if (!l2->l1_gr_to_hr) {
348                 mutex_lock(&l2->tlb_lock);
349                 kvmhv_update_ptbl_cache(l2);
350                 mutex_unlock(&l2->tlb_lock);
351         }
352
353         /* save l1 values of things */
354         vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
355         saved_l1_regs = vcpu->arch.regs;
356         kvmhv_save_hv_regs(vcpu, &saved_l1_hv);
357
358         /* convert TB values/offsets to host (L0) values */
359         hdec_exp = l2_hv.hdec_expiry - vc->tb_offset;
360         vc->tb_offset += l2_hv.tb_offset;
361         vcpu->arch.dec_expires += l2_hv.tb_offset;
362
363         /* set L1 state to L2 state */
364         vcpu->arch.nested = l2;
365         vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token;
366         vcpu->arch.nested_hfscr = l2_hv.hfscr;
367         vcpu->arch.regs = l2_regs;
368
369         /* Guest must always run with ME enabled, HV disabled. */
370         vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV;
371
372         lpcr = l2_hv.lpcr;
373         load_l2_hv_regs(vcpu, &l2_hv, &saved_l1_hv, &lpcr);
374
375         vcpu->arch.ret = RESUME_GUEST;
376         vcpu->arch.trap = 0;
377         do {
378                 r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr);
379         } while (is_kvmppc_resume_guest(r));
380
381         /* save L2 state for return */
382         l2_regs = vcpu->arch.regs;
383         l2_regs.msr = vcpu->arch.shregs.msr;
384         delta_purr = vcpu->arch.purr - l2_hv.purr;
385         delta_spurr = vcpu->arch.spurr - l2_hv.spurr;
386         delta_ic = vcpu->arch.ic - l2_hv.ic;
387         delta_vtb = vc->vtb - l2_hv.vtb;
388         save_hv_return_state(vcpu, &l2_hv);
389
390         /* restore L1 state */
391         vcpu->arch.nested = NULL;
392         vcpu->arch.regs = saved_l1_regs;
393         vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK;
394         /* set L1 MSR TS field according to L2 transaction state */
395         if (l2_regs.msr & MSR_TS_MASK)
396                 vcpu->arch.shregs.msr |= MSR_TS_S;
397         vc->tb_offset = saved_l1_hv.tb_offset;
398         /* XXX: is this always the same delta as saved_l1_hv.tb_offset? */
399         vcpu->arch.dec_expires -= l2_hv.tb_offset;
400         restore_hv_regs(vcpu, &saved_l1_hv);
401         vcpu->arch.purr += delta_purr;
402         vcpu->arch.spurr += delta_spurr;
403         vcpu->arch.ic += delta_ic;
404         vc->vtb += delta_vtb;
405
406         kvmhv_put_nested(l2);
407
408         /* copy l2_hv_state and regs back to guest */
409         if (kvmppc_need_byteswap(vcpu)) {
410                 byteswap_hv_regs(&l2_hv);
411                 byteswap_pt_regs(&l2_regs);
412         }
413         kvm_vcpu_srcu_read_lock(vcpu);
414         err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
415                                                hv_ptr, regs_ptr);
416         kvm_vcpu_srcu_read_unlock(vcpu);
417         if (err)
418                 return H_AUTHORITY;
419
420         if (r == -EINTR)
421                 return H_INTERRUPT;
422
423         if (vcpu->mmio_needed) {
424                 kvmhv_nested_mmio_needed(vcpu, regs_ptr);
425                 return H_TOO_HARD;
426         }
427
428         return vcpu->arch.trap;
429 }
430
431 unsigned long nested_capabilities;
432
433 long kvmhv_nested_init(void)
434 {
435         long int ptb_order;
436         unsigned long ptcr, host_capabilities;
437         long rc;
438
439         if (!kvmhv_on_pseries())
440                 return 0;
441         if (!radix_enabled())
442                 return -ENODEV;
443
444         rc = plpar_guest_get_capabilities(0, &host_capabilities);
445         if (rc == H_SUCCESS) {
446                 unsigned long capabilities = 0;
447
448                 if (cpu_has_feature(CPU_FTR_ARCH_31))
449                         capabilities |= H_GUEST_CAP_POWER10;
450                 if (cpu_has_feature(CPU_FTR_ARCH_300))
451                         capabilities |= H_GUEST_CAP_POWER9;
452
453                 nested_capabilities = capabilities & host_capabilities;
454                 rc = plpar_guest_set_capabilities(0, nested_capabilities);
455                 if (rc != H_SUCCESS) {
456                         pr_err("kvm-hv: Could not configure parent hypervisor capabilities (rc=%ld)",
457                                rc);
458                         return -ENODEV;
459                 }
460
461                 static_branch_enable(&__kvmhv_is_nestedv2);
462                 return 0;
463         }
464
465         pr_info("kvm-hv: nestedv2 get capabilities hcall failed, falling back to nestedv1 (rc=%ld)\n",
466                 rc);
467         /* Partition table entry is 1<<4 bytes in size, hence the 4. */
468         ptb_order = KVM_MAX_NESTED_GUESTS_SHIFT + 4;
469         /* Minimum partition table size is 1<<12 bytes */
470         if (ptb_order < 12)
471                 ptb_order = 12;
472         pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
473                                        GFP_KERNEL);
474         if (!pseries_partition_tb) {
475                 pr_err("kvm-hv: failed to allocated nested partition table\n");
476                 return -ENOMEM;
477         }
478
479         ptcr = __pa(pseries_partition_tb) | (ptb_order - 12);
480         rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
481         if (rc != H_SUCCESS) {
482                 pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
483                        rc);
484                 kfree(pseries_partition_tb);
485                 pseries_partition_tb = NULL;
486                 return -ENODEV;
487         }
488
489         return 0;
490 }
491
492 void kvmhv_nested_exit(void)
493 {
494         /*
495          * N.B. the kvmhv_on_pseries() test is there because it enables
496          * the compiler to remove the call to plpar_hcall_norets()
497          * when CONFIG_PPC_PSERIES=n.
498          */
499         if (kvmhv_on_pseries() && pseries_partition_tb) {
500                 plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
501                 kfree(pseries_partition_tb);
502                 pseries_partition_tb = NULL;
503         }
504 }
505
506 static void kvmhv_flush_lpid(u64 lpid)
507 {
508         long rc;
509
510         if (!kvmhv_on_pseries()) {
511                 radix__flush_all_lpid(lpid);
512                 return;
513         }
514
515         if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE))
516                 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1),
517                                         lpid, TLBIEL_INVAL_SET_LPID);
518         else
519                 rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
520                                             H_RPTI_TYPE_NESTED |
521                                             H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
522                                             H_RPTI_TYPE_PAT,
523                                             H_RPTI_PAGE_ALL, 0, -1UL);
524         if (rc)
525                 pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc);
526 }
527
528 void kvmhv_set_ptbl_entry(u64 lpid, u64 dw0, u64 dw1)
529 {
530         if (!kvmhv_on_pseries()) {
531                 mmu_partition_table_set_entry(lpid, dw0, dw1, true);
532                 return;
533         }
534
535         if (kvmhv_is_nestedv1()) {
536                 pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
537                 pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
538                 /* L0 will do the necessary barriers */
539                 kvmhv_flush_lpid(lpid);
540         }
541
542         if (kvmhv_is_nestedv2())
543                 kvmhv_nestedv2_set_ptbl_entry(lpid, dw0, dw1);
544 }
545
546 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
547 {
548         unsigned long dw0;
549
550         dw0 = PATB_HR | radix__get_tree_size() |
551                 __pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
552         kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
553 }
554
555 /*
556  * Handle the H_SET_PARTITION_TABLE hcall.
557  * r4 = guest real address of partition table + log_2(size) - 12
558  * (formatted as for the PTCR).
559  */
560 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
561 {
562         struct kvm *kvm = vcpu->kvm;
563         unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
564         int srcu_idx;
565         long ret = H_SUCCESS;
566
567         srcu_idx = srcu_read_lock(&kvm->srcu);
568         /* Check partition size and base address. */
569         if ((ptcr & PRTS_MASK) + 12 - 4 > KVM_MAX_NESTED_GUESTS_SHIFT ||
570             !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
571                 ret = H_PARAMETER;
572         srcu_read_unlock(&kvm->srcu, srcu_idx);
573         if (ret == H_SUCCESS)
574                 kvm->arch.l1_ptcr = ptcr;
575
576         return ret;
577 }
578
579 /*
580  * Handle the H_COPY_TOFROM_GUEST hcall.
581  * r4 = L1 lpid of nested guest
582  * r5 = pid
583  * r6 = eaddr to access
584  * r7 = to buffer (L1 gpa)
585  * r8 = from buffer (L1 gpa)
586  * r9 = n bytes to copy
587  */
588 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu)
589 {
590         struct kvm_nested_guest *gp;
591         int l1_lpid = kvmppc_get_gpr(vcpu, 4);
592         int pid = kvmppc_get_gpr(vcpu, 5);
593         gva_t eaddr = kvmppc_get_gpr(vcpu, 6);
594         gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7);
595         gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8);
596         void *buf;
597         unsigned long n = kvmppc_get_gpr(vcpu, 9);
598         bool is_load = !!gp_to;
599         long rc;
600
601         if (gp_to && gp_from) /* One must be NULL to determine the direction */
602                 return H_PARAMETER;
603
604         if (eaddr & (0xFFFUL << 52))
605                 return H_PARAMETER;
606
607         buf = kzalloc(n, GFP_KERNEL | __GFP_NOWARN);
608         if (!buf)
609                 return H_NO_MEM;
610
611         gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false);
612         if (!gp) {
613                 rc = H_PARAMETER;
614                 goto out_free;
615         }
616
617         mutex_lock(&gp->tlb_lock);
618
619         if (is_load) {
620                 /* Load from the nested guest into our buffer */
621                 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
622                                                      eaddr, buf, NULL, n);
623                 if (rc)
624                         goto not_found;
625
626                 /* Write what was loaded into our buffer back to the L1 guest */
627                 kvm_vcpu_srcu_read_lock(vcpu);
628                 rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n);
629                 kvm_vcpu_srcu_read_unlock(vcpu);
630                 if (rc)
631                         goto not_found;
632         } else {
633                 /* Load the data to be stored from the L1 guest into our buf */
634                 kvm_vcpu_srcu_read_lock(vcpu);
635                 rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n);
636                 kvm_vcpu_srcu_read_unlock(vcpu);
637                 if (rc)
638                         goto not_found;
639
640                 /* Store from our buffer into the nested guest */
641                 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
642                                                      eaddr, NULL, buf, n);
643                 if (rc)
644                         goto not_found;
645         }
646
647 out_unlock:
648         mutex_unlock(&gp->tlb_lock);
649         kvmhv_put_nested(gp);
650 out_free:
651         kfree(buf);
652         return rc;
653 not_found:
654         rc = H_NOT_FOUND;
655         goto out_unlock;
656 }
657
658 /*
659  * Reload the partition table entry for a guest.
660  * Caller must hold gp->tlb_lock.
661  */
662 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
663 {
664         int ret;
665         struct patb_entry ptbl_entry;
666         unsigned long ptbl_addr;
667         struct kvm *kvm = gp->l1_host;
668
669         ret = -EFAULT;
670         ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
671         if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) {
672                 int srcu_idx = srcu_read_lock(&kvm->srcu);
673                 ret = kvm_read_guest(kvm, ptbl_addr,
674                                      &ptbl_entry, sizeof(ptbl_entry));
675                 srcu_read_unlock(&kvm->srcu, srcu_idx);
676         }
677         if (ret) {
678                 gp->l1_gr_to_hr = 0;
679                 gp->process_table = 0;
680         } else {
681                 gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
682                 gp->process_table = be64_to_cpu(ptbl_entry.patb1);
683         }
684         kvmhv_set_nested_ptbl(gp);
685 }
686
687 void kvmhv_vm_nested_init(struct kvm *kvm)
688 {
689         idr_init(&kvm->arch.kvm_nested_guest_idr);
690 }
691
692 static struct kvm_nested_guest *__find_nested(struct kvm *kvm, int lpid)
693 {
694         return idr_find(&kvm->arch.kvm_nested_guest_idr, lpid);
695 }
696
697 static bool __prealloc_nested(struct kvm *kvm, int lpid)
698 {
699         if (idr_alloc(&kvm->arch.kvm_nested_guest_idr,
700                                 NULL, lpid, lpid + 1, GFP_KERNEL) != lpid)
701                 return false;
702         return true;
703 }
704
705 static void __add_nested(struct kvm *kvm, int lpid, struct kvm_nested_guest *gp)
706 {
707         if (idr_replace(&kvm->arch.kvm_nested_guest_idr, gp, lpid))
708                 WARN_ON(1);
709 }
710
711 static void __remove_nested(struct kvm *kvm, int lpid)
712 {
713         idr_remove(&kvm->arch.kvm_nested_guest_idr, lpid);
714 }
715
716 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
717 {
718         struct kvm_nested_guest *gp;
719         long shadow_lpid;
720
721         gp = kzalloc(sizeof(*gp), GFP_KERNEL);
722         if (!gp)
723                 return NULL;
724         gp->l1_host = kvm;
725         gp->l1_lpid = lpid;
726         mutex_init(&gp->tlb_lock);
727         gp->shadow_pgtable = pgd_alloc(kvm->mm);
728         if (!gp->shadow_pgtable)
729                 goto out_free;
730         shadow_lpid = kvmppc_alloc_lpid();
731         if (shadow_lpid < 0)
732                 goto out_free2;
733         gp->shadow_lpid = shadow_lpid;
734         gp->radix = 1;
735
736         memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu));
737
738         return gp;
739
740  out_free2:
741         pgd_free(kvm->mm, gp->shadow_pgtable);
742  out_free:
743         kfree(gp);
744         return NULL;
745 }
746
747 /*
748  * Free up any resources allocated for a nested guest.
749  */
750 static void kvmhv_release_nested(struct kvm_nested_guest *gp)
751 {
752         struct kvm *kvm = gp->l1_host;
753
754         if (gp->shadow_pgtable) {
755                 /*
756                  * No vcpu is using this struct and no call to
757                  * kvmhv_get_nested can find this struct,
758                  * so we don't need to hold kvm->mmu_lock.
759                  */
760                 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
761                                           gp->shadow_lpid);
762                 pgd_free(kvm->mm, gp->shadow_pgtable);
763         }
764         kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
765         kvmppc_free_lpid(gp->shadow_lpid);
766         kfree(gp);
767 }
768
769 static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
770 {
771         struct kvm *kvm = gp->l1_host;
772         int lpid = gp->l1_lpid;
773         long ref;
774
775         spin_lock(&kvm->mmu_lock);
776         if (gp == __find_nested(kvm, lpid)) {
777                 __remove_nested(kvm, lpid);
778                 --gp->refcnt;
779         }
780         ref = gp->refcnt;
781         spin_unlock(&kvm->mmu_lock);
782         if (ref == 0)
783                 kvmhv_release_nested(gp);
784 }
785
786 /*
787  * Free up all nested resources allocated for this guest.
788  * This is called with no vcpus of the guest running, when
789  * switching the guest to HPT mode or when destroying the
790  * guest.
791  */
792 void kvmhv_release_all_nested(struct kvm *kvm)
793 {
794         int lpid;
795         struct kvm_nested_guest *gp;
796         struct kvm_nested_guest *freelist = NULL;
797         struct kvm_memory_slot *memslot;
798         int srcu_idx, bkt;
799
800         spin_lock(&kvm->mmu_lock);
801         idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
802                 __remove_nested(kvm, lpid);
803                 if (--gp->refcnt == 0) {
804                         gp->next = freelist;
805                         freelist = gp;
806                 }
807         }
808         idr_destroy(&kvm->arch.kvm_nested_guest_idr);
809         /* idr is empty and may be reused at this point */
810         spin_unlock(&kvm->mmu_lock);
811         while ((gp = freelist) != NULL) {
812                 freelist = gp->next;
813                 kvmhv_release_nested(gp);
814         }
815
816         srcu_idx = srcu_read_lock(&kvm->srcu);
817         kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm))
818                 kvmhv_free_memslot_nest_rmap(memslot);
819         srcu_read_unlock(&kvm->srcu, srcu_idx);
820 }
821
822 /* caller must hold gp->tlb_lock */
823 static void kvmhv_flush_nested(struct kvm_nested_guest *gp)
824 {
825         struct kvm *kvm = gp->l1_host;
826
827         spin_lock(&kvm->mmu_lock);
828         kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
829         spin_unlock(&kvm->mmu_lock);
830         kvmhv_flush_lpid(gp->shadow_lpid);
831         kvmhv_update_ptbl_cache(gp);
832         if (gp->l1_gr_to_hr == 0)
833                 kvmhv_remove_nested(gp);
834 }
835
836 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
837                                           bool create)
838 {
839         struct kvm_nested_guest *gp, *newgp;
840
841         if (l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
842                 return NULL;
843
844         spin_lock(&kvm->mmu_lock);
845         gp = __find_nested(kvm, l1_lpid);
846         if (gp)
847                 ++gp->refcnt;
848         spin_unlock(&kvm->mmu_lock);
849
850         if (gp || !create)
851                 return gp;
852
853         newgp = kvmhv_alloc_nested(kvm, l1_lpid);
854         if (!newgp)
855                 return NULL;
856
857         if (!__prealloc_nested(kvm, l1_lpid)) {
858                 kvmhv_release_nested(newgp);
859                 return NULL;
860         }
861
862         spin_lock(&kvm->mmu_lock);
863         gp = __find_nested(kvm, l1_lpid);
864         if (!gp) {
865                 __add_nested(kvm, l1_lpid, newgp);
866                 ++newgp->refcnt;
867                 gp = newgp;
868                 newgp = NULL;
869         }
870         ++gp->refcnt;
871         spin_unlock(&kvm->mmu_lock);
872
873         if (newgp)
874                 kvmhv_release_nested(newgp);
875
876         return gp;
877 }
878
879 void kvmhv_put_nested(struct kvm_nested_guest *gp)
880 {
881         struct kvm *kvm = gp->l1_host;
882         long ref;
883
884         spin_lock(&kvm->mmu_lock);
885         ref = --gp->refcnt;
886         spin_unlock(&kvm->mmu_lock);
887         if (ref == 0)
888                 kvmhv_release_nested(gp);
889 }
890
891 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
892                                  unsigned long ea, unsigned *hshift)
893 {
894         struct kvm_nested_guest *gp;
895         pte_t *pte;
896
897         gp = __find_nested(kvm, lpid);
898         if (!gp)
899                 return NULL;
900
901         VM_WARN(!spin_is_locked(&kvm->mmu_lock),
902                 "%s called with kvm mmu_lock not held \n", __func__);
903         pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift);
904
905         return pte;
906 }
907
908 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2)
909 {
910         return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK |
911                                        RMAP_NESTED_GPA_MASK));
912 }
913
914 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
915                             struct rmap_nested **n_rmap)
916 {
917         struct llist_node *entry = ((struct llist_head *) rmapp)->first;
918         struct rmap_nested *cursor;
919         u64 rmap, new_rmap = (*n_rmap)->rmap;
920
921         /* Are there any existing entries? */
922         if (!(*rmapp)) {
923                 /* No -> use the rmap as a single entry */
924                 *rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY;
925                 return;
926         }
927
928         /* Do any entries match what we're trying to insert? */
929         for_each_nest_rmap_safe(cursor, entry, &rmap) {
930                 if (kvmhv_n_rmap_is_equal(rmap, new_rmap))
931                         return;
932         }
933
934         /* Do we need to create a list or just add the new entry? */
935         rmap = *rmapp;
936         if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
937                 *rmapp = 0UL;
938         llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp);
939         if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
940                 (*n_rmap)->list.next = (struct llist_node *) rmap;
941
942         /* Set NULL so not freed by caller */
943         *n_rmap = NULL;
944 }
945
946 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap,
947                                       unsigned long clr, unsigned long set,
948                                       unsigned long hpa, unsigned long mask)
949 {
950         unsigned long gpa;
951         unsigned int shift, lpid;
952         pte_t *ptep;
953
954         gpa = n_rmap & RMAP_NESTED_GPA_MASK;
955         lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
956
957         /* Find the pte */
958         ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
959         /*
960          * If the pte is present and the pfn is still the same, update the pte.
961          * If the pfn has changed then this is a stale rmap entry, the nested
962          * gpa actually points somewhere else now, and there is nothing to do.
963          * XXX A future optimisation would be to remove the rmap entry here.
964          */
965         if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) {
966                 __radix_pte_update(ptep, clr, set);
967                 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
968         }
969 }
970
971 /*
972  * For a given list of rmap entries, update the rc bits in all ptes in shadow
973  * page tables for nested guests which are referenced by the rmap list.
974  */
975 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
976                                     unsigned long clr, unsigned long set,
977                                     unsigned long hpa, unsigned long nbytes)
978 {
979         struct llist_node *entry = ((struct llist_head *) rmapp)->first;
980         struct rmap_nested *cursor;
981         unsigned long rmap, mask;
982
983         if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED))
984                 return;
985
986         mask = PTE_RPN_MASK & ~(nbytes - 1);
987         hpa &= mask;
988
989         for_each_nest_rmap_safe(cursor, entry, &rmap)
990                 kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask);
991 }
992
993 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap,
994                                    unsigned long hpa, unsigned long mask)
995 {
996         struct kvm_nested_guest *gp;
997         unsigned long gpa;
998         unsigned int shift, lpid;
999         pte_t *ptep;
1000
1001         gpa = n_rmap & RMAP_NESTED_GPA_MASK;
1002         lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
1003         gp = __find_nested(kvm, lpid);
1004         if (!gp)
1005                 return;
1006
1007         /* Find and invalidate the pte */
1008         ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
1009         /* Don't spuriously invalidate ptes if the pfn has changed */
1010         if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa))
1011                 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1012 }
1013
1014 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp,
1015                                         unsigned long hpa, unsigned long mask)
1016 {
1017         struct llist_node *entry = llist_del_all((struct llist_head *) rmapp);
1018         struct rmap_nested *cursor;
1019         unsigned long rmap;
1020
1021         for_each_nest_rmap_safe(cursor, entry, &rmap) {
1022                 kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask);
1023                 kfree(cursor);
1024         }
1025 }
1026
1027 /* called with kvm->mmu_lock held */
1028 void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
1029                                   const struct kvm_memory_slot *memslot,
1030                                   unsigned long gpa, unsigned long hpa,
1031                                   unsigned long nbytes)
1032 {
1033         unsigned long gfn, end_gfn;
1034         unsigned long addr_mask;
1035
1036         if (!memslot)
1037                 return;
1038         gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn;
1039         end_gfn = gfn + (nbytes >> PAGE_SHIFT);
1040
1041         addr_mask = PTE_RPN_MASK & ~(nbytes - 1);
1042         hpa &= addr_mask;
1043
1044         for (; gfn < end_gfn; gfn++) {
1045                 unsigned long *rmap = &memslot->arch.rmap[gfn];
1046                 kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask);
1047         }
1048 }
1049
1050 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free)
1051 {
1052         unsigned long page;
1053
1054         for (page = 0; page < free->npages; page++) {
1055                 unsigned long rmap, *rmapp = &free->arch.rmap[page];
1056                 struct rmap_nested *cursor;
1057                 struct llist_node *entry;
1058
1059                 entry = llist_del_all((struct llist_head *) rmapp);
1060                 for_each_nest_rmap_safe(cursor, entry, &rmap)
1061                         kfree(cursor);
1062         }
1063 }
1064
1065 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
1066                                         struct kvm_nested_guest *gp,
1067                                         long gpa, int *shift_ret)
1068 {
1069         struct kvm *kvm = vcpu->kvm;
1070         bool ret = false;
1071         pte_t *ptep;
1072         int shift;
1073
1074         spin_lock(&kvm->mmu_lock);
1075         ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift);
1076         if (!shift)
1077                 shift = PAGE_SHIFT;
1078         if (ptep && pte_present(*ptep)) {
1079                 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1080                 ret = true;
1081         }
1082         spin_unlock(&kvm->mmu_lock);
1083
1084         if (shift_ret)
1085                 *shift_ret = shift;
1086         return ret;
1087 }
1088
1089 static inline int get_ric(unsigned int instr)
1090 {
1091         return (instr >> 18) & 0x3;
1092 }
1093
1094 static inline int get_prs(unsigned int instr)
1095 {
1096         return (instr >> 17) & 0x1;
1097 }
1098
1099 static inline int get_r(unsigned int instr)
1100 {
1101         return (instr >> 16) & 0x1;
1102 }
1103
1104 static inline int get_lpid(unsigned long r_val)
1105 {
1106         return r_val & 0xffffffff;
1107 }
1108
1109 static inline int get_is(unsigned long r_val)
1110 {
1111         return (r_val >> 10) & 0x3;
1112 }
1113
1114 static inline int get_ap(unsigned long r_val)
1115 {
1116         return (r_val >> 5) & 0x7;
1117 }
1118
1119 static inline long get_epn(unsigned long r_val)
1120 {
1121         return r_val >> 12;
1122 }
1123
1124 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid,
1125                                         int ap, long epn)
1126 {
1127         struct kvm *kvm = vcpu->kvm;
1128         struct kvm_nested_guest *gp;
1129         long npages;
1130         int shift, shadow_shift;
1131         unsigned long addr;
1132
1133         shift = ap_to_shift(ap);
1134         addr = epn << 12;
1135         if (shift < 0)
1136                 /* Invalid ap encoding */
1137                 return -EINVAL;
1138
1139         addr &= ~((1UL << shift) - 1);
1140         npages = 1UL << (shift - PAGE_SHIFT);
1141
1142         gp = kvmhv_get_nested(kvm, lpid, false);
1143         if (!gp) /* No such guest -> nothing to do */
1144                 return 0;
1145         mutex_lock(&gp->tlb_lock);
1146
1147         /* There may be more than one host page backing this single guest pte */
1148         do {
1149                 kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift);
1150
1151                 npages -= 1UL << (shadow_shift - PAGE_SHIFT);
1152                 addr += 1UL << shadow_shift;
1153         } while (npages > 0);
1154
1155         mutex_unlock(&gp->tlb_lock);
1156         kvmhv_put_nested(gp);
1157         return 0;
1158 }
1159
1160 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu,
1161                                      struct kvm_nested_guest *gp, int ric)
1162 {
1163         struct kvm *kvm = vcpu->kvm;
1164
1165         mutex_lock(&gp->tlb_lock);
1166         switch (ric) {
1167         case 0:
1168                 /* Invalidate TLB */
1169                 spin_lock(&kvm->mmu_lock);
1170                 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
1171                                           gp->shadow_lpid);
1172                 kvmhv_flush_lpid(gp->shadow_lpid);
1173                 spin_unlock(&kvm->mmu_lock);
1174                 break;
1175         case 1:
1176                 /*
1177                  * Invalidate PWC
1178                  * We don't cache this -> nothing to do
1179                  */
1180                 break;
1181         case 2:
1182                 /* Invalidate TLB, PWC and caching of partition table entries */
1183                 kvmhv_flush_nested(gp);
1184                 break;
1185         default:
1186                 break;
1187         }
1188         mutex_unlock(&gp->tlb_lock);
1189 }
1190
1191 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric)
1192 {
1193         struct kvm *kvm = vcpu->kvm;
1194         struct kvm_nested_guest *gp;
1195         int lpid;
1196
1197         spin_lock(&kvm->mmu_lock);
1198         idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
1199                 spin_unlock(&kvm->mmu_lock);
1200                 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1201                 spin_lock(&kvm->mmu_lock);
1202         }
1203         spin_unlock(&kvm->mmu_lock);
1204 }
1205
1206 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr,
1207                                     unsigned long rsval, unsigned long rbval)
1208 {
1209         struct kvm *kvm = vcpu->kvm;
1210         struct kvm_nested_guest *gp;
1211         int r, ric, prs, is, ap;
1212         int lpid;
1213         long epn;
1214         int ret = 0;
1215
1216         ric = get_ric(instr);
1217         prs = get_prs(instr);
1218         r = get_r(instr);
1219         lpid = get_lpid(rsval);
1220         is = get_is(rbval);
1221
1222         /*
1223          * These cases are invalid and are not handled:
1224          * r   != 1 -> Only radix supported
1225          * prs == 1 -> Not HV privileged
1226          * ric == 3 -> No cluster bombs for radix
1227          * is  == 1 -> Partition scoped translations not associated with pid
1228          * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA
1229          */
1230         if ((!r) || (prs) || (ric == 3) || (is == 1) ||
1231             ((!is) && (ric == 1 || ric == 2)))
1232                 return -EINVAL;
1233
1234         switch (is) {
1235         case 0:
1236                 /*
1237                  * We know ric == 0
1238                  * Invalidate TLB for a given target address
1239                  */
1240                 epn = get_epn(rbval);
1241                 ap = get_ap(rbval);
1242                 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn);
1243                 break;
1244         case 2:
1245                 /* Invalidate matching LPID */
1246                 gp = kvmhv_get_nested(kvm, lpid, false);
1247                 if (gp) {
1248                         kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1249                         kvmhv_put_nested(gp);
1250                 }
1251                 break;
1252         case 3:
1253                 /* Invalidate ALL LPIDs */
1254                 kvmhv_emulate_tlbie_all_lpid(vcpu, ric);
1255                 break;
1256         default:
1257                 ret = -EINVAL;
1258                 break;
1259         }
1260
1261         return ret;
1262 }
1263
1264 /*
1265  * This handles the H_TLB_INVALIDATE hcall.
1266  * Parameters are (r4) tlbie instruction code, (r5) rS contents,
1267  * (r6) rB contents.
1268  */
1269 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu)
1270 {
1271         int ret;
1272
1273         ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4),
1274                         kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6));
1275         if (ret)
1276                 return H_PARAMETER;
1277         return H_SUCCESS;
1278 }
1279
1280 static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu,
1281                                          unsigned long lpid, unsigned long ric)
1282 {
1283         struct kvm *kvm = vcpu->kvm;
1284         struct kvm_nested_guest *gp;
1285
1286         gp = kvmhv_get_nested(kvm, lpid, false);
1287         if (gp) {
1288                 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1289                 kvmhv_put_nested(gp);
1290         }
1291         return H_SUCCESS;
1292 }
1293
1294 /*
1295  * Number of pages above which we invalidate the entire LPID rather than
1296  * flush individual pages.
1297  */
1298 static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33;
1299
1300 static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu,
1301                                          unsigned long lpid,
1302                                          unsigned long pg_sizes,
1303                                          unsigned long start,
1304                                          unsigned long end)
1305 {
1306         int ret = H_P4;
1307         unsigned long addr, nr_pages;
1308         struct mmu_psize_def *def;
1309         unsigned long psize, ap, page_size;
1310         bool flush_lpid;
1311
1312         for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1313                 def = &mmu_psize_defs[psize];
1314                 if (!(pg_sizes & def->h_rpt_pgsize))
1315                         continue;
1316
1317                 nr_pages = (end - start) >> def->shift;
1318                 flush_lpid = nr_pages > tlb_range_flush_page_ceiling;
1319                 if (flush_lpid)
1320                         return do_tlb_invalidate_nested_all(vcpu, lpid,
1321                                                         RIC_FLUSH_TLB);
1322                 addr = start;
1323                 ap = mmu_get_ap(psize);
1324                 page_size = 1UL << def->shift;
1325                 do {
1326                         ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap,
1327                                                    get_epn(addr));
1328                         if (ret)
1329                                 return H_P4;
1330                         addr += page_size;
1331                 } while (addr < end);
1332         }
1333         return ret;
1334 }
1335
1336 /*
1337  * Performs partition-scoped invalidations for nested guests
1338  * as part of H_RPT_INVALIDATE hcall.
1339  */
1340 long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid,
1341                              unsigned long type, unsigned long pg_sizes,
1342                              unsigned long start, unsigned long end)
1343 {
1344         /*
1345          * If L2 lpid isn't valid, we need to return H_PARAMETER.
1346          *
1347          * However, nested KVM issues a L2 lpid flush call when creating
1348          * partition table entries for L2. This happens even before the
1349          * corresponding shadow lpid is created in HV which happens in
1350          * H_ENTER_NESTED call. Since we can't differentiate this case from
1351          * the invalid case, we ignore such flush requests and return success.
1352          */
1353         if (!__find_nested(vcpu->kvm, lpid))
1354                 return H_SUCCESS;
1355
1356         /*
1357          * A flush all request can be handled by a full lpid flush only.
1358          */
1359         if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL)
1360                 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL);
1361
1362         /*
1363          * We don't need to handle a PWC flush like process table here,
1364          * because intermediate partition scoped table in nested guest doesn't
1365          * really have PWC. Only level we have PWC is in L0 and for nested
1366          * invalidate at L0 we always do kvm_flush_lpid() which does
1367          * radix__flush_all_lpid(). For range invalidate at any level, we
1368          * are not removing the higher level page tables and hence there is
1369          * no PWC invalidate needed.
1370          *
1371          * if (type & H_RPTI_TYPE_PWC) {
1372          *      ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC);
1373          *      if (ret)
1374          *              return H_P4;
1375          * }
1376          */
1377
1378         if (start == 0 && end == -1)
1379                 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB);
1380
1381         if (type & H_RPTI_TYPE_TLB)
1382                 return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes,
1383                                                     start, end);
1384         return H_SUCCESS;
1385 }
1386
1387 /* Used to convert a nested guest real address to a L1 guest real address */
1388 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
1389                                        struct kvm_nested_guest *gp,
1390                                        unsigned long n_gpa, unsigned long dsisr,
1391                                        struct kvmppc_pte *gpte_p)
1392 {
1393         u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
1394         int ret;
1395
1396         ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
1397                                          &fault_addr);
1398
1399         if (ret) {
1400                 /* We didn't find a pte */
1401                 if (ret == -EINVAL) {
1402                         /* Unsupported mmu config */
1403                         flags |= DSISR_UNSUPP_MMU;
1404                 } else if (ret == -ENOENT) {
1405                         /* No translation found */
1406                         flags |= DSISR_NOHPTE;
1407                 } else if (ret == -EFAULT) {
1408                         /* Couldn't access L1 real address */
1409                         flags |= DSISR_PRTABLE_FAULT;
1410                         vcpu->arch.fault_gpa = fault_addr;
1411                 } else {
1412                         /* Unknown error */
1413                         return ret;
1414                 }
1415                 goto forward_to_l1;
1416         } else {
1417                 /* We found a pte -> check permissions */
1418                 if (dsisr & DSISR_ISSTORE) {
1419                         /* Can we write? */
1420                         if (!gpte_p->may_write) {
1421                                 flags |= DSISR_PROTFAULT;
1422                                 goto forward_to_l1;
1423                         }
1424                 } else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1425                         /* Can we execute? */
1426                         if (!gpte_p->may_execute) {
1427                                 flags |= SRR1_ISI_N_G_OR_CIP;
1428                                 goto forward_to_l1;
1429                         }
1430                 } else {
1431                         /* Can we read? */
1432                         if (!gpte_p->may_read && !gpte_p->may_write) {
1433                                 flags |= DSISR_PROTFAULT;
1434                                 goto forward_to_l1;
1435                         }
1436                 }
1437         }
1438
1439         return 0;
1440
1441 forward_to_l1:
1442         vcpu->arch.fault_dsisr = flags;
1443         if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1444                 vcpu->arch.shregs.msr &= SRR1_MSR_BITS;
1445                 vcpu->arch.shregs.msr |= flags;
1446         }
1447         return RESUME_HOST;
1448 }
1449
1450 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
1451                                        struct kvm_nested_guest *gp,
1452                                        unsigned long n_gpa,
1453                                        struct kvmppc_pte gpte,
1454                                        unsigned long dsisr)
1455 {
1456         struct kvm *kvm = vcpu->kvm;
1457         bool writing = !!(dsisr & DSISR_ISSTORE);
1458         u64 pgflags;
1459         long ret;
1460
1461         /* Are the rc bits set in the L1 partition scoped pte? */
1462         pgflags = _PAGE_ACCESSED;
1463         if (writing)
1464                 pgflags |= _PAGE_DIRTY;
1465         if (pgflags & ~gpte.rc)
1466                 return RESUME_HOST;
1467
1468         spin_lock(&kvm->mmu_lock);
1469         /* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
1470         ret = kvmppc_hv_handle_set_rc(kvm, false, writing,
1471                                       gpte.raddr, kvm->arch.lpid);
1472         if (!ret) {
1473                 ret = -EINVAL;
1474                 goto out_unlock;
1475         }
1476
1477         /* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
1478         ret = kvmppc_hv_handle_set_rc(kvm, true, writing,
1479                                       n_gpa, gp->l1_lpid);
1480         if (!ret)
1481                 ret = -EINVAL;
1482         else
1483                 ret = 0;
1484
1485 out_unlock:
1486         spin_unlock(&kvm->mmu_lock);
1487         return ret;
1488 }
1489
1490 static inline int kvmppc_radix_level_to_shift(int level)
1491 {
1492         switch (level) {
1493         case 2:
1494                 return PUD_SHIFT;
1495         case 1:
1496                 return PMD_SHIFT;
1497         default:
1498                 return PAGE_SHIFT;
1499         }
1500 }
1501
1502 static inline int kvmppc_radix_shift_to_level(int shift)
1503 {
1504         if (shift == PUD_SHIFT)
1505                 return 2;
1506         if (shift == PMD_SHIFT)
1507                 return 1;
1508         if (shift == PAGE_SHIFT)
1509                 return 0;
1510         WARN_ON_ONCE(1);
1511         return 0;
1512 }
1513
1514 /* called with gp->tlb_lock held */
1515 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
1516                                           struct kvm_nested_guest *gp)
1517 {
1518         struct kvm *kvm = vcpu->kvm;
1519         struct kvm_memory_slot *memslot;
1520         struct rmap_nested *n_rmap;
1521         struct kvmppc_pte gpte;
1522         pte_t pte, *pte_p;
1523         unsigned long mmu_seq;
1524         unsigned long dsisr = vcpu->arch.fault_dsisr;
1525         unsigned long ea = vcpu->arch.fault_dar;
1526         unsigned long *rmapp;
1527         unsigned long n_gpa, gpa, gfn, perm = 0UL;
1528         unsigned int shift, l1_shift, level;
1529         bool writing = !!(dsisr & DSISR_ISSTORE);
1530         bool kvm_ro = false;
1531         long int ret;
1532
1533         if (!gp->l1_gr_to_hr) {
1534                 kvmhv_update_ptbl_cache(gp);
1535                 if (!gp->l1_gr_to_hr)
1536                         return RESUME_HOST;
1537         }
1538
1539         /* Convert the nested guest real address into a L1 guest real address */
1540
1541         n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
1542         if (!(dsisr & DSISR_PRTABLE_FAULT))
1543                 n_gpa |= ea & 0xFFF;
1544         ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);
1545
1546         /*
1547          * If the hardware found a translation but we don't now have a usable
1548          * translation in the l1 partition-scoped tree, remove the shadow pte
1549          * and let the guest retry.
1550          */
1551         if (ret == RESUME_HOST &&
1552             (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
1553                       DSISR_BAD_COPYPASTE)))
1554                 goto inval;
1555         if (ret)
1556                 return ret;
1557
1558         /* Failed to set the reference/change bits */
1559         if (dsisr & DSISR_SET_RC) {
1560                 ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
1561                 if (ret == RESUME_HOST)
1562                         return ret;
1563                 if (ret)
1564                         goto inval;
1565                 dsisr &= ~DSISR_SET_RC;
1566                 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
1567                                DSISR_PROTFAULT)))
1568                         return RESUME_GUEST;
1569         }
1570
1571         /*
1572          * We took an HISI or HDSI while we were running a nested guest which
1573          * means we have no partition scoped translation for that. This means
1574          * we need to insert a pte for the mapping into our shadow_pgtable.
1575          */
1576
1577         l1_shift = gpte.page_shift;
1578         if (l1_shift < PAGE_SHIFT) {
1579                 /* We don't support l1 using a page size smaller than our own */
1580                 pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
1581                         l1_shift, PAGE_SHIFT);
1582                 return -EINVAL;
1583         }
1584         gpa = gpte.raddr;
1585         gfn = gpa >> PAGE_SHIFT;
1586
1587         /* 1. Get the corresponding host memslot */
1588
1589         memslot = gfn_to_memslot(kvm, gfn);
1590         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
1591                 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
1592                         /* unusual error -> reflect to the guest as a DSI */
1593                         kvmppc_core_queue_data_storage(vcpu,
1594                                         kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1595                                         ea, dsisr);
1596                         return RESUME_GUEST;
1597                 }
1598
1599                 /* passthrough of emulated MMIO case */
1600                 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
1601         }
1602         if (memslot->flags & KVM_MEM_READONLY) {
1603                 if (writing) {
1604                         /* Give the guest a DSI */
1605                         kvmppc_core_queue_data_storage(vcpu,
1606                                         kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1607                                         ea, DSISR_ISSTORE | DSISR_PROTFAULT);
1608                         return RESUME_GUEST;
1609                 }
1610                 kvm_ro = true;
1611         }
1612
1613         /* 2. Find the host pte for this L1 guest real address */
1614
1615         /* Used to check for invalidations in progress */
1616         mmu_seq = kvm->mmu_invalidate_seq;
1617         smp_rmb();
1618
1619         /* See if can find translation in our partition scoped tables for L1 */
1620         pte = __pte(0);
1621         spin_lock(&kvm->mmu_lock);
1622         pte_p = find_kvm_secondary_pte(kvm, gpa, &shift);
1623         if (!shift)
1624                 shift = PAGE_SHIFT;
1625         if (pte_p)
1626                 pte = *pte_p;
1627         spin_unlock(&kvm->mmu_lock);
1628
1629         if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
1630                 /* No suitable pte found -> try to insert a mapping */
1631                 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
1632                                         writing, kvm_ro, &pte, &level);
1633                 if (ret == -EAGAIN)
1634                         return RESUME_GUEST;
1635                 else if (ret)
1636                         return ret;
1637                 shift = kvmppc_radix_level_to_shift(level);
1638         }
1639         /* Align gfn to the start of the page */
1640         gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT;
1641
1642         /* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */
1643
1644         /* The permissions is the combination of the host and l1 guest ptes */
1645         perm |= gpte.may_read ? 0UL : _PAGE_READ;
1646         perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
1647         perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
1648         /* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */
1649         perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED;
1650         perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY;
1651         pte = __pte(pte_val(pte) & ~perm);
1652
1653         /* What size pte can we insert? */
1654         if (shift > l1_shift) {
1655                 u64 mask;
1656                 unsigned int actual_shift = PAGE_SHIFT;
1657                 if (PMD_SHIFT < l1_shift)
1658                         actual_shift = PMD_SHIFT;
1659                 mask = (1UL << shift) - (1UL << actual_shift);
1660                 pte = __pte(pte_val(pte) | (gpa & mask));
1661                 shift = actual_shift;
1662         }
1663         level = kvmppc_radix_shift_to_level(shift);
1664         n_gpa &= ~((1UL << shift) - 1);
1665
1666         /* 4. Insert the pte into our shadow_pgtable */
1667
1668         n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL);
1669         if (!n_rmap)
1670                 return RESUME_GUEST; /* Let the guest try again */
1671         n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) |
1672                 (((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT);
1673         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1674         ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
1675                                 mmu_seq, gp->shadow_lpid, rmapp, &n_rmap);
1676         kfree(n_rmap);
1677         if (ret == -EAGAIN)
1678                 ret = RESUME_GUEST;     /* Let the guest try again */
1679
1680         return ret;
1681
1682  inval:
1683         kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
1684         return RESUME_GUEST;
1685 }
1686
1687 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
1688 {
1689         struct kvm_nested_guest *gp = vcpu->arch.nested;
1690         long int ret;
1691
1692         mutex_lock(&gp->tlb_lock);
1693         ret = __kvmhv_nested_page_fault(vcpu, gp);
1694         mutex_unlock(&gp->tlb_lock);
1695         return ret;
1696 }
1697
1698 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid)
1699 {
1700         int ret = lpid + 1;
1701
1702         spin_lock(&kvm->mmu_lock);
1703         if (!idr_get_next(&kvm->arch.kvm_nested_guest_idr, &ret))
1704                 ret = -1;
1705         spin_unlock(&kvm->mmu_lock);
1706
1707         return ret;
1708 }