2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/stat.h>
27 #include <linux/delay.h>
28 #include <linux/export.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/spinlock.h>
34 #include <linux/page-flags.h>
35 #include <linux/srcu.h>
36 #include <linux/miscdevice.h>
37 #include <linux/debugfs.h>
38 #include <linux/gfp.h>
39 #include <linux/vmalloc.h>
40 #include <linux/highmem.h>
41 #include <linux/hugetlb.h>
42 #include <linux/kvm_irqfd.h>
43 #include <linux/irqbypass.h>
44 #include <linux/module.h>
45 #include <linux/compiler.h>
49 #include <asm/ppc-opcode.h>
50 #include <asm/disassemble.h>
51 #include <asm/cputable.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
54 #include <linux/uaccess.h>
56 #include <asm/kvm_ppc.h>
57 #include <asm/kvm_book3s.h>
58 #include <asm/mmu_context.h>
59 #include <asm/lppaca.h>
60 #include <asm/processor.h>
61 #include <asm/cputhreads.h>
63 #include <asm/hvcall.h>
64 #include <asm/switch_to.h>
66 #include <asm/dbell.h>
68 #include <asm/pnv-pci.h>
76 #define CREATE_TRACE_POINTS
79 /* #define EXIT_DEBUG */
80 /* #define EXIT_DEBUG_SIMPLE */
81 /* #define EXIT_DEBUG_INT */
83 /* Used to indicate that a guest page fault needs to be handled */
84 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
85 /* Used to indicate that a guest passthrough interrupt needs to be handled */
86 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
88 /* Used as a "null" value for timebase values */
89 #define TB_NIL (~(u64)0)
91 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
93 static int dynamic_mt_modes = 6;
94 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
95 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
96 static int target_smt_mode;
97 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
100 #ifdef CONFIG_KVM_XICS
101 static struct kernel_param_ops module_param_ops = {
102 .set = param_set_int,
103 .get = param_get_int,
106 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
108 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
110 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
112 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
115 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
116 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
118 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
122 struct kvm_vcpu *vcpu;
124 while (++i < MAX_SMT_THREADS) {
125 vcpu = READ_ONCE(vc->runnable_threads[i]);
134 /* Used to traverse the list of runnable threads for a given vcore */
135 #define for_each_runnable_thread(i, vcpu, vc) \
136 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
138 static bool kvmppc_ipi_thread(int cpu)
140 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
142 /* On POWER9 we can use msgsnd to IPI any cpu */
143 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
144 msg |= get_hard_smp_processor_id(cpu);
146 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
150 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
151 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
153 if (cpu_first_thread_sibling(cpu) ==
154 cpu_first_thread_sibling(smp_processor_id())) {
155 msg |= cpu_thread_in_core(cpu);
157 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
164 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
165 if (cpu >= 0 && cpu < nr_cpu_ids) {
166 if (paca[cpu].kvm_hstate.xics_phys) {
170 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
178 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
181 struct swait_queue_head *wqp;
183 wqp = kvm_arch_vcpu_wq(vcpu);
184 if (swq_has_sleeper(wqp)) {
186 ++vcpu->stat.halt_wakeup;
189 cpu = READ_ONCE(vcpu->arch.thread_cpu);
190 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
193 /* CPU points to the first thread of the core */
195 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
196 smp_send_reschedule(cpu);
200 * We use the vcpu_load/put functions to measure stolen time.
201 * Stolen time is counted as time when either the vcpu is able to
202 * run as part of a virtual core, but the task running the vcore
203 * is preempted or sleeping, or when the vcpu needs something done
204 * in the kernel by the task running the vcpu, but that task is
205 * preempted or sleeping. Those two things have to be counted
206 * separately, since one of the vcpu tasks will take on the job
207 * of running the core, and the other vcpu tasks in the vcore will
208 * sleep waiting for it to do that, but that sleep shouldn't count
211 * Hence we accumulate stolen time when the vcpu can run as part of
212 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
213 * needs its task to do other things in the kernel (for example,
214 * service a page fault) in busy_stolen. We don't accumulate
215 * stolen time for a vcore when it is inactive, or for a vcpu
216 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
217 * a misnomer; it means that the vcpu task is not executing in
218 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
219 * the kernel. We don't have any way of dividing up that time
220 * between time that the vcpu is genuinely stopped, time that
221 * the task is actively working on behalf of the vcpu, and time
222 * that the task is preempted, so we don't count any of it as
225 * Updates to busy_stolen are protected by arch.tbacct_lock;
226 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
227 * lock. The stolen times are measured in units of timebase ticks.
228 * (Note that the != TB_NIL checks below are purely defensive;
229 * they should never fail.)
232 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
236 spin_lock_irqsave(&vc->stoltb_lock, flags);
237 vc->preempt_tb = mftb();
238 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
241 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
245 spin_lock_irqsave(&vc->stoltb_lock, flags);
246 if (vc->preempt_tb != TB_NIL) {
247 vc->stolen_tb += mftb() - vc->preempt_tb;
248 vc->preempt_tb = TB_NIL;
250 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
253 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
255 struct kvmppc_vcore *vc = vcpu->arch.vcore;
259 * We can test vc->runner without taking the vcore lock,
260 * because only this task ever sets vc->runner to this
261 * vcpu, and once it is set to this vcpu, only this task
262 * ever sets it to NULL.
264 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
265 kvmppc_core_end_stolen(vc);
267 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
268 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
269 vcpu->arch.busy_preempt != TB_NIL) {
270 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
271 vcpu->arch.busy_preempt = TB_NIL;
273 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
276 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
278 struct kvmppc_vcore *vc = vcpu->arch.vcore;
281 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
282 kvmppc_core_start_stolen(vc);
284 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
285 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
286 vcpu->arch.busy_preempt = mftb();
287 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
290 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
293 * Check for illegal transactional state bit combination
294 * and if we find it, force the TS field to a safe state.
296 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
298 vcpu->arch.shregs.msr = msr;
299 kvmppc_end_cede(vcpu);
302 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
304 vcpu->arch.pvr = pvr;
307 /* Dummy value used in computing PCR value below */
308 #define PCR_ARCH_300 (PCR_ARCH_207 << 1)
310 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
312 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
313 struct kvmppc_vcore *vc = vcpu->arch.vcore;
315 /* We can (emulate) our own architecture version and anything older */
316 if (cpu_has_feature(CPU_FTR_ARCH_300))
317 host_pcr_bit = PCR_ARCH_300;
318 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
319 host_pcr_bit = PCR_ARCH_207;
320 else if (cpu_has_feature(CPU_FTR_ARCH_206))
321 host_pcr_bit = PCR_ARCH_206;
323 host_pcr_bit = PCR_ARCH_205;
325 /* Determine lowest PCR bit needed to run guest in given PVR level */
326 guest_pcr_bit = host_pcr_bit;
328 switch (arch_compat) {
330 guest_pcr_bit = PCR_ARCH_205;
334 guest_pcr_bit = PCR_ARCH_206;
337 guest_pcr_bit = PCR_ARCH_207;
340 guest_pcr_bit = PCR_ARCH_300;
347 /* Check requested PCR bits don't exceed our capabilities */
348 if (guest_pcr_bit > host_pcr_bit)
351 spin_lock(&vc->lock);
352 vc->arch_compat = arch_compat;
353 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
354 vc->pcr = host_pcr_bit - guest_pcr_bit;
355 spin_unlock(&vc->lock);
360 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
364 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
365 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
366 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
367 for (r = 0; r < 16; ++r)
368 pr_err("r%2d = %.16lx r%d = %.16lx\n",
369 r, kvmppc_get_gpr(vcpu, r),
370 r+16, kvmppc_get_gpr(vcpu, r+16));
371 pr_err("ctr = %.16lx lr = %.16lx\n",
372 vcpu->arch.ctr, vcpu->arch.lr);
373 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
374 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
375 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
376 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
377 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
378 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
379 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
380 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
381 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
382 pr_err("fault dar = %.16lx dsisr = %.8x\n",
383 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
384 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
385 for (r = 0; r < vcpu->arch.slb_max; ++r)
386 pr_err(" ESID = %.16llx VSID = %.16llx\n",
387 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
388 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
389 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
390 vcpu->arch.last_inst);
393 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
395 return kvm_get_vcpu_by_id(kvm, id);
398 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
400 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
401 vpa->yield_count = cpu_to_be32(1);
404 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
405 unsigned long addr, unsigned long len)
407 /* check address is cacheline aligned */
408 if (addr & (L1_CACHE_BYTES - 1))
410 spin_lock(&vcpu->arch.vpa_update_lock);
411 if (v->next_gpa != addr || v->len != len) {
413 v->len = addr ? len : 0;
414 v->update_pending = 1;
416 spin_unlock(&vcpu->arch.vpa_update_lock);
420 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
429 static int vpa_is_registered(struct kvmppc_vpa *vpap)
431 if (vpap->update_pending)
432 return vpap->next_gpa != 0;
433 return vpap->pinned_addr != NULL;
436 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
438 unsigned long vcpuid, unsigned long vpa)
440 struct kvm *kvm = vcpu->kvm;
441 unsigned long len, nb;
443 struct kvm_vcpu *tvcpu;
446 struct kvmppc_vpa *vpap;
448 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
452 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
453 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
454 subfunc == H_VPA_REG_SLB) {
455 /* Registering new area - address must be cache-line aligned */
456 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
459 /* convert logical addr to kernel addr and read length */
460 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
463 if (subfunc == H_VPA_REG_VPA)
464 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
466 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
467 kvmppc_unpin_guest_page(kvm, va, vpa, false);
470 if (len > nb || len < sizeof(struct reg_vpa))
479 spin_lock(&tvcpu->arch.vpa_update_lock);
482 case H_VPA_REG_VPA: /* register VPA */
484 * The size of our lppaca is 1kB because of the way we align
485 * it for the guest to avoid crossing a 4kB boundary. We only
486 * use 640 bytes of the structure though, so we should accept
487 * clients that set a size of 640.
491 vpap = &tvcpu->arch.vpa;
495 case H_VPA_REG_DTL: /* register DTL */
496 if (len < sizeof(struct dtl_entry))
498 len -= len % sizeof(struct dtl_entry);
500 /* Check that they have previously registered a VPA */
502 if (!vpa_is_registered(&tvcpu->arch.vpa))
505 vpap = &tvcpu->arch.dtl;
509 case H_VPA_REG_SLB: /* register SLB shadow buffer */
510 /* Check that they have previously registered a VPA */
512 if (!vpa_is_registered(&tvcpu->arch.vpa))
515 vpap = &tvcpu->arch.slb_shadow;
519 case H_VPA_DEREG_VPA: /* deregister VPA */
520 /* Check they don't still have a DTL or SLB buf registered */
522 if (vpa_is_registered(&tvcpu->arch.dtl) ||
523 vpa_is_registered(&tvcpu->arch.slb_shadow))
526 vpap = &tvcpu->arch.vpa;
530 case H_VPA_DEREG_DTL: /* deregister DTL */
531 vpap = &tvcpu->arch.dtl;
535 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
536 vpap = &tvcpu->arch.slb_shadow;
542 vpap->next_gpa = vpa;
544 vpap->update_pending = 1;
547 spin_unlock(&tvcpu->arch.vpa_update_lock);
552 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
554 struct kvm *kvm = vcpu->kvm;
560 * We need to pin the page pointed to by vpap->next_gpa,
561 * but we can't call kvmppc_pin_guest_page under the lock
562 * as it does get_user_pages() and down_read(). So we
563 * have to drop the lock, pin the page, then get the lock
564 * again and check that a new area didn't get registered
568 gpa = vpap->next_gpa;
569 spin_unlock(&vcpu->arch.vpa_update_lock);
573 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
574 spin_lock(&vcpu->arch.vpa_update_lock);
575 if (gpa == vpap->next_gpa)
577 /* sigh... unpin that one and try again */
579 kvmppc_unpin_guest_page(kvm, va, gpa, false);
582 vpap->update_pending = 0;
583 if (va && nb < vpap->len) {
585 * If it's now too short, it must be that userspace
586 * has changed the mappings underlying guest memory,
587 * so unregister the region.
589 kvmppc_unpin_guest_page(kvm, va, gpa, false);
592 if (vpap->pinned_addr)
593 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
596 vpap->pinned_addr = va;
599 vpap->pinned_end = va + vpap->len;
602 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
604 if (!(vcpu->arch.vpa.update_pending ||
605 vcpu->arch.slb_shadow.update_pending ||
606 vcpu->arch.dtl.update_pending))
609 spin_lock(&vcpu->arch.vpa_update_lock);
610 if (vcpu->arch.vpa.update_pending) {
611 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
612 if (vcpu->arch.vpa.pinned_addr)
613 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
615 if (vcpu->arch.dtl.update_pending) {
616 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
617 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
618 vcpu->arch.dtl_index = 0;
620 if (vcpu->arch.slb_shadow.update_pending)
621 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
622 spin_unlock(&vcpu->arch.vpa_update_lock);
626 * Return the accumulated stolen time for the vcore up until `now'.
627 * The caller should hold the vcore lock.
629 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
634 spin_lock_irqsave(&vc->stoltb_lock, flags);
636 if (vc->vcore_state != VCORE_INACTIVE &&
637 vc->preempt_tb != TB_NIL)
638 p += now - vc->preempt_tb;
639 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
643 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
644 struct kvmppc_vcore *vc)
646 struct dtl_entry *dt;
648 unsigned long stolen;
649 unsigned long core_stolen;
653 dt = vcpu->arch.dtl_ptr;
654 vpa = vcpu->arch.vpa.pinned_addr;
656 core_stolen = vcore_stolen_time(vc, now);
657 stolen = core_stolen - vcpu->arch.stolen_logged;
658 vcpu->arch.stolen_logged = core_stolen;
659 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
660 stolen += vcpu->arch.busy_stolen;
661 vcpu->arch.busy_stolen = 0;
662 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
665 memset(dt, 0, sizeof(struct dtl_entry));
666 dt->dispatch_reason = 7;
667 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
668 dt->timebase = cpu_to_be64(now + vc->tb_offset);
669 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
670 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
671 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
673 if (dt == vcpu->arch.dtl.pinned_end)
674 dt = vcpu->arch.dtl.pinned_addr;
675 vcpu->arch.dtl_ptr = dt;
676 /* order writing *dt vs. writing vpa->dtl_idx */
678 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
679 vcpu->arch.dtl.dirty = true;
682 /* See if there is a doorbell interrupt pending for a vcpu */
683 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
686 struct kvmppc_vcore *vc;
688 if (vcpu->arch.doorbell_request)
691 * Ensure that the read of vcore->dpdes comes after the read
692 * of vcpu->doorbell_request. This barrier matches the
693 * lwsync in book3s_hv_rmhandlers.S just before the
694 * fast_guest_return label.
697 vc = vcpu->arch.vcore;
698 thr = vcpu->vcpu_id - vc->first_vcpuid;
699 return !!(vc->dpdes & (1 << thr));
702 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
704 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
706 if ((!vcpu->arch.vcore->arch_compat) &&
707 cpu_has_feature(CPU_FTR_ARCH_207S))
712 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
713 unsigned long resource, unsigned long value1,
714 unsigned long value2)
717 case H_SET_MODE_RESOURCE_SET_CIABR:
718 if (!kvmppc_power8_compatible(vcpu))
723 return H_UNSUPPORTED_FLAG_START;
724 /* Guests can't breakpoint the hypervisor */
725 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
727 vcpu->arch.ciabr = value1;
729 case H_SET_MODE_RESOURCE_SET_DAWR:
730 if (!kvmppc_power8_compatible(vcpu))
733 return H_UNSUPPORTED_FLAG_START;
734 if (value2 & DABRX_HYP)
736 vcpu->arch.dawr = value1;
737 vcpu->arch.dawrx = value2;
744 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
746 struct kvmppc_vcore *vcore = target->arch.vcore;
749 * We expect to have been called by the real mode handler
750 * (kvmppc_rm_h_confer()) which would have directly returned
751 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
752 * have useful work to do and should not confer) so we don't
756 spin_lock(&vcore->lock);
757 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
758 vcore->vcore_state != VCORE_INACTIVE &&
760 target = vcore->runner;
761 spin_unlock(&vcore->lock);
763 return kvm_vcpu_yield_to(target);
766 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
769 struct lppaca *lppaca;
771 spin_lock(&vcpu->arch.vpa_update_lock);
772 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
774 yield_count = be32_to_cpu(lppaca->yield_count);
775 spin_unlock(&vcpu->arch.vpa_update_lock);
779 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
781 unsigned long req = kvmppc_get_gpr(vcpu, 3);
782 unsigned long target, ret = H_SUCCESS;
784 struct kvm_vcpu *tvcpu;
787 if (req <= MAX_HCALL_OPCODE &&
788 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
795 target = kvmppc_get_gpr(vcpu, 4);
796 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
801 tvcpu->arch.prodded = 1;
803 if (tvcpu->arch.ceded)
804 kvmppc_fast_vcpu_kick_hv(tvcpu);
807 target = kvmppc_get_gpr(vcpu, 4);
810 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
815 yield_count = kvmppc_get_gpr(vcpu, 5);
816 if (kvmppc_get_yield_count(tvcpu) != yield_count)
818 kvm_arch_vcpu_yield_to(tvcpu);
821 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
822 kvmppc_get_gpr(vcpu, 5),
823 kvmppc_get_gpr(vcpu, 6));
826 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
829 idx = srcu_read_lock(&vcpu->kvm->srcu);
830 rc = kvmppc_rtas_hcall(vcpu);
831 srcu_read_unlock(&vcpu->kvm->srcu, idx);
838 /* Send the error out to userspace via KVM_RUN */
840 case H_LOGICAL_CI_LOAD:
841 ret = kvmppc_h_logical_ci_load(vcpu);
842 if (ret == H_TOO_HARD)
845 case H_LOGICAL_CI_STORE:
846 ret = kvmppc_h_logical_ci_store(vcpu);
847 if (ret == H_TOO_HARD)
851 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
852 kvmppc_get_gpr(vcpu, 5),
853 kvmppc_get_gpr(vcpu, 6),
854 kvmppc_get_gpr(vcpu, 7));
855 if (ret == H_TOO_HARD)
864 if (kvmppc_xics_enabled(vcpu)) {
865 if (xive_enabled()) {
866 ret = H_NOT_AVAILABLE;
869 ret = kvmppc_xics_hcall(vcpu, req);
874 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
875 kvmppc_get_gpr(vcpu, 5),
876 kvmppc_get_gpr(vcpu, 6));
877 if (ret == H_TOO_HARD)
880 case H_PUT_TCE_INDIRECT:
881 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
882 kvmppc_get_gpr(vcpu, 5),
883 kvmppc_get_gpr(vcpu, 6),
884 kvmppc_get_gpr(vcpu, 7));
885 if (ret == H_TOO_HARD)
889 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
890 kvmppc_get_gpr(vcpu, 5),
891 kvmppc_get_gpr(vcpu, 6),
892 kvmppc_get_gpr(vcpu, 7));
893 if (ret == H_TOO_HARD)
899 kvmppc_set_gpr(vcpu, 3, ret);
900 vcpu->arch.hcall_needed = 0;
904 static int kvmppc_hcall_impl_hv(unsigned long cmd)
912 case H_LOGICAL_CI_LOAD:
913 case H_LOGICAL_CI_STORE:
914 #ifdef CONFIG_KVM_XICS
925 /* See if it's in the real-mode table */
926 return kvmppc_hcall_impl_hv_realmode(cmd);
929 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
930 struct kvm_vcpu *vcpu)
934 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
937 * Fetch failed, so return to guest and
938 * try executing it again.
943 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
944 run->exit_reason = KVM_EXIT_DEBUG;
945 run->debug.arch.address = kvmppc_get_pc(vcpu);
948 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
953 static void do_nothing(void *x)
957 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
959 int thr, cpu, pcpu, nthreads;
963 nthreads = vcpu->kvm->arch.emul_smt_mode;
965 cpu = vcpu->vcpu_id & ~(nthreads - 1);
966 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
967 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
971 * If the vcpu is currently running on a physical cpu thread,
972 * interrupt it in order to pull it out of the guest briefly,
973 * which will update its vcore->dpdes value.
975 pcpu = READ_ONCE(v->cpu);
977 smp_call_function_single(pcpu, do_nothing, NULL, 1);
978 if (kvmppc_doorbell_pending(v))
985 * On POWER9, emulate doorbell-related instructions in order to
986 * give the guest the illusion of running on a multi-threaded core.
987 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
990 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
994 struct kvm *kvm = vcpu->kvm;
995 struct kvm_vcpu *tvcpu;
997 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
999 if (get_op(inst) != 31)
1000 return EMULATE_FAIL;
1002 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1003 switch (get_xop(inst)) {
1004 case OP_31_XOP_MSGSNDP:
1005 arg = kvmppc_get_gpr(vcpu, rb);
1006 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1009 if (arg >= kvm->arch.emul_smt_mode)
1011 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1014 if (!tvcpu->arch.doorbell_request) {
1015 tvcpu->arch.doorbell_request = 1;
1016 kvmppc_fast_vcpu_kick_hv(tvcpu);
1019 case OP_31_XOP_MSGCLRP:
1020 arg = kvmppc_get_gpr(vcpu, rb);
1021 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1023 vcpu->arch.vcore->dpdes = 0;
1024 vcpu->arch.doorbell_request = 0;
1026 case OP_31_XOP_MFSPR:
1027 switch (get_sprn(inst)) {
1032 arg = kvmppc_read_dpdes(vcpu);
1035 return EMULATE_FAIL;
1037 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1040 return EMULATE_FAIL;
1042 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1043 return RESUME_GUEST;
1046 /* Called with vcpu->arch.vcore->lock held */
1047 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1048 struct task_struct *tsk)
1050 int r = RESUME_HOST;
1052 vcpu->stat.sum_exits++;
1055 * This can happen if an interrupt occurs in the last stages
1056 * of guest entry or the first stages of guest exit (i.e. after
1057 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1058 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1059 * That can happen due to a bug, or due to a machine check
1060 * occurring at just the wrong time.
1062 if (vcpu->arch.shregs.msr & MSR_HV) {
1063 printk(KERN_EMERG "KVM trap in HV mode!\n");
1064 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1065 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1066 vcpu->arch.shregs.msr);
1067 kvmppc_dump_regs(vcpu);
1068 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1069 run->hw.hardware_exit_reason = vcpu->arch.trap;
1072 run->exit_reason = KVM_EXIT_UNKNOWN;
1073 run->ready_for_interrupt_injection = 1;
1074 switch (vcpu->arch.trap) {
1075 /* We're good on these - the host merely wanted to get our attention */
1076 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1077 vcpu->stat.dec_exits++;
1080 case BOOK3S_INTERRUPT_EXTERNAL:
1081 case BOOK3S_INTERRUPT_H_DOORBELL:
1082 case BOOK3S_INTERRUPT_H_VIRT:
1083 vcpu->stat.ext_intr_exits++;
1086 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
1087 case BOOK3S_INTERRUPT_HMI:
1088 case BOOK3S_INTERRUPT_PERFMON:
1091 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1092 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1093 run->exit_reason = KVM_EXIT_NMI;
1094 run->hw.hardware_exit_reason = vcpu->arch.trap;
1095 /* Clear out the old NMI status from run->flags */
1096 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1097 /* Now set the NMI status */
1098 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1099 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1101 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1104 /* Print the MCE event to host console. */
1105 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1107 case BOOK3S_INTERRUPT_PROGRAM:
1111 * Normally program interrupts are delivered directly
1112 * to the guest by the hardware, but we can get here
1113 * as a result of a hypervisor emulation interrupt
1114 * (e40) getting turned into a 700 by BML RTAS.
1116 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1117 kvmppc_core_queue_program(vcpu, flags);
1121 case BOOK3S_INTERRUPT_SYSCALL:
1123 /* hcall - punt to userspace */
1126 /* hypercall with MSR_PR has already been handled in rmode,
1127 * and never reaches here.
1130 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1131 for (i = 0; i < 9; ++i)
1132 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1133 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1134 vcpu->arch.hcall_needed = 1;
1139 * We get these next two if the guest accesses a page which it thinks
1140 * it has mapped but which is not actually present, either because
1141 * it is for an emulated I/O device or because the corresonding
1142 * host page has been paged out. Any other HDSI/HISI interrupts
1143 * have been handled already.
1145 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1146 r = RESUME_PAGE_FAULT;
1148 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1149 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1150 vcpu->arch.fault_dsisr = 0;
1151 r = RESUME_PAGE_FAULT;
1154 * This occurs if the guest executes an illegal instruction.
1155 * If the guest debug is disabled, generate a program interrupt
1156 * to the guest. If guest debug is enabled, we need to check
1157 * whether the instruction is a software breakpoint instruction.
1158 * Accordingly return to Guest or Host.
1160 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1161 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1162 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1163 swab32(vcpu->arch.emul_inst) :
1164 vcpu->arch.emul_inst;
1165 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1166 /* Need vcore unlocked to call kvmppc_get_last_inst */
1167 spin_unlock(&vcpu->arch.vcore->lock);
1168 r = kvmppc_emulate_debug_inst(run, vcpu);
1169 spin_lock(&vcpu->arch.vcore->lock);
1171 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1176 * This occurs if the guest (kernel or userspace), does something that
1177 * is prohibited by HFSCR.
1178 * On POWER9, this could be a doorbell instruction that we need
1180 * Otherwise, we just generate a program interrupt to the guest.
1182 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1184 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1185 cpu_has_feature(CPU_FTR_ARCH_300)) {
1186 /* Need vcore unlocked to call kvmppc_get_last_inst */
1187 spin_unlock(&vcpu->arch.vcore->lock);
1188 r = kvmppc_emulate_doorbell_instr(vcpu);
1189 spin_lock(&vcpu->arch.vcore->lock);
1191 if (r == EMULATE_FAIL) {
1192 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1196 case BOOK3S_INTERRUPT_HV_RM_HARD:
1197 r = RESUME_PASSTHROUGH;
1200 kvmppc_dump_regs(vcpu);
1201 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1202 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1203 vcpu->arch.shregs.msr);
1204 run->hw.hardware_exit_reason = vcpu->arch.trap;
1212 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1213 struct kvm_sregs *sregs)
1217 memset(sregs, 0, sizeof(struct kvm_sregs));
1218 sregs->pvr = vcpu->arch.pvr;
1219 for (i = 0; i < vcpu->arch.slb_max; i++) {
1220 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1221 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1227 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1228 struct kvm_sregs *sregs)
1232 /* Only accept the same PVR as the host's, since we can't spoof it */
1233 if (sregs->pvr != vcpu->arch.pvr)
1237 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1238 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1239 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1240 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1244 vcpu->arch.slb_max = j;
1249 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1250 bool preserve_top32)
1252 struct kvm *kvm = vcpu->kvm;
1253 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1256 spin_lock(&vc->lock);
1258 * If ILE (interrupt little-endian) has changed, update the
1259 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1261 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1262 struct kvm_vcpu *vcpu;
1265 kvm_for_each_vcpu(i, vcpu, kvm) {
1266 if (vcpu->arch.vcore != vc)
1268 if (new_lpcr & LPCR_ILE)
1269 vcpu->arch.intr_msr |= MSR_LE;
1271 vcpu->arch.intr_msr &= ~MSR_LE;
1276 * Userspace can only modify DPFD (default prefetch depth),
1277 * ILE (interrupt little-endian) and TC (translation control).
1278 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1280 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1281 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1284 * On POWER9, allow userspace to enable large decrementer for the
1285 * guest, whether or not the host has it enabled.
1287 if (cpu_has_feature(CPU_FTR_ARCH_300))
1290 /* Broken 32-bit version of LPCR must not clear top bits */
1293 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1294 spin_unlock(&vc->lock);
1297 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1298 union kvmppc_one_reg *val)
1304 case KVM_REG_PPC_DEBUG_INST:
1305 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1307 case KVM_REG_PPC_HIOR:
1308 *val = get_reg_val(id, 0);
1310 case KVM_REG_PPC_DABR:
1311 *val = get_reg_val(id, vcpu->arch.dabr);
1313 case KVM_REG_PPC_DABRX:
1314 *val = get_reg_val(id, vcpu->arch.dabrx);
1316 case KVM_REG_PPC_DSCR:
1317 *val = get_reg_val(id, vcpu->arch.dscr);
1319 case KVM_REG_PPC_PURR:
1320 *val = get_reg_val(id, vcpu->arch.purr);
1322 case KVM_REG_PPC_SPURR:
1323 *val = get_reg_val(id, vcpu->arch.spurr);
1325 case KVM_REG_PPC_AMR:
1326 *val = get_reg_val(id, vcpu->arch.amr);
1328 case KVM_REG_PPC_UAMOR:
1329 *val = get_reg_val(id, vcpu->arch.uamor);
1331 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1332 i = id - KVM_REG_PPC_MMCR0;
1333 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1335 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1336 i = id - KVM_REG_PPC_PMC1;
1337 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1339 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1340 i = id - KVM_REG_PPC_SPMC1;
1341 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1343 case KVM_REG_PPC_SIAR:
1344 *val = get_reg_val(id, vcpu->arch.siar);
1346 case KVM_REG_PPC_SDAR:
1347 *val = get_reg_val(id, vcpu->arch.sdar);
1349 case KVM_REG_PPC_SIER:
1350 *val = get_reg_val(id, vcpu->arch.sier);
1352 case KVM_REG_PPC_IAMR:
1353 *val = get_reg_val(id, vcpu->arch.iamr);
1355 case KVM_REG_PPC_PSPB:
1356 *val = get_reg_val(id, vcpu->arch.pspb);
1358 case KVM_REG_PPC_DPDES:
1360 * On POWER9, where we are emulating msgsndp etc.,
1361 * we return 1 bit for each vcpu, which can come from
1362 * either vcore->dpdes or doorbell_request.
1363 * On POWER8, doorbell_request is 0.
1365 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1366 vcpu->arch.doorbell_request);
1368 case KVM_REG_PPC_VTB:
1369 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1371 case KVM_REG_PPC_DAWR:
1372 *val = get_reg_val(id, vcpu->arch.dawr);
1374 case KVM_REG_PPC_DAWRX:
1375 *val = get_reg_val(id, vcpu->arch.dawrx);
1377 case KVM_REG_PPC_CIABR:
1378 *val = get_reg_val(id, vcpu->arch.ciabr);
1380 case KVM_REG_PPC_CSIGR:
1381 *val = get_reg_val(id, vcpu->arch.csigr);
1383 case KVM_REG_PPC_TACR:
1384 *val = get_reg_val(id, vcpu->arch.tacr);
1386 case KVM_REG_PPC_TCSCR:
1387 *val = get_reg_val(id, vcpu->arch.tcscr);
1389 case KVM_REG_PPC_PID:
1390 *val = get_reg_val(id, vcpu->arch.pid);
1392 case KVM_REG_PPC_ACOP:
1393 *val = get_reg_val(id, vcpu->arch.acop);
1395 case KVM_REG_PPC_WORT:
1396 *val = get_reg_val(id, vcpu->arch.wort);
1398 case KVM_REG_PPC_TIDR:
1399 *val = get_reg_val(id, vcpu->arch.tid);
1401 case KVM_REG_PPC_PSSCR:
1402 *val = get_reg_val(id, vcpu->arch.psscr);
1404 case KVM_REG_PPC_VPA_ADDR:
1405 spin_lock(&vcpu->arch.vpa_update_lock);
1406 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1407 spin_unlock(&vcpu->arch.vpa_update_lock);
1409 case KVM_REG_PPC_VPA_SLB:
1410 spin_lock(&vcpu->arch.vpa_update_lock);
1411 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1412 val->vpaval.length = vcpu->arch.slb_shadow.len;
1413 spin_unlock(&vcpu->arch.vpa_update_lock);
1415 case KVM_REG_PPC_VPA_DTL:
1416 spin_lock(&vcpu->arch.vpa_update_lock);
1417 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1418 val->vpaval.length = vcpu->arch.dtl.len;
1419 spin_unlock(&vcpu->arch.vpa_update_lock);
1421 case KVM_REG_PPC_TB_OFFSET:
1422 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1424 case KVM_REG_PPC_LPCR:
1425 case KVM_REG_PPC_LPCR_64:
1426 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1428 case KVM_REG_PPC_PPR:
1429 *val = get_reg_val(id, vcpu->arch.ppr);
1431 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1432 case KVM_REG_PPC_TFHAR:
1433 *val = get_reg_val(id, vcpu->arch.tfhar);
1435 case KVM_REG_PPC_TFIAR:
1436 *val = get_reg_val(id, vcpu->arch.tfiar);
1438 case KVM_REG_PPC_TEXASR:
1439 *val = get_reg_val(id, vcpu->arch.texasr);
1441 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1442 i = id - KVM_REG_PPC_TM_GPR0;
1443 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1445 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1448 i = id - KVM_REG_PPC_TM_VSR0;
1450 for (j = 0; j < TS_FPRWIDTH; j++)
1451 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1453 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1454 val->vval = vcpu->arch.vr_tm.vr[i-32];
1460 case KVM_REG_PPC_TM_CR:
1461 *val = get_reg_val(id, vcpu->arch.cr_tm);
1463 case KVM_REG_PPC_TM_XER:
1464 *val = get_reg_val(id, vcpu->arch.xer_tm);
1466 case KVM_REG_PPC_TM_LR:
1467 *val = get_reg_val(id, vcpu->arch.lr_tm);
1469 case KVM_REG_PPC_TM_CTR:
1470 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1472 case KVM_REG_PPC_TM_FPSCR:
1473 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1475 case KVM_REG_PPC_TM_AMR:
1476 *val = get_reg_val(id, vcpu->arch.amr_tm);
1478 case KVM_REG_PPC_TM_PPR:
1479 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1481 case KVM_REG_PPC_TM_VRSAVE:
1482 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1484 case KVM_REG_PPC_TM_VSCR:
1485 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1486 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1490 case KVM_REG_PPC_TM_DSCR:
1491 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1493 case KVM_REG_PPC_TM_TAR:
1494 *val = get_reg_val(id, vcpu->arch.tar_tm);
1497 case KVM_REG_PPC_ARCH_COMPAT:
1498 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1500 case KVM_REG_PPC_DEC_EXPIRY:
1501 *val = get_reg_val(id, vcpu->arch.dec_expires +
1502 vcpu->arch.vcore->tb_offset);
1512 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1513 union kvmppc_one_reg *val)
1517 unsigned long addr, len;
1520 case KVM_REG_PPC_HIOR:
1521 /* Only allow this to be set to zero */
1522 if (set_reg_val(id, *val))
1525 case KVM_REG_PPC_DABR:
1526 vcpu->arch.dabr = set_reg_val(id, *val);
1528 case KVM_REG_PPC_DABRX:
1529 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1531 case KVM_REG_PPC_DSCR:
1532 vcpu->arch.dscr = set_reg_val(id, *val);
1534 case KVM_REG_PPC_PURR:
1535 vcpu->arch.purr = set_reg_val(id, *val);
1537 case KVM_REG_PPC_SPURR:
1538 vcpu->arch.spurr = set_reg_val(id, *val);
1540 case KVM_REG_PPC_AMR:
1541 vcpu->arch.amr = set_reg_val(id, *val);
1543 case KVM_REG_PPC_UAMOR:
1544 vcpu->arch.uamor = set_reg_val(id, *val);
1546 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1547 i = id - KVM_REG_PPC_MMCR0;
1548 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1550 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1551 i = id - KVM_REG_PPC_PMC1;
1552 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1554 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1555 i = id - KVM_REG_PPC_SPMC1;
1556 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1558 case KVM_REG_PPC_SIAR:
1559 vcpu->arch.siar = set_reg_val(id, *val);
1561 case KVM_REG_PPC_SDAR:
1562 vcpu->arch.sdar = set_reg_val(id, *val);
1564 case KVM_REG_PPC_SIER:
1565 vcpu->arch.sier = set_reg_val(id, *val);
1567 case KVM_REG_PPC_IAMR:
1568 vcpu->arch.iamr = set_reg_val(id, *val);
1570 case KVM_REG_PPC_PSPB:
1571 vcpu->arch.pspb = set_reg_val(id, *val);
1573 case KVM_REG_PPC_DPDES:
1574 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1576 case KVM_REG_PPC_VTB:
1577 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1579 case KVM_REG_PPC_DAWR:
1580 vcpu->arch.dawr = set_reg_val(id, *val);
1582 case KVM_REG_PPC_DAWRX:
1583 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1585 case KVM_REG_PPC_CIABR:
1586 vcpu->arch.ciabr = set_reg_val(id, *val);
1587 /* Don't allow setting breakpoints in hypervisor code */
1588 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1589 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1591 case KVM_REG_PPC_CSIGR:
1592 vcpu->arch.csigr = set_reg_val(id, *val);
1594 case KVM_REG_PPC_TACR:
1595 vcpu->arch.tacr = set_reg_val(id, *val);
1597 case KVM_REG_PPC_TCSCR:
1598 vcpu->arch.tcscr = set_reg_val(id, *val);
1600 case KVM_REG_PPC_PID:
1601 vcpu->arch.pid = set_reg_val(id, *val);
1603 case KVM_REG_PPC_ACOP:
1604 vcpu->arch.acop = set_reg_val(id, *val);
1606 case KVM_REG_PPC_WORT:
1607 vcpu->arch.wort = set_reg_val(id, *val);
1609 case KVM_REG_PPC_TIDR:
1610 vcpu->arch.tid = set_reg_val(id, *val);
1612 case KVM_REG_PPC_PSSCR:
1613 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1615 case KVM_REG_PPC_VPA_ADDR:
1616 addr = set_reg_val(id, *val);
1618 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1619 vcpu->arch.dtl.next_gpa))
1621 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1623 case KVM_REG_PPC_VPA_SLB:
1624 addr = val->vpaval.addr;
1625 len = val->vpaval.length;
1627 if (addr && !vcpu->arch.vpa.next_gpa)
1629 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1631 case KVM_REG_PPC_VPA_DTL:
1632 addr = val->vpaval.addr;
1633 len = val->vpaval.length;
1635 if (addr && (len < sizeof(struct dtl_entry) ||
1636 !vcpu->arch.vpa.next_gpa))
1638 len -= len % sizeof(struct dtl_entry);
1639 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1641 case KVM_REG_PPC_TB_OFFSET:
1643 * POWER9 DD1 has an erratum where writing TBU40 causes
1644 * the timebase to lose ticks. So we don't let the
1645 * timebase offset be changed on P9 DD1. (It is
1646 * initialized to zero.)
1648 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1650 /* round up to multiple of 2^24 */
1651 vcpu->arch.vcore->tb_offset =
1652 ALIGN(set_reg_val(id, *val), 1UL << 24);
1654 case KVM_REG_PPC_LPCR:
1655 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1657 case KVM_REG_PPC_LPCR_64:
1658 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1660 case KVM_REG_PPC_PPR:
1661 vcpu->arch.ppr = set_reg_val(id, *val);
1663 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1664 case KVM_REG_PPC_TFHAR:
1665 vcpu->arch.tfhar = set_reg_val(id, *val);
1667 case KVM_REG_PPC_TFIAR:
1668 vcpu->arch.tfiar = set_reg_val(id, *val);
1670 case KVM_REG_PPC_TEXASR:
1671 vcpu->arch.texasr = set_reg_val(id, *val);
1673 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1674 i = id - KVM_REG_PPC_TM_GPR0;
1675 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1677 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1680 i = id - KVM_REG_PPC_TM_VSR0;
1682 for (j = 0; j < TS_FPRWIDTH; j++)
1683 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1685 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1686 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1691 case KVM_REG_PPC_TM_CR:
1692 vcpu->arch.cr_tm = set_reg_val(id, *val);
1694 case KVM_REG_PPC_TM_XER:
1695 vcpu->arch.xer_tm = set_reg_val(id, *val);
1697 case KVM_REG_PPC_TM_LR:
1698 vcpu->arch.lr_tm = set_reg_val(id, *val);
1700 case KVM_REG_PPC_TM_CTR:
1701 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1703 case KVM_REG_PPC_TM_FPSCR:
1704 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1706 case KVM_REG_PPC_TM_AMR:
1707 vcpu->arch.amr_tm = set_reg_val(id, *val);
1709 case KVM_REG_PPC_TM_PPR:
1710 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1712 case KVM_REG_PPC_TM_VRSAVE:
1713 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1715 case KVM_REG_PPC_TM_VSCR:
1716 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1717 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1721 case KVM_REG_PPC_TM_DSCR:
1722 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1724 case KVM_REG_PPC_TM_TAR:
1725 vcpu->arch.tar_tm = set_reg_val(id, *val);
1728 case KVM_REG_PPC_ARCH_COMPAT:
1729 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1731 case KVM_REG_PPC_DEC_EXPIRY:
1732 vcpu->arch.dec_expires = set_reg_val(id, *val) -
1733 vcpu->arch.vcore->tb_offset;
1744 * On POWER9, threads are independent and can be in different partitions.
1745 * Therefore we consider each thread to be a subcore.
1746 * There is a restriction that all threads have to be in the same
1747 * MMU mode (radix or HPT), unfortunately, but since we only support
1748 * HPT guests on a HPT host so far, that isn't an impediment yet.
1750 static int threads_per_vcore(void)
1752 if (cpu_has_feature(CPU_FTR_ARCH_300))
1754 return threads_per_subcore;
1757 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1759 struct kvmppc_vcore *vcore;
1761 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1766 spin_lock_init(&vcore->lock);
1767 spin_lock_init(&vcore->stoltb_lock);
1768 init_swait_queue_head(&vcore->wq);
1769 vcore->preempt_tb = TB_NIL;
1770 vcore->lpcr = kvm->arch.lpcr;
1771 vcore->first_vcpuid = core * kvm->arch.smt_mode;
1773 INIT_LIST_HEAD(&vcore->preempt_list);
1778 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1779 static struct debugfs_timings_element {
1783 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
1784 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
1785 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
1786 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
1787 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
1790 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0]))
1792 struct debugfs_timings_state {
1793 struct kvm_vcpu *vcpu;
1794 unsigned int buflen;
1795 char buf[N_TIMINGS * 100];
1798 static int debugfs_timings_open(struct inode *inode, struct file *file)
1800 struct kvm_vcpu *vcpu = inode->i_private;
1801 struct debugfs_timings_state *p;
1803 p = kzalloc(sizeof(*p), GFP_KERNEL);
1807 kvm_get_kvm(vcpu->kvm);
1809 file->private_data = p;
1811 return nonseekable_open(inode, file);
1814 static int debugfs_timings_release(struct inode *inode, struct file *file)
1816 struct debugfs_timings_state *p = file->private_data;
1818 kvm_put_kvm(p->vcpu->kvm);
1823 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1824 size_t len, loff_t *ppos)
1826 struct debugfs_timings_state *p = file->private_data;
1827 struct kvm_vcpu *vcpu = p->vcpu;
1829 struct kvmhv_tb_accumulator tb;
1838 buf_end = s + sizeof(p->buf);
1839 for (i = 0; i < N_TIMINGS; ++i) {
1840 struct kvmhv_tb_accumulator *acc;
1842 acc = (struct kvmhv_tb_accumulator *)
1843 ((unsigned long)vcpu + timings[i].offset);
1845 for (loops = 0; loops < 1000; ++loops) {
1846 count = acc->seqcount;
1851 if (count == acc->seqcount) {
1859 snprintf(s, buf_end - s, "%s: stuck\n",
1862 snprintf(s, buf_end - s,
1863 "%s: %llu %llu %llu %llu\n",
1864 timings[i].name, count / 2,
1865 tb_to_ns(tb.tb_total),
1866 tb_to_ns(tb.tb_min),
1867 tb_to_ns(tb.tb_max));
1870 p->buflen = s - p->buf;
1874 if (pos >= p->buflen)
1876 if (len > p->buflen - pos)
1877 len = p->buflen - pos;
1878 n = copy_to_user(buf, p->buf + pos, len);
1888 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1889 size_t len, loff_t *ppos)
1894 static const struct file_operations debugfs_timings_ops = {
1895 .owner = THIS_MODULE,
1896 .open = debugfs_timings_open,
1897 .release = debugfs_timings_release,
1898 .read = debugfs_timings_read,
1899 .write = debugfs_timings_write,
1900 .llseek = generic_file_llseek,
1903 /* Create a debugfs directory for the vcpu */
1904 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1907 struct kvm *kvm = vcpu->kvm;
1909 snprintf(buf, sizeof(buf), "vcpu%u", id);
1910 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1912 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1913 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1915 vcpu->arch.debugfs_timings =
1916 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1917 vcpu, &debugfs_timings_ops);
1920 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1921 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1924 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1926 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1929 struct kvm_vcpu *vcpu;
1932 struct kvmppc_vcore *vcore;
1935 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1939 err = kvm_vcpu_init(vcpu, kvm, id);
1943 vcpu->arch.shared = &vcpu->arch.shregs;
1944 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1946 * The shared struct is never shared on HV,
1947 * so we can always use host endianness
1949 #ifdef __BIG_ENDIAN__
1950 vcpu->arch.shared_big_endian = true;
1952 vcpu->arch.shared_big_endian = false;
1955 vcpu->arch.mmcr[0] = MMCR0_FC;
1956 vcpu->arch.ctrl = CTRL_RUNLATCH;
1957 /* default to host PVR, since we can't spoof it */
1958 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1959 spin_lock_init(&vcpu->arch.vpa_update_lock);
1960 spin_lock_init(&vcpu->arch.tbacct_lock);
1961 vcpu->arch.busy_preempt = TB_NIL;
1962 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1965 * Set the default HFSCR for the guest from the host value.
1966 * This value is only used on POWER9.
1967 * On POWER9 DD1, TM doesn't work, so we make sure to
1968 * prevent the guest from using it.
1969 * On POWER9, we want to virtualize the doorbell facility, so we
1970 * turn off the HFSCR bit, which causes those instructions to trap.
1972 vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1973 if (!cpu_has_feature(CPU_FTR_TM))
1974 vcpu->arch.hfscr &= ~HFSCR_TM;
1975 if (cpu_has_feature(CPU_FTR_ARCH_300))
1976 vcpu->arch.hfscr &= ~HFSCR_MSGP;
1978 kvmppc_mmu_book3s_hv_init(vcpu);
1980 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1982 init_waitqueue_head(&vcpu->arch.cpu_run);
1984 mutex_lock(&kvm->lock);
1987 core = id / kvm->arch.smt_mode;
1988 if (core < KVM_MAX_VCORES) {
1989 vcore = kvm->arch.vcores[core];
1992 vcore = kvmppc_vcore_create(kvm, core);
1993 kvm->arch.vcores[core] = vcore;
1994 kvm->arch.online_vcores++;
1997 mutex_unlock(&kvm->lock);
2002 spin_lock(&vcore->lock);
2003 ++vcore->num_threads;
2004 spin_unlock(&vcore->lock);
2005 vcpu->arch.vcore = vcore;
2006 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2007 vcpu->arch.thread_cpu = -1;
2008 vcpu->arch.prev_cpu = -1;
2010 vcpu->arch.cpu_type = KVM_CPU_3S_64;
2011 kvmppc_sanity_check(vcpu);
2013 debugfs_vcpu_init(vcpu, id);
2018 kvm_vcpu_uninit(vcpu);
2020 kmem_cache_free(kvm_vcpu_cache, vcpu);
2022 return ERR_PTR(err);
2025 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2026 unsigned long flags)
2033 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2035 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2037 * On POWER8 (or POWER7), the threading mode is "strict",
2038 * so we pack smt_mode vcpus per vcore.
2040 if (smt_mode > threads_per_subcore)
2044 * On POWER9, the threading mode is "loose",
2045 * so each vcpu gets its own vcore.
2050 mutex_lock(&kvm->lock);
2052 if (!kvm->arch.online_vcores) {
2053 kvm->arch.smt_mode = smt_mode;
2054 kvm->arch.emul_smt_mode = esmt;
2057 mutex_unlock(&kvm->lock);
2062 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2064 if (vpa->pinned_addr)
2065 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2069 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2071 spin_lock(&vcpu->arch.vpa_update_lock);
2072 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2073 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2074 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2075 spin_unlock(&vcpu->arch.vpa_update_lock);
2076 kvm_vcpu_uninit(vcpu);
2077 kmem_cache_free(kvm_vcpu_cache, vcpu);
2080 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2082 /* Indicate we want to get back into the guest */
2086 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2088 unsigned long dec_nsec, now;
2091 if (now > vcpu->arch.dec_expires) {
2092 /* decrementer has already gone negative */
2093 kvmppc_core_queue_dec(vcpu);
2094 kvmppc_core_prepare_to_enter(vcpu);
2097 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2099 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2100 vcpu->arch.timer_running = 1;
2103 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2105 vcpu->arch.ceded = 0;
2106 if (vcpu->arch.timer_running) {
2107 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2108 vcpu->arch.timer_running = 0;
2112 extern int __kvmppc_vcore_entry(void);
2114 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2115 struct kvm_vcpu *vcpu)
2119 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2121 spin_lock_irq(&vcpu->arch.tbacct_lock);
2123 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2124 vcpu->arch.stolen_logged;
2125 vcpu->arch.busy_preempt = now;
2126 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2127 spin_unlock_irq(&vcpu->arch.tbacct_lock);
2129 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2132 static int kvmppc_grab_hwthread(int cpu)
2134 struct paca_struct *tpaca;
2135 long timeout = 10000;
2138 * ISA v3.0 idle routines do not set hwthread_state or test
2139 * hwthread_req, so they can not grab idle threads.
2141 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2142 WARN(1, "KVM: can not control sibling threads\n");
2148 /* Ensure the thread won't go into the kernel if it wakes */
2149 tpaca->kvm_hstate.kvm_vcpu = NULL;
2150 tpaca->kvm_hstate.kvm_vcore = NULL;
2151 tpaca->kvm_hstate.napping = 0;
2153 tpaca->kvm_hstate.hwthread_req = 1;
2156 * If the thread is already executing in the kernel (e.g. handling
2157 * a stray interrupt), wait for it to get back to nap mode.
2158 * The smp_mb() is to ensure that our setting of hwthread_req
2159 * is visible before we look at hwthread_state, so if this
2160 * races with the code at system_reset_pSeries and the thread
2161 * misses our setting of hwthread_req, we are sure to see its
2162 * setting of hwthread_state, and vice versa.
2165 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2166 if (--timeout <= 0) {
2167 pr_err("KVM: couldn't grab cpu %d\n", cpu);
2175 static void kvmppc_release_hwthread(int cpu)
2177 struct paca_struct *tpaca;
2180 tpaca->kvm_hstate.kvm_vcpu = NULL;
2181 tpaca->kvm_hstate.kvm_vcore = NULL;
2182 tpaca->kvm_hstate.kvm_split_mode = NULL;
2183 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2184 tpaca->kvm_hstate.hwthread_req = 0;
2188 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2192 cpu = cpu_first_thread_sibling(cpu);
2193 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2195 * Make sure setting of bit in need_tlb_flush precedes
2196 * testing of cpu_in_guest bits. The matching barrier on
2197 * the other side is the first smp_mb() in kvmppc_run_core().
2200 for (i = 0; i < threads_per_core; ++i)
2201 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2202 smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2205 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2207 struct kvm *kvm = vcpu->kvm;
2210 * With radix, the guest can do TLB invalidations itself,
2211 * and it could choose to use the local form (tlbiel) if
2212 * it is invalidating a translation that has only ever been
2213 * used on one vcpu. However, that doesn't mean it has
2214 * only ever been used on one physical cpu, since vcpus
2215 * can move around between pcpus. To cope with this, when
2216 * a vcpu moves from one pcpu to another, we need to tell
2217 * any vcpus running on the same core as this vcpu previously
2218 * ran to flush the TLB. The TLB is shared between threads,
2219 * so we use a single bit in .need_tlb_flush for all 4 threads.
2221 if (vcpu->arch.prev_cpu != pcpu) {
2222 if (vcpu->arch.prev_cpu >= 0 &&
2223 cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2224 cpu_first_thread_sibling(pcpu))
2225 radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2226 vcpu->arch.prev_cpu = pcpu;
2230 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2233 struct paca_struct *tpaca;
2234 struct kvm *kvm = vc->kvm;
2238 if (vcpu->arch.timer_running) {
2239 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2240 vcpu->arch.timer_running = 0;
2242 cpu += vcpu->arch.ptid;
2243 vcpu->cpu = vc->pcpu;
2244 vcpu->arch.thread_cpu = cpu;
2245 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2248 tpaca->kvm_hstate.kvm_vcpu = vcpu;
2249 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2250 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2252 tpaca->kvm_hstate.kvm_vcore = vc;
2253 if (cpu != smp_processor_id())
2254 kvmppc_ipi_thread(cpu);
2257 static void kvmppc_wait_for_nap(void)
2259 int cpu = smp_processor_id();
2261 int n_threads = threads_per_vcore();
2265 for (loops = 0; loops < 1000000; ++loops) {
2267 * Check if all threads are finished.
2268 * We set the vcore pointer when starting a thread
2269 * and the thread clears it when finished, so we look
2270 * for any threads that still have a non-NULL vcore ptr.
2272 for (i = 1; i < n_threads; ++i)
2273 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2275 if (i == n_threads) {
2282 for (i = 1; i < n_threads; ++i)
2283 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2284 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2288 * Check that we are on thread 0 and that any other threads in
2289 * this core are off-line. Then grab the threads so they can't
2292 static int on_primary_thread(void)
2294 int cpu = smp_processor_id();
2297 /* Are we on a primary subcore? */
2298 if (cpu_thread_in_subcore(cpu))
2302 while (++thr < threads_per_subcore)
2303 if (cpu_online(cpu + thr))
2306 /* Grab all hw threads so they can't go into the kernel */
2307 for (thr = 1; thr < threads_per_subcore; ++thr) {
2308 if (kvmppc_grab_hwthread(cpu + thr)) {
2309 /* Couldn't grab one; let the others go */
2311 kvmppc_release_hwthread(cpu + thr);
2312 } while (--thr > 0);
2320 * A list of virtual cores for each physical CPU.
2321 * These are vcores that could run but their runner VCPU tasks are
2322 * (or may be) preempted.
2324 struct preempted_vcore_list {
2325 struct list_head list;
2329 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2331 static void init_vcore_lists(void)
2335 for_each_possible_cpu(cpu) {
2336 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2337 spin_lock_init(&lp->lock);
2338 INIT_LIST_HEAD(&lp->list);
2342 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2344 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2346 vc->vcore_state = VCORE_PREEMPT;
2347 vc->pcpu = smp_processor_id();
2348 if (vc->num_threads < threads_per_vcore()) {
2349 spin_lock(&lp->lock);
2350 list_add_tail(&vc->preempt_list, &lp->list);
2351 spin_unlock(&lp->lock);
2354 /* Start accumulating stolen time */
2355 kvmppc_core_start_stolen(vc);
2358 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2360 struct preempted_vcore_list *lp;
2362 kvmppc_core_end_stolen(vc);
2363 if (!list_empty(&vc->preempt_list)) {
2364 lp = &per_cpu(preempted_vcores, vc->pcpu);
2365 spin_lock(&lp->lock);
2366 list_del_init(&vc->preempt_list);
2367 spin_unlock(&lp->lock);
2369 vc->vcore_state = VCORE_INACTIVE;
2373 * This stores information about the virtual cores currently
2374 * assigned to a physical core.
2378 int max_subcore_threads;
2380 int subcore_threads[MAX_SUBCORES];
2381 struct kvmppc_vcore *vc[MAX_SUBCORES];
2385 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2386 * respectively in 2-way micro-threading (split-core) mode.
2388 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2390 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2392 memset(cip, 0, sizeof(*cip));
2393 cip->n_subcores = 1;
2394 cip->max_subcore_threads = vc->num_threads;
2395 cip->total_threads = vc->num_threads;
2396 cip->subcore_threads[0] = vc->num_threads;
2400 static bool subcore_config_ok(int n_subcores, int n_threads)
2402 /* Can only dynamically split if unsplit to begin with */
2403 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2405 if (n_subcores > MAX_SUBCORES)
2407 if (n_subcores > 1) {
2408 if (!(dynamic_mt_modes & 2))
2410 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2414 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2417 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2419 vc->entry_exit_map = 0;
2421 vc->napping_threads = 0;
2422 vc->conferring_threads = 0;
2425 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2427 int n_threads = vc->num_threads;
2430 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2433 if (n_threads < cip->max_subcore_threads)
2434 n_threads = cip->max_subcore_threads;
2435 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2437 cip->max_subcore_threads = n_threads;
2439 sub = cip->n_subcores;
2441 cip->total_threads += vc->num_threads;
2442 cip->subcore_threads[sub] = vc->num_threads;
2444 init_vcore_to_run(vc);
2445 list_del_init(&vc->preempt_list);
2451 * Work out whether it is possible to piggyback the execution of
2452 * vcore *pvc onto the execution of the other vcores described in *cip.
2454 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2457 if (cip->total_threads + pvc->num_threads > target_threads)
2460 return can_dynamic_split(pvc, cip);
2463 static void prepare_threads(struct kvmppc_vcore *vc)
2466 struct kvm_vcpu *vcpu;
2468 for_each_runnable_thread(i, vcpu, vc) {
2469 if (signal_pending(vcpu->arch.run_task))
2470 vcpu->arch.ret = -EINTR;
2471 else if (vcpu->arch.vpa.update_pending ||
2472 vcpu->arch.slb_shadow.update_pending ||
2473 vcpu->arch.dtl.update_pending)
2474 vcpu->arch.ret = RESUME_GUEST;
2477 kvmppc_remove_runnable(vc, vcpu);
2478 wake_up(&vcpu->arch.cpu_run);
2482 static void collect_piggybacks(struct core_info *cip, int target_threads)
2484 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2485 struct kvmppc_vcore *pvc, *vcnext;
2487 spin_lock(&lp->lock);
2488 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2489 if (!spin_trylock(&pvc->lock))
2491 prepare_threads(pvc);
2492 if (!pvc->n_runnable) {
2493 list_del_init(&pvc->preempt_list);
2494 if (pvc->runner == NULL) {
2495 pvc->vcore_state = VCORE_INACTIVE;
2496 kvmppc_core_end_stolen(pvc);
2498 spin_unlock(&pvc->lock);
2501 if (!can_piggyback(pvc, cip, target_threads)) {
2502 spin_unlock(&pvc->lock);
2505 kvmppc_core_end_stolen(pvc);
2506 pvc->vcore_state = VCORE_PIGGYBACK;
2507 if (cip->total_threads >= target_threads)
2510 spin_unlock(&lp->lock);
2513 static bool recheck_signals(struct core_info *cip)
2516 struct kvm_vcpu *vcpu;
2518 for (sub = 0; sub < cip->n_subcores; ++sub)
2519 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2520 if (signal_pending(vcpu->arch.run_task))
2525 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2527 int still_running = 0, i;
2530 struct kvm_vcpu *vcpu;
2532 spin_lock(&vc->lock);
2534 for_each_runnable_thread(i, vcpu, vc) {
2535 /* cancel pending dec exception if dec is positive */
2536 if (now < vcpu->arch.dec_expires &&
2537 kvmppc_core_pending_dec(vcpu))
2538 kvmppc_core_dequeue_dec(vcpu);
2540 trace_kvm_guest_exit(vcpu);
2543 if (vcpu->arch.trap)
2544 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2545 vcpu->arch.run_task);
2547 vcpu->arch.ret = ret;
2548 vcpu->arch.trap = 0;
2550 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2551 if (vcpu->arch.pending_exceptions)
2552 kvmppc_core_prepare_to_enter(vcpu);
2553 if (vcpu->arch.ceded)
2554 kvmppc_set_timer(vcpu);
2558 kvmppc_remove_runnable(vc, vcpu);
2559 wake_up(&vcpu->arch.cpu_run);
2563 if (still_running > 0) {
2564 kvmppc_vcore_preempt(vc);
2565 } else if (vc->runner) {
2566 vc->vcore_state = VCORE_PREEMPT;
2567 kvmppc_core_start_stolen(vc);
2569 vc->vcore_state = VCORE_INACTIVE;
2571 if (vc->n_runnable > 0 && vc->runner == NULL) {
2572 /* make sure there's a candidate runner awake */
2574 vcpu = next_runnable_thread(vc, &i);
2575 wake_up(&vcpu->arch.cpu_run);
2578 spin_unlock(&vc->lock);
2582 * Clear core from the list of active host cores as we are about to
2583 * enter the guest. Only do this if it is the primary thread of the
2584 * core (not if a subcore) that is entering the guest.
2586 static inline int kvmppc_clear_host_core(unsigned int cpu)
2590 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2593 * Memory barrier can be omitted here as we will do a smp_wmb()
2594 * later in kvmppc_start_thread and we need ensure that state is
2595 * visible to other CPUs only after we enter guest.
2597 core = cpu >> threads_shift;
2598 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2603 * Advertise this core as an active host core since we exited the guest
2604 * Only need to do this if it is the primary thread of the core that is
2607 static inline int kvmppc_set_host_core(unsigned int cpu)
2611 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2615 * Memory barrier can be omitted here because we do a spin_unlock
2616 * immediately after this which provides the memory barrier.
2618 core = cpu >> threads_shift;
2619 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2623 static void set_irq_happened(int trap)
2626 case BOOK3S_INTERRUPT_EXTERNAL:
2627 local_paca->irq_happened |= PACA_IRQ_EE;
2629 case BOOK3S_INTERRUPT_H_DOORBELL:
2630 local_paca->irq_happened |= PACA_IRQ_DBELL;
2632 case BOOK3S_INTERRUPT_HMI:
2633 local_paca->irq_happened |= PACA_IRQ_HMI;
2639 * Run a set of guest threads on a physical core.
2640 * Called with vc->lock held.
2642 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2644 struct kvm_vcpu *vcpu;
2647 struct core_info core_info;
2648 struct kvmppc_vcore *pvc;
2649 struct kvm_split_mode split_info, *sip;
2650 int split, subcore_size, active;
2653 unsigned long cmd_bit, stat_bit;
2656 int controlled_threads;
2660 * Remove from the list any threads that have a signal pending
2661 * or need a VPA update done
2663 prepare_threads(vc);
2665 /* if the runner is no longer runnable, let the caller pick a new one */
2666 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2672 init_vcore_to_run(vc);
2673 vc->preempt_tb = TB_NIL;
2676 * Number of threads that we will be controlling: the same as
2677 * the number of threads per subcore, except on POWER9,
2678 * where it's 1 because the threads are (mostly) independent.
2680 controlled_threads = threads_per_vcore();
2683 * Make sure we are running on primary threads, and that secondary
2684 * threads are offline. Also check if the number of threads in this
2685 * guest are greater than the current system threads per guest.
2687 if ((controlled_threads > 1) &&
2688 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2689 for_each_runnable_thread(i, vcpu, vc) {
2690 vcpu->arch.ret = -EBUSY;
2691 kvmppc_remove_runnable(vc, vcpu);
2692 wake_up(&vcpu->arch.cpu_run);
2698 * See if we could run any other vcores on the physical core
2699 * along with this one.
2701 init_core_info(&core_info, vc);
2702 pcpu = smp_processor_id();
2703 target_threads = controlled_threads;
2704 if (target_smt_mode && target_smt_mode < target_threads)
2705 target_threads = target_smt_mode;
2706 if (vc->num_threads < target_threads)
2707 collect_piggybacks(&core_info, target_threads);
2710 * On radix, arrange for TLB flushing if necessary.
2711 * This has to be done before disabling interrupts since
2712 * it uses smp_call_function().
2714 pcpu = smp_processor_id();
2715 if (kvm_is_radix(vc->kvm)) {
2716 for (sub = 0; sub < core_info.n_subcores; ++sub)
2717 for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2718 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2722 * Hard-disable interrupts, and check resched flag and signals.
2723 * If we need to reschedule or deliver a signal, clean up
2724 * and return without going into the guest(s).
2725 * If the hpte_setup_done flag has been cleared, don't go into the
2726 * guest because that means a HPT resize operation is in progress.
2728 local_irq_disable();
2730 if (lazy_irq_pending() || need_resched() ||
2731 recheck_signals(&core_info) ||
2732 (!kvm_is_radix(vc->kvm) && !vc->kvm->arch.hpte_setup_done)) {
2734 vc->vcore_state = VCORE_INACTIVE;
2735 /* Unlock all except the primary vcore */
2736 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2737 pvc = core_info.vc[sub];
2738 /* Put back on to the preempted vcores list */
2739 kvmppc_vcore_preempt(pvc);
2740 spin_unlock(&pvc->lock);
2742 for (i = 0; i < controlled_threads; ++i)
2743 kvmppc_release_hwthread(pcpu + i);
2747 kvmppc_clear_host_core(pcpu);
2749 /* Decide on micro-threading (split-core) mode */
2750 subcore_size = threads_per_subcore;
2751 cmd_bit = stat_bit = 0;
2752 split = core_info.n_subcores;
2755 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2756 if (split == 2 && (dynamic_mt_modes & 2)) {
2757 cmd_bit = HID0_POWER8_1TO2LPAR;
2758 stat_bit = HID0_POWER8_2LPARMODE;
2761 cmd_bit = HID0_POWER8_1TO4LPAR;
2762 stat_bit = HID0_POWER8_4LPARMODE;
2764 subcore_size = MAX_SMT_THREADS / split;
2766 memset(&split_info, 0, sizeof(split_info));
2767 split_info.rpr = mfspr(SPRN_RPR);
2768 split_info.pmmar = mfspr(SPRN_PMMAR);
2769 split_info.ldbar = mfspr(SPRN_LDBAR);
2770 split_info.subcore_size = subcore_size;
2771 for (sub = 0; sub < core_info.n_subcores; ++sub)
2772 split_info.vc[sub] = core_info.vc[sub];
2773 /* order writes to split_info before kvm_split_mode pointer */
2776 for (thr = 0; thr < controlled_threads; ++thr)
2777 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2779 /* Initiate micro-threading (split-core) if required */
2781 unsigned long hid0 = mfspr(SPRN_HID0);
2783 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2785 mtspr(SPRN_HID0, hid0);
2788 hid0 = mfspr(SPRN_HID0);
2789 if (hid0 & stat_bit)
2795 /* Start all the threads */
2797 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2798 thr = subcore_thread_map[sub];
2801 pvc = core_info.vc[sub];
2802 pvc->pcpu = pcpu + thr;
2803 for_each_runnable_thread(i, vcpu, pvc) {
2804 kvmppc_start_thread(vcpu, pvc);
2805 kvmppc_create_dtl_entry(vcpu, pvc);
2806 trace_kvm_guest_enter(vcpu);
2807 if (!vcpu->arch.ptid)
2809 active |= 1 << (thr + vcpu->arch.ptid);
2812 * We need to start the first thread of each subcore
2813 * even if it doesn't have a vcpu.
2816 kvmppc_start_thread(NULL, pvc);
2817 thr += pvc->num_threads;
2821 * Ensure that split_info.do_nap is set after setting
2822 * the vcore pointer in the PACA of the secondaries.
2826 split_info.do_nap = 1; /* ask secondaries to nap when done */
2829 * When doing micro-threading, poke the inactive threads as well.
2830 * This gets them to the nap instruction after kvm_do_nap,
2831 * which reduces the time taken to unsplit later.
2834 for (thr = 1; thr < threads_per_subcore; ++thr)
2835 if (!(active & (1 << thr)))
2836 kvmppc_ipi_thread(pcpu + thr);
2838 vc->vcore_state = VCORE_RUNNING;
2841 trace_kvmppc_run_core(vc, 0);
2843 for (sub = 0; sub < core_info.n_subcores; ++sub)
2844 spin_unlock(&core_info.vc[sub]->lock);
2847 * Interrupts will be enabled once we get into the guest,
2848 * so tell lockdep that we're about to enable interrupts.
2850 trace_hardirqs_on();
2852 guest_enter_irqoff();
2854 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2856 trap = __kvmppc_vcore_entry();
2858 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2860 trace_hardirqs_off();
2861 set_irq_happened(trap);
2863 spin_lock(&vc->lock);
2864 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2865 vc->vcore_state = VCORE_EXITING;
2867 /* wait for secondary threads to finish writing their state to memory */
2868 kvmppc_wait_for_nap();
2870 /* Return to whole-core mode if we split the core earlier */
2872 unsigned long hid0 = mfspr(SPRN_HID0);
2873 unsigned long loops = 0;
2875 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2876 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2878 mtspr(SPRN_HID0, hid0);
2881 hid0 = mfspr(SPRN_HID0);
2882 if (!(hid0 & stat_bit))
2887 split_info.do_nap = 0;
2890 kvmppc_set_host_core(pcpu);
2895 /* Let secondaries go back to the offline loop */
2896 for (i = 0; i < controlled_threads; ++i) {
2897 kvmppc_release_hwthread(pcpu + i);
2898 if (sip && sip->napped[i])
2899 kvmppc_ipi_thread(pcpu + i);
2900 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2903 spin_unlock(&vc->lock);
2905 /* make sure updates to secondary vcpu structs are visible now */
2910 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2911 pvc = core_info.vc[sub];
2912 post_guest_process(pvc, pvc == vc);
2915 spin_lock(&vc->lock);
2918 vc->vcore_state = VCORE_INACTIVE;
2919 trace_kvmppc_run_core(vc, 1);
2923 * Wait for some other vcpu thread to execute us, and
2924 * wake us up when we need to handle something in the host.
2926 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2927 struct kvm_vcpu *vcpu, int wait_state)
2931 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2932 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2933 spin_unlock(&vc->lock);
2935 spin_lock(&vc->lock);
2937 finish_wait(&vcpu->arch.cpu_run, &wait);
2940 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2943 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2944 vc->halt_poll_ns = 10000;
2946 vc->halt_poll_ns *= halt_poll_ns_grow;
2949 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2951 if (halt_poll_ns_shrink == 0)
2952 vc->halt_poll_ns = 0;
2954 vc->halt_poll_ns /= halt_poll_ns_shrink;
2957 #ifdef CONFIG_KVM_XICS
2958 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2960 if (!xive_enabled())
2962 return vcpu->arch.xive_saved_state.pipr <
2963 vcpu->arch.xive_saved_state.cppr;
2966 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2970 #endif /* CONFIG_KVM_XICS */
2972 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
2974 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
2975 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
2982 * Check to see if any of the runnable vcpus on the vcore have pending
2983 * exceptions or are no longer ceded
2985 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
2987 struct kvm_vcpu *vcpu;
2990 for_each_runnable_thread(i, vcpu, vc) {
2991 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
2999 * All the vcpus in this vcore are idle, so wait for a decrementer
3000 * or external interrupt to one of the vcpus. vc->lock is held.
3002 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3004 ktime_t cur, start_poll, start_wait;
3007 DECLARE_SWAITQUEUE(wait);
3009 /* Poll for pending exceptions and ceded state */
3010 cur = start_poll = ktime_get();
3011 if (vc->halt_poll_ns) {
3012 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3013 ++vc->runner->stat.halt_attempted_poll;
3015 vc->vcore_state = VCORE_POLLING;
3016 spin_unlock(&vc->lock);
3019 if (kvmppc_vcore_check_block(vc)) {
3024 } while (single_task_running() && ktime_before(cur, stop));
3026 spin_lock(&vc->lock);
3027 vc->vcore_state = VCORE_INACTIVE;
3030 ++vc->runner->stat.halt_successful_poll;
3035 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3037 if (kvmppc_vcore_check_block(vc)) {
3038 finish_swait(&vc->wq, &wait);
3040 /* If we polled, count this as a successful poll */
3041 if (vc->halt_poll_ns)
3042 ++vc->runner->stat.halt_successful_poll;
3046 start_wait = ktime_get();
3048 vc->vcore_state = VCORE_SLEEPING;
3049 trace_kvmppc_vcore_blocked(vc, 0);
3050 spin_unlock(&vc->lock);
3052 finish_swait(&vc->wq, &wait);
3053 spin_lock(&vc->lock);
3054 vc->vcore_state = VCORE_INACTIVE;
3055 trace_kvmppc_vcore_blocked(vc, 1);
3056 ++vc->runner->stat.halt_successful_wait;
3061 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3063 /* Attribute wait time */
3065 vc->runner->stat.halt_wait_ns +=
3066 ktime_to_ns(cur) - ktime_to_ns(start_wait);
3067 /* Attribute failed poll time */
3068 if (vc->halt_poll_ns)
3069 vc->runner->stat.halt_poll_fail_ns +=
3070 ktime_to_ns(start_wait) -
3071 ktime_to_ns(start_poll);
3073 /* Attribute successful poll time */
3074 if (vc->halt_poll_ns)
3075 vc->runner->stat.halt_poll_success_ns +=
3077 ktime_to_ns(start_poll);
3080 /* Adjust poll time */
3082 if (block_ns <= vc->halt_poll_ns)
3084 /* We slept and blocked for longer than the max halt time */
3085 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3086 shrink_halt_poll_ns(vc);
3087 /* We slept and our poll time is too small */
3088 else if (vc->halt_poll_ns < halt_poll_ns &&
3089 block_ns < halt_poll_ns)
3090 grow_halt_poll_ns(vc);
3091 if (vc->halt_poll_ns > halt_poll_ns)
3092 vc->halt_poll_ns = halt_poll_ns;
3094 vc->halt_poll_ns = 0;
3096 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3099 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3102 struct kvmppc_vcore *vc;
3105 trace_kvmppc_run_vcpu_enter(vcpu);
3107 kvm_run->exit_reason = 0;
3108 vcpu->arch.ret = RESUME_GUEST;
3109 vcpu->arch.trap = 0;
3110 kvmppc_update_vpas(vcpu);
3113 * Synchronize with other threads in this virtual core
3115 vc = vcpu->arch.vcore;
3116 spin_lock(&vc->lock);
3117 vcpu->arch.ceded = 0;
3118 vcpu->arch.run_task = current;
3119 vcpu->arch.kvm_run = kvm_run;
3120 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3121 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3122 vcpu->arch.busy_preempt = TB_NIL;
3123 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3127 * This happens the first time this is called for a vcpu.
3128 * If the vcore is already running, we may be able to start
3129 * this thread straight away and have it join in.
3131 if (!signal_pending(current)) {
3132 if (vc->vcore_state == VCORE_PIGGYBACK) {
3133 if (spin_trylock(&vc->lock)) {
3134 if (vc->vcore_state == VCORE_RUNNING &&
3135 !VCORE_IS_EXITING(vc)) {
3136 kvmppc_create_dtl_entry(vcpu, vc);
3137 kvmppc_start_thread(vcpu, vc);
3138 trace_kvm_guest_enter(vcpu);
3140 spin_unlock(&vc->lock);
3142 } else if (vc->vcore_state == VCORE_RUNNING &&
3143 !VCORE_IS_EXITING(vc)) {
3144 kvmppc_create_dtl_entry(vcpu, vc);
3145 kvmppc_start_thread(vcpu, vc);
3146 trace_kvm_guest_enter(vcpu);
3147 } else if (vc->vcore_state == VCORE_SLEEPING) {
3153 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3154 !signal_pending(current)) {
3155 /* See if the HPT and VRMA are ready to go */
3156 if (!kvm_is_radix(vcpu->kvm) &&
3157 !vcpu->kvm->arch.hpte_setup_done) {
3158 spin_unlock(&vc->lock);
3159 r = kvmppc_hv_setup_htab_rma(vcpu);
3160 spin_lock(&vc->lock);
3162 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3163 kvm_run->fail_entry.hardware_entry_failure_reason = 0;
3169 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3170 kvmppc_vcore_end_preempt(vc);
3172 if (vc->vcore_state != VCORE_INACTIVE) {
3173 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3176 for_each_runnable_thread(i, v, vc) {
3177 kvmppc_core_prepare_to_enter(v);
3178 if (signal_pending(v->arch.run_task)) {
3179 kvmppc_remove_runnable(vc, v);
3180 v->stat.signal_exits++;
3181 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3182 v->arch.ret = -EINTR;
3183 wake_up(&v->arch.cpu_run);
3186 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3189 for_each_runnable_thread(i, v, vc) {
3190 if (!kvmppc_vcpu_woken(v))
3191 n_ceded += v->arch.ceded;
3196 if (n_ceded == vc->n_runnable) {
3197 kvmppc_vcore_blocked(vc);
3198 } else if (need_resched()) {
3199 kvmppc_vcore_preempt(vc);
3200 /* Let something else run */
3201 cond_resched_lock(&vc->lock);
3202 if (vc->vcore_state == VCORE_PREEMPT)
3203 kvmppc_vcore_end_preempt(vc);
3205 kvmppc_run_core(vc);
3210 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3211 (vc->vcore_state == VCORE_RUNNING ||
3212 vc->vcore_state == VCORE_EXITING ||
3213 vc->vcore_state == VCORE_PIGGYBACK))
3214 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3216 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3217 kvmppc_vcore_end_preempt(vc);
3219 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3220 kvmppc_remove_runnable(vc, vcpu);
3221 vcpu->stat.signal_exits++;
3222 kvm_run->exit_reason = KVM_EXIT_INTR;
3223 vcpu->arch.ret = -EINTR;
3226 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3227 /* Wake up some vcpu to run the core */
3229 v = next_runnable_thread(vc, &i);
3230 wake_up(&v->arch.cpu_run);
3233 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3234 spin_unlock(&vc->lock);
3235 return vcpu->arch.ret;
3238 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3242 unsigned long ebb_regs[3] = {}; /* shut up GCC */
3243 unsigned long user_tar = 0;
3244 unsigned int user_vrsave;
3246 if (!vcpu->arch.sane) {
3247 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3252 * Don't allow entry with a suspended transaction, because
3253 * the guest entry/exit code will lose it.
3254 * If the guest has TM enabled, save away their TM-related SPRs
3255 * (they will get restored by the TM unavailable interrupt).
3257 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3258 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3259 (current->thread.regs->msr & MSR_TM)) {
3260 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3261 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3262 run->fail_entry.hardware_entry_failure_reason = 0;
3265 /* Enable TM so we can read the TM SPRs */
3266 mtmsr(mfmsr() | MSR_TM);
3267 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3268 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3269 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3270 current->thread.regs->msr &= ~MSR_TM;
3274 kvmppc_core_prepare_to_enter(vcpu);
3276 /* No need to go into the guest when all we'll do is come back out */
3277 if (signal_pending(current)) {
3278 run->exit_reason = KVM_EXIT_INTR;
3282 atomic_inc(&vcpu->kvm->arch.vcpus_running);
3283 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
3286 flush_all_to_thread(current);
3288 /* Save userspace EBB and other register values */
3289 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3290 ebb_regs[0] = mfspr(SPRN_EBBHR);
3291 ebb_regs[1] = mfspr(SPRN_EBBRR);
3292 ebb_regs[2] = mfspr(SPRN_BESCR);
3293 user_tar = mfspr(SPRN_TAR);
3295 user_vrsave = mfspr(SPRN_VRSAVE);
3297 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3298 vcpu->arch.pgdir = current->mm->pgd;
3299 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3302 r = kvmppc_run_vcpu(run, vcpu);
3304 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3305 !(vcpu->arch.shregs.msr & MSR_PR)) {
3306 trace_kvm_hcall_enter(vcpu);
3307 r = kvmppc_pseries_do_hcall(vcpu);
3308 trace_kvm_hcall_exit(vcpu, r);
3309 kvmppc_core_prepare_to_enter(vcpu);
3310 } else if (r == RESUME_PAGE_FAULT) {
3311 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3312 r = kvmppc_book3s_hv_page_fault(run, vcpu,
3313 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3314 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
3315 } else if (r == RESUME_PASSTHROUGH) {
3316 if (WARN_ON(xive_enabled()))
3319 r = kvmppc_xics_rm_complete(vcpu, 0);
3321 } while (is_kvmppc_resume_guest(r));
3323 /* Restore userspace EBB and other register values */
3324 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3325 mtspr(SPRN_EBBHR, ebb_regs[0]);
3326 mtspr(SPRN_EBBRR, ebb_regs[1]);
3327 mtspr(SPRN_BESCR, ebb_regs[2]);
3328 mtspr(SPRN_TAR, user_tar);
3329 mtspr(SPRN_FSCR, current->thread.fscr);
3331 mtspr(SPRN_VRSAVE, user_vrsave);
3333 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3334 atomic_dec(&vcpu->kvm->arch.vcpus_running);
3338 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3341 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
3345 (*sps)->page_shift = def->shift;
3346 (*sps)->slb_enc = def->sllp;
3347 (*sps)->enc[0].page_shift = def->shift;
3348 (*sps)->enc[0].pte_enc = def->penc[linux_psize];
3350 * Add 16MB MPSS support if host supports it
3352 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
3353 (*sps)->enc[1].page_shift = 24;
3354 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
3359 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3360 struct kvm_ppc_smmu_info *info)
3362 struct kvm_ppc_one_seg_page_size *sps;
3365 * Since we don't yet support HPT guests on a radix host,
3366 * return an error if the host uses radix.
3368 if (radix_enabled())
3372 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3373 * POWER7 doesn't support keys for instruction accesses,
3374 * POWER8 and POWER9 do.
3376 info->data_keys = 32;
3377 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3379 info->flags = KVM_PPC_PAGE_SIZES_REAL;
3380 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
3381 info->flags |= KVM_PPC_1T_SEGMENTS;
3382 info->slb_size = mmu_slb_size;
3384 /* We only support these sizes for now, and no muti-size segments */
3385 sps = &info->sps[0];
3386 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
3387 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
3388 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
3394 * Get (and clear) the dirty memory log for a memory slot.
3396 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3397 struct kvm_dirty_log *log)
3399 struct kvm_memslots *slots;
3400 struct kvm_memory_slot *memslot;
3404 struct kvm_vcpu *vcpu;
3406 mutex_lock(&kvm->slots_lock);
3409 if (log->slot >= KVM_USER_MEM_SLOTS)
3412 slots = kvm_memslots(kvm);
3413 memslot = id_to_memslot(slots, log->slot);
3415 if (!memslot->dirty_bitmap)
3419 * Use second half of bitmap area because radix accumulates
3420 * bits in the first half.
3422 n = kvm_dirty_bitmap_bytes(memslot);
3423 buf = memslot->dirty_bitmap + n / sizeof(long);
3426 if (kvm_is_radix(kvm))
3427 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3429 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3433 /* Harvest dirty bits from VPA and DTL updates */
3434 /* Note: we never modify the SLB shadow buffer areas */
3435 kvm_for_each_vcpu(i, vcpu, kvm) {
3436 spin_lock(&vcpu->arch.vpa_update_lock);
3437 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3438 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3439 spin_unlock(&vcpu->arch.vpa_update_lock);
3443 if (copy_to_user(log->dirty_bitmap, buf, n))
3448 mutex_unlock(&kvm->slots_lock);
3452 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3453 struct kvm_memory_slot *dont)
3455 if (!dont || free->arch.rmap != dont->arch.rmap) {
3456 vfree(free->arch.rmap);
3457 free->arch.rmap = NULL;
3461 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3462 unsigned long npages)
3465 * For now, if radix_enabled() then we only support radix guests,
3466 * and in that case we don't need the rmap array.
3468 if (radix_enabled()) {
3469 slot->arch.rmap = NULL;
3473 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3474 if (!slot->arch.rmap)
3480 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3481 struct kvm_memory_slot *memslot,
3482 const struct kvm_userspace_memory_region *mem)
3487 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3488 const struct kvm_userspace_memory_region *mem,
3489 const struct kvm_memory_slot *old,
3490 const struct kvm_memory_slot *new)
3492 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3493 struct kvm_memslots *slots;
3494 struct kvm_memory_slot *memslot;
3497 * If we are making a new memslot, it might make
3498 * some address that was previously cached as emulated
3499 * MMIO be no longer emulated MMIO, so invalidate
3500 * all the caches of emulated MMIO translations.
3503 atomic64_inc(&kvm->arch.mmio_update);
3505 if (npages && old->npages && !kvm_is_radix(kvm)) {
3507 * If modifying a memslot, reset all the rmap dirty bits.
3508 * If this is a new memslot, we don't need to do anything
3509 * since the rmap array starts out as all zeroes,
3510 * i.e. no pages are dirty.
3512 slots = kvm_memslots(kvm);
3513 memslot = id_to_memslot(slots, mem->slot);
3514 kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL);
3519 * Update LPCR values in kvm->arch and in vcores.
3520 * Caller must hold kvm->lock.
3522 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3527 if ((kvm->arch.lpcr & mask) == lpcr)
3530 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3532 for (i = 0; i < KVM_MAX_VCORES; ++i) {
3533 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3536 spin_lock(&vc->lock);
3537 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3538 spin_unlock(&vc->lock);
3539 if (++cores_done >= kvm->arch.online_vcores)
3544 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3549 static void kvmppc_setup_partition_table(struct kvm *kvm)
3551 unsigned long dw0, dw1;
3553 if (!kvm_is_radix(kvm)) {
3554 /* PS field - page size for VRMA */
3555 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3556 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3557 /* HTABSIZE and HTABORG fields */
3558 dw0 |= kvm->arch.sdr1;
3560 /* Second dword as set by userspace */
3561 dw1 = kvm->arch.process_table;
3563 dw0 = PATB_HR | radix__get_tree_size() |
3564 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3565 dw1 = PATB_GR | kvm->arch.process_table;
3568 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3571 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3574 struct kvm *kvm = vcpu->kvm;
3576 struct kvm_memory_slot *memslot;
3577 struct vm_area_struct *vma;
3578 unsigned long lpcr = 0, senc;
3579 unsigned long psize, porder;
3582 mutex_lock(&kvm->lock);
3583 if (kvm->arch.hpte_setup_done)
3584 goto out; /* another vcpu beat us to it */
3586 /* Allocate hashed page table (if not done already) and reset it */
3587 if (!kvm->arch.hpt.virt) {
3588 int order = KVM_DEFAULT_HPT_ORDER;
3589 struct kvm_hpt_info info;
3591 err = kvmppc_allocate_hpt(&info, order);
3592 /* If we get here, it means userspace didn't specify a
3593 * size explicitly. So, try successively smaller
3594 * sizes if the default failed. */
3595 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3596 err = kvmppc_allocate_hpt(&info, order);
3599 pr_err("KVM: Couldn't alloc HPT\n");
3603 kvmppc_set_hpt(kvm, &info);
3606 /* Look up the memslot for guest physical address 0 */
3607 srcu_idx = srcu_read_lock(&kvm->srcu);
3608 memslot = gfn_to_memslot(kvm, 0);
3610 /* We must have some memory at 0 by now */
3612 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3615 /* Look up the VMA for the start of this memory slot */
3616 hva = memslot->userspace_addr;
3617 down_read(¤t->mm->mmap_sem);
3618 vma = find_vma(current->mm, hva);
3619 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3622 psize = vma_kernel_pagesize(vma);
3624 up_read(¤t->mm->mmap_sem);
3626 /* We can handle 4k, 64k or 16M pages in the VRMA */
3627 if (psize >= 0x1000000)
3629 else if (psize >= 0x10000)
3633 porder = __ilog2(psize);
3635 senc = slb_pgsize_encoding(psize);
3636 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3637 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3638 /* Create HPTEs in the hash page table for the VRMA */
3639 kvmppc_map_vrma(vcpu, memslot, porder);
3641 /* Update VRMASD field in the LPCR */
3642 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3643 /* the -4 is to account for senc values starting at 0x10 */
3644 lpcr = senc << (LPCR_VRMASD_SH - 4);
3645 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3647 kvmppc_setup_partition_table(kvm);
3650 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3652 kvm->arch.hpte_setup_done = 1;
3655 srcu_read_unlock(&kvm->srcu, srcu_idx);
3657 mutex_unlock(&kvm->lock);
3661 up_read(¤t->mm->mmap_sem);
3665 #ifdef CONFIG_KVM_XICS
3667 * Allocate a per-core structure for managing state about which cores are
3668 * running in the host versus the guest and for exchanging data between
3669 * real mode KVM and CPU running in the host.
3670 * This is only done for the first VM.
3671 * The allocated structure stays even if all VMs have stopped.
3672 * It is only freed when the kvm-hv module is unloaded.
3673 * It's OK for this routine to fail, we just don't support host
3674 * core operations like redirecting H_IPI wakeups.
3676 void kvmppc_alloc_host_rm_ops(void)
3678 struct kvmppc_host_rm_ops *ops;
3679 unsigned long l_ops;
3683 /* Not the first time here ? */
3684 if (kvmppc_host_rm_ops_hv != NULL)
3687 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3691 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3692 ops->rm_core = kzalloc(size, GFP_KERNEL);
3694 if (!ops->rm_core) {
3701 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3702 if (!cpu_online(cpu))
3705 core = cpu >> threads_shift;
3706 ops->rm_core[core].rm_state.in_host = 1;
3709 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3712 * Make the contents of the kvmppc_host_rm_ops structure visible
3713 * to other CPUs before we assign it to the global variable.
3714 * Do an atomic assignment (no locks used here), but if someone
3715 * beats us to it, just free our copy and return.
3718 l_ops = (unsigned long) ops;
3720 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3722 kfree(ops->rm_core);
3727 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3728 "ppc/kvm_book3s:prepare",
3729 kvmppc_set_host_core,
3730 kvmppc_clear_host_core);
3734 void kvmppc_free_host_rm_ops(void)
3736 if (kvmppc_host_rm_ops_hv) {
3737 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3738 kfree(kvmppc_host_rm_ops_hv->rm_core);
3739 kfree(kvmppc_host_rm_ops_hv);
3740 kvmppc_host_rm_ops_hv = NULL;
3745 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3747 unsigned long lpcr, lpid;
3751 /* Allocate the guest's logical partition ID */
3753 lpid = kvmppc_alloc_lpid();
3756 kvm->arch.lpid = lpid;
3758 kvmppc_alloc_host_rm_ops();
3761 * Since we don't flush the TLB when tearing down a VM,
3762 * and this lpid might have previously been used,
3763 * make sure we flush on each core before running the new VM.
3764 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3765 * does this flush for us.
3767 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3768 cpumask_setall(&kvm->arch.need_tlb_flush);
3770 /* Start out with the default set of hcalls enabled */
3771 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3772 sizeof(kvm->arch.enabled_hcalls));
3774 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3775 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3777 /* Init LPCR for virtual RMA mode */
3778 kvm->arch.host_lpid = mfspr(SPRN_LPID);
3779 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3780 lpcr &= LPCR_PECE | LPCR_LPES;
3781 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3782 LPCR_VPM0 | LPCR_VPM1;
3783 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3784 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3785 /* On POWER8 turn on online bit to enable PURR/SPURR */
3786 if (cpu_has_feature(CPU_FTR_ARCH_207S))
3789 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3790 * Set HVICE bit to enable hypervisor virtualization interrupts.
3791 * Set HEIC to prevent OS interrupts to go to hypervisor (should
3792 * be unnecessary but better safe than sorry in case we re-enable
3793 * EE in HV mode with this LPCR still set)
3795 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3797 lpcr |= LPCR_HVICE | LPCR_HEIC;
3800 * If xive is enabled, we route 0x500 interrupts directly
3808 * For now, if the host uses radix, the guest must be radix.
3810 if (radix_enabled()) {
3811 kvm->arch.radix = 1;
3813 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3814 ret = kvmppc_init_vm_radix(kvm);
3816 kvmppc_free_lpid(kvm->arch.lpid);
3819 kvmppc_setup_partition_table(kvm);
3822 kvm->arch.lpcr = lpcr;
3824 /* Initialization for future HPT resizes */
3825 kvm->arch.resize_hpt = NULL;
3828 * Work out how many sets the TLB has, for the use of
3829 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3831 if (kvm_is_radix(kvm))
3832 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
3833 else if (cpu_has_feature(CPU_FTR_ARCH_300))
3834 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
3835 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3836 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
3838 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
3841 * Track that we now have a HV mode VM active. This blocks secondary
3842 * CPU threads from coming online.
3843 * On POWER9, we only need to do this for HPT guests on a radix
3844 * host, which is not yet supported.
3846 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3847 kvm_hv_vm_activated();
3850 * Initialize smt_mode depending on processor.
3851 * POWER8 and earlier have to use "strict" threading, where
3852 * all vCPUs in a vcore have to run on the same (sub)core,
3853 * whereas on POWER9 the threads can each run a different
3856 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3857 kvm->arch.smt_mode = threads_per_subcore;
3859 kvm->arch.smt_mode = 1;
3860 kvm->arch.emul_smt_mode = 1;
3863 * Create a debugfs directory for the VM
3865 snprintf(buf, sizeof(buf), "vm%d", current->pid);
3866 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3867 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3868 kvmppc_mmu_debugfs_init(kvm);
3873 static void kvmppc_free_vcores(struct kvm *kvm)
3877 for (i = 0; i < KVM_MAX_VCORES; ++i)
3878 kfree(kvm->arch.vcores[i]);
3879 kvm->arch.online_vcores = 0;
3882 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3884 debugfs_remove_recursive(kvm->arch.debugfs_dir);
3886 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3887 kvm_hv_vm_deactivated();
3889 kvmppc_free_vcores(kvm);
3891 kvmppc_free_lpid(kvm->arch.lpid);
3893 if (kvm_is_radix(kvm))
3894 kvmppc_free_radix(kvm);
3896 kvmppc_free_hpt(&kvm->arch.hpt);
3898 kvmppc_free_pimap(kvm);
3901 /* We don't need to emulate any privileged instructions or dcbz */
3902 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3903 unsigned int inst, int *advance)
3905 return EMULATE_FAIL;
3908 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3911 return EMULATE_FAIL;
3914 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3917 return EMULATE_FAIL;
3920 static int kvmppc_core_check_processor_compat_hv(void)
3922 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3923 !cpu_has_feature(CPU_FTR_ARCH_206))
3929 #ifdef CONFIG_KVM_XICS
3931 void kvmppc_free_pimap(struct kvm *kvm)
3933 kfree(kvm->arch.pimap);
3936 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3938 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3941 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3943 struct irq_desc *desc;
3944 struct kvmppc_irq_map *irq_map;
3945 struct kvmppc_passthru_irqmap *pimap;
3946 struct irq_chip *chip;
3949 if (!kvm_irq_bypass)
3952 desc = irq_to_desc(host_irq);
3956 mutex_lock(&kvm->lock);
3958 pimap = kvm->arch.pimap;
3959 if (pimap == NULL) {
3960 /* First call, allocate structure to hold IRQ map */
3961 pimap = kvmppc_alloc_pimap();
3962 if (pimap == NULL) {
3963 mutex_unlock(&kvm->lock);
3966 kvm->arch.pimap = pimap;
3970 * For now, we only support interrupts for which the EOI operation
3971 * is an OPAL call followed by a write to XIRR, since that's
3972 * what our real-mode EOI code does, or a XIVE interrupt
3974 chip = irq_data_get_irq_chip(&desc->irq_data);
3975 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
3976 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
3977 host_irq, guest_gsi);
3978 mutex_unlock(&kvm->lock);
3983 * See if we already have an entry for this guest IRQ number.
3984 * If it's mapped to a hardware IRQ number, that's an error,
3985 * otherwise re-use this entry.
3987 for (i = 0; i < pimap->n_mapped; i++) {
3988 if (guest_gsi == pimap->mapped[i].v_hwirq) {
3989 if (pimap->mapped[i].r_hwirq) {
3990 mutex_unlock(&kvm->lock);
3997 if (i == KVMPPC_PIRQ_MAPPED) {
3998 mutex_unlock(&kvm->lock);
3999 return -EAGAIN; /* table is full */
4002 irq_map = &pimap->mapped[i];
4004 irq_map->v_hwirq = guest_gsi;
4005 irq_map->desc = desc;
4008 * Order the above two stores before the next to serialize with
4009 * the KVM real mode handler.
4012 irq_map->r_hwirq = desc->irq_data.hwirq;
4014 if (i == pimap->n_mapped)
4018 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4020 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4022 irq_map->r_hwirq = 0;
4024 mutex_unlock(&kvm->lock);
4029 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4031 struct irq_desc *desc;
4032 struct kvmppc_passthru_irqmap *pimap;
4035 if (!kvm_irq_bypass)
4038 desc = irq_to_desc(host_irq);
4042 mutex_lock(&kvm->lock);
4043 if (!kvm->arch.pimap)
4046 pimap = kvm->arch.pimap;
4048 for (i = 0; i < pimap->n_mapped; i++) {
4049 if (guest_gsi == pimap->mapped[i].v_hwirq)
4053 if (i == pimap->n_mapped) {
4054 mutex_unlock(&kvm->lock);
4059 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4061 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4063 /* invalidate the entry (what do do on error from the above ?) */
4064 pimap->mapped[i].r_hwirq = 0;
4067 * We don't free this structure even when the count goes to
4068 * zero. The structure is freed when we destroy the VM.
4071 mutex_unlock(&kvm->lock);
4075 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4076 struct irq_bypass_producer *prod)
4079 struct kvm_kernel_irqfd *irqfd =
4080 container_of(cons, struct kvm_kernel_irqfd, consumer);
4082 irqfd->producer = prod;
4084 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4086 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4087 prod->irq, irqfd->gsi, ret);
4092 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4093 struct irq_bypass_producer *prod)
4096 struct kvm_kernel_irqfd *irqfd =
4097 container_of(cons, struct kvm_kernel_irqfd, consumer);
4099 irqfd->producer = NULL;
4102 * When producer of consumer is unregistered, we change back to
4103 * default external interrupt handling mode - KVM real mode
4104 * will switch back to host.
4106 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4108 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4109 prod->irq, irqfd->gsi, ret);
4113 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4114 unsigned int ioctl, unsigned long arg)
4116 struct kvm *kvm __maybe_unused = filp->private_data;
4117 void __user *argp = (void __user *)arg;
4122 case KVM_PPC_ALLOCATE_HTAB: {
4126 if (get_user(htab_order, (u32 __user *)argp))
4128 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4135 case KVM_PPC_GET_HTAB_FD: {
4136 struct kvm_get_htab_fd ghf;
4139 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4141 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4145 case KVM_PPC_RESIZE_HPT_PREPARE: {
4146 struct kvm_ppc_resize_hpt rhpt;
4149 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4152 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4156 case KVM_PPC_RESIZE_HPT_COMMIT: {
4157 struct kvm_ppc_resize_hpt rhpt;
4160 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4163 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4175 * List of hcall numbers to enable by default.
4176 * For compatibility with old userspace, we enable by default
4177 * all hcalls that were implemented before the hcall-enabling
4178 * facility was added. Note this list should not include H_RTAS.
4180 static unsigned int default_hcall_list[] = {
4194 #ifdef CONFIG_KVM_XICS
4205 static void init_default_hcalls(void)
4210 for (i = 0; default_hcall_list[i]; ++i) {
4211 hcall = default_hcall_list[i];
4212 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4213 __set_bit(hcall / 4, default_enabled_hcalls);
4217 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4222 /* If not on a POWER9, reject it */
4223 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4226 /* If any unknown flags set, reject it */
4227 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4230 /* We can't change a guest to/from radix yet */
4231 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4232 if (radix != kvm_is_radix(kvm))
4235 /* GR (guest radix) bit in process_table field must match */
4236 if (!!(cfg->process_table & PATB_GR) != radix)
4239 /* Process table size field must be reasonable, i.e. <= 24 */
4240 if ((cfg->process_table & PRTS_MASK) > 24)
4243 mutex_lock(&kvm->lock);
4244 kvm->arch.process_table = cfg->process_table;
4245 kvmppc_setup_partition_table(kvm);
4247 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4248 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4249 mutex_unlock(&kvm->lock);
4254 static struct kvmppc_ops kvm_ops_hv = {
4255 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4256 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4257 .get_one_reg = kvmppc_get_one_reg_hv,
4258 .set_one_reg = kvmppc_set_one_reg_hv,
4259 .vcpu_load = kvmppc_core_vcpu_load_hv,
4260 .vcpu_put = kvmppc_core_vcpu_put_hv,
4261 .set_msr = kvmppc_set_msr_hv,
4262 .vcpu_run = kvmppc_vcpu_run_hv,
4263 .vcpu_create = kvmppc_core_vcpu_create_hv,
4264 .vcpu_free = kvmppc_core_vcpu_free_hv,
4265 .check_requests = kvmppc_core_check_requests_hv,
4266 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
4267 .flush_memslot = kvmppc_core_flush_memslot_hv,
4268 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4269 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
4270 .unmap_hva = kvm_unmap_hva_hv,
4271 .unmap_hva_range = kvm_unmap_hva_range_hv,
4272 .age_hva = kvm_age_hva_hv,
4273 .test_age_hva = kvm_test_age_hva_hv,
4274 .set_spte_hva = kvm_set_spte_hva_hv,
4275 .mmu_destroy = kvmppc_mmu_destroy_hv,
4276 .free_memslot = kvmppc_core_free_memslot_hv,
4277 .create_memslot = kvmppc_core_create_memslot_hv,
4278 .init_vm = kvmppc_core_init_vm_hv,
4279 .destroy_vm = kvmppc_core_destroy_vm_hv,
4280 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4281 .emulate_op = kvmppc_core_emulate_op_hv,
4282 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4283 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4284 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4285 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
4286 .hcall_implemented = kvmppc_hcall_impl_hv,
4287 #ifdef CONFIG_KVM_XICS
4288 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4289 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4291 .configure_mmu = kvmhv_configure_mmu,
4292 .get_rmmu_info = kvmhv_get_rmmu_info,
4293 .set_smt_mode = kvmhv_set_smt_mode,
4296 static int kvm_init_subcore_bitmap(void)
4299 int nr_cores = cpu_nr_cores();
4300 struct sibling_subcore_state *sibling_subcore_state;
4302 for (i = 0; i < nr_cores; i++) {
4303 int first_cpu = i * threads_per_core;
4304 int node = cpu_to_node(first_cpu);
4306 /* Ignore if it is already allocated. */
4307 if (paca[first_cpu].sibling_subcore_state)
4310 sibling_subcore_state =
4311 kmalloc_node(sizeof(struct sibling_subcore_state),
4313 if (!sibling_subcore_state)
4316 memset(sibling_subcore_state, 0,
4317 sizeof(struct sibling_subcore_state));
4319 for (j = 0; j < threads_per_core; j++) {
4320 int cpu = first_cpu + j;
4322 paca[cpu].sibling_subcore_state = sibling_subcore_state;
4328 static int kvmppc_radix_possible(void)
4330 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4333 static int kvmppc_book3s_init_hv(void)
4337 * FIXME!! Do we need to check on all cpus ?
4339 r = kvmppc_core_check_processor_compat_hv();
4343 r = kvm_init_subcore_bitmap();
4348 * We need a way of accessing the XICS interrupt controller,
4349 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4350 * indirectly, via OPAL.
4353 if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4354 struct device_node *np;
4356 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4358 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4361 /* presence of intc confirmed - node can be dropped again */
4366 kvm_ops_hv.owner = THIS_MODULE;
4367 kvmppc_hv_ops = &kvm_ops_hv;
4369 init_default_hcalls();
4373 r = kvmppc_mmu_hv_init();
4377 if (kvmppc_radix_possible())
4378 r = kvmppc_radix_init();
4382 static void kvmppc_book3s_exit_hv(void)
4384 kvmppc_free_host_rm_ops();
4385 if (kvmppc_radix_possible())
4386 kvmppc_radix_exit();
4387 kvmppc_hv_ops = NULL;
4390 module_init(kvmppc_book3s_init_hv);
4391 module_exit(kvmppc_book3s_exit_hv);
4392 MODULE_LICENSE("GPL");
4393 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4394 MODULE_ALIAS("devname:kvm");