GNU Linux-libre 6.1.24-gnu
[releases.git] / arch / powerpc / kvm / book3s_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 #include <linux/irqdomain.h>
46
47 #include <asm/ftrace.h>
48 #include <asm/reg.h>
49 #include <asm/ppc-opcode.h>
50 #include <asm/asm-prototypes.h>
51 #include <asm/archrandom.h>
52 #include <asm/debug.h>
53 #include <asm/disassemble.h>
54 #include <asm/cputable.h>
55 #include <asm/cacheflush.h>
56 #include <linux/uaccess.h>
57 #include <asm/interrupt.h>
58 #include <asm/io.h>
59 #include <asm/kvm_ppc.h>
60 #include <asm/kvm_book3s.h>
61 #include <asm/mmu_context.h>
62 #include <asm/lppaca.h>
63 #include <asm/pmc.h>
64 #include <asm/processor.h>
65 #include <asm/cputhreads.h>
66 #include <asm/page.h>
67 #include <asm/hvcall.h>
68 #include <asm/switch_to.h>
69 #include <asm/smp.h>
70 #include <asm/dbell.h>
71 #include <asm/hmi.h>
72 #include <asm/pnv-pci.h>
73 #include <asm/mmu.h>
74 #include <asm/opal.h>
75 #include <asm/xics.h>
76 #include <asm/xive.h>
77 #include <asm/hw_breakpoint.h>
78 #include <asm/kvm_book3s_uvmem.h>
79 #include <asm/ultravisor.h>
80 #include <asm/dtl.h>
81 #include <asm/plpar_wrappers.h>
82
83 #include "book3s.h"
84 #include "book3s_hv.h"
85
86 #define CREATE_TRACE_POINTS
87 #include "trace_hv.h"
88
89 /* #define EXIT_DEBUG */
90 /* #define EXIT_DEBUG_SIMPLE */
91 /* #define EXIT_DEBUG_INT */
92
93 /* Used to indicate that a guest page fault needs to be handled */
94 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
95 /* Used to indicate that a guest passthrough interrupt needs to be handled */
96 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
97
98 /* Used as a "null" value for timebase values */
99 #define TB_NIL  (~(u64)0)
100
101 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
102
103 static int dynamic_mt_modes = 6;
104 module_param(dynamic_mt_modes, int, 0644);
105 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
106 static int target_smt_mode;
107 module_param(target_smt_mode, int, 0644);
108 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
109
110 static bool one_vm_per_core;
111 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
113
114 #ifdef CONFIG_KVM_XICS
115 static const struct kernel_param_ops module_param_ops = {
116         .set = param_set_int,
117         .get = param_get_int,
118 };
119
120 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
121 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
122
123 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
124 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
125 #endif
126
127 /* If set, guests are allowed to create and control nested guests */
128 static bool nested = true;
129 module_param(nested, bool, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
131
132 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
133
134 /*
135  * RWMR values for POWER8.  These control the rate at which PURR
136  * and SPURR count and should be set according to the number of
137  * online threads in the vcore being run.
138  */
139 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
140 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
141 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
142 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
143 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
144 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
145 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
146 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
147
148 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
149         RWMR_RPA_P8_1THREAD,
150         RWMR_RPA_P8_1THREAD,
151         RWMR_RPA_P8_2THREAD,
152         RWMR_RPA_P8_3THREAD,
153         RWMR_RPA_P8_4THREAD,
154         RWMR_RPA_P8_5THREAD,
155         RWMR_RPA_P8_6THREAD,
156         RWMR_RPA_P8_7THREAD,
157         RWMR_RPA_P8_8THREAD,
158 };
159
160 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
161                 int *ip)
162 {
163         int i = *ip;
164         struct kvm_vcpu *vcpu;
165
166         while (++i < MAX_SMT_THREADS) {
167                 vcpu = READ_ONCE(vc->runnable_threads[i]);
168                 if (vcpu) {
169                         *ip = i;
170                         return vcpu;
171                 }
172         }
173         return NULL;
174 }
175
176 /* Used to traverse the list of runnable threads for a given vcore */
177 #define for_each_runnable_thread(i, vcpu, vc) \
178         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
179
180 static bool kvmppc_ipi_thread(int cpu)
181 {
182         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
183
184         /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
185         if (kvmhv_on_pseries())
186                 return false;
187
188         /* On POWER9 we can use msgsnd to IPI any cpu */
189         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
190                 msg |= get_hard_smp_processor_id(cpu);
191                 smp_mb();
192                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
193                 return true;
194         }
195
196         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
197         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
198                 preempt_disable();
199                 if (cpu_first_thread_sibling(cpu) ==
200                     cpu_first_thread_sibling(smp_processor_id())) {
201                         msg |= cpu_thread_in_core(cpu);
202                         smp_mb();
203                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
204                         preempt_enable();
205                         return true;
206                 }
207                 preempt_enable();
208         }
209
210 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
211         if (cpu >= 0 && cpu < nr_cpu_ids) {
212                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
213                         xics_wake_cpu(cpu);
214                         return true;
215                 }
216                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
217                 return true;
218         }
219 #endif
220
221         return false;
222 }
223
224 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
225 {
226         int cpu;
227         struct rcuwait *waitp;
228
229         /*
230          * rcuwait_wake_up contains smp_mb() which orders prior stores that
231          * create pending work vs below loads of cpu fields. The other side
232          * is the barrier in vcpu run that orders setting the cpu fields vs
233          * testing for pending work.
234          */
235
236         waitp = kvm_arch_vcpu_get_wait(vcpu);
237         if (rcuwait_wake_up(waitp))
238                 ++vcpu->stat.generic.halt_wakeup;
239
240         cpu = READ_ONCE(vcpu->arch.thread_cpu);
241         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
242                 return;
243
244         /* CPU points to the first thread of the core */
245         cpu = vcpu->cpu;
246         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
247                 smp_send_reschedule(cpu);
248 }
249
250 /*
251  * We use the vcpu_load/put functions to measure stolen time.
252  *
253  * Stolen time is counted as time when either the vcpu is able to
254  * run as part of a virtual core, but the task running the vcore
255  * is preempted or sleeping, or when the vcpu needs something done
256  * in the kernel by the task running the vcpu, but that task is
257  * preempted or sleeping.  Those two things have to be counted
258  * separately, since one of the vcpu tasks will take on the job
259  * of running the core, and the other vcpu tasks in the vcore will
260  * sleep waiting for it to do that, but that sleep shouldn't count
261  * as stolen time.
262  *
263  * Hence we accumulate stolen time when the vcpu can run as part of
264  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
265  * needs its task to do other things in the kernel (for example,
266  * service a page fault) in busy_stolen.  We don't accumulate
267  * stolen time for a vcore when it is inactive, or for a vcpu
268  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
269  * a misnomer; it means that the vcpu task is not executing in
270  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
271  * the kernel.  We don't have any way of dividing up that time
272  * between time that the vcpu is genuinely stopped, time that
273  * the task is actively working on behalf of the vcpu, and time
274  * that the task is preempted, so we don't count any of it as
275  * stolen.
276  *
277  * Updates to busy_stolen are protected by arch.tbacct_lock;
278  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
279  * lock.  The stolen times are measured in units of timebase ticks.
280  * (Note that the != TB_NIL checks below are purely defensive;
281  * they should never fail.)
282  *
283  * The POWER9 path is simpler, one vcpu per virtual core so the
284  * former case does not exist. If a vcpu is preempted when it is
285  * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate
286  * the stolen cycles in busy_stolen. RUNNING is not a preemptible
287  * state in the P9 path.
288  */
289
290 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
291 {
292         unsigned long flags;
293
294         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
295
296         spin_lock_irqsave(&vc->stoltb_lock, flags);
297         vc->preempt_tb = tb;
298         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
299 }
300
301 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
302 {
303         unsigned long flags;
304
305         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
306
307         spin_lock_irqsave(&vc->stoltb_lock, flags);
308         if (vc->preempt_tb != TB_NIL) {
309                 vc->stolen_tb += tb - vc->preempt_tb;
310                 vc->preempt_tb = TB_NIL;
311         }
312         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
313 }
314
315 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
316 {
317         struct kvmppc_vcore *vc = vcpu->arch.vcore;
318         unsigned long flags;
319         u64 now;
320
321         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
322                 if (vcpu->arch.busy_preempt != TB_NIL) {
323                         WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST);
324                         vc->stolen_tb += mftb() - vcpu->arch.busy_preempt;
325                         vcpu->arch.busy_preempt = TB_NIL;
326                 }
327                 return;
328         }
329
330         now = mftb();
331
332         /*
333          * We can test vc->runner without taking the vcore lock,
334          * because only this task ever sets vc->runner to this
335          * vcpu, and once it is set to this vcpu, only this task
336          * ever sets it to NULL.
337          */
338         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
339                 kvmppc_core_end_stolen(vc, now);
340
341         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
342         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
343             vcpu->arch.busy_preempt != TB_NIL) {
344                 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
345                 vcpu->arch.busy_preempt = TB_NIL;
346         }
347         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
348 }
349
350 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
351 {
352         struct kvmppc_vcore *vc = vcpu->arch.vcore;
353         unsigned long flags;
354         u64 now;
355
356         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
357                 /*
358                  * In the P9 path, RUNNABLE is not preemptible
359                  * (nor takes host interrupts)
360                  */
361                 WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE);
362                 /*
363                  * Account stolen time when preempted while the vcpu task is
364                  * running in the kernel (but not in qemu, which is INACTIVE).
365                  */
366                 if (task_is_running(current) &&
367                                 vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
368                         vcpu->arch.busy_preempt = mftb();
369                 return;
370         }
371
372         now = mftb();
373
374         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
375                 kvmppc_core_start_stolen(vc, now);
376
377         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
378         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
379                 vcpu->arch.busy_preempt = now;
380         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
381 }
382
383 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
384 {
385         vcpu->arch.pvr = pvr;
386 }
387
388 /* Dummy value used in computing PCR value below */
389 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
390
391 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
392 {
393         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
394         struct kvmppc_vcore *vc = vcpu->arch.vcore;
395
396         /* We can (emulate) our own architecture version and anything older */
397         if (cpu_has_feature(CPU_FTR_ARCH_31))
398                 host_pcr_bit = PCR_ARCH_31;
399         else if (cpu_has_feature(CPU_FTR_ARCH_300))
400                 host_pcr_bit = PCR_ARCH_300;
401         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
402                 host_pcr_bit = PCR_ARCH_207;
403         else if (cpu_has_feature(CPU_FTR_ARCH_206))
404                 host_pcr_bit = PCR_ARCH_206;
405         else
406                 host_pcr_bit = PCR_ARCH_205;
407
408         /* Determine lowest PCR bit needed to run guest in given PVR level */
409         guest_pcr_bit = host_pcr_bit;
410         if (arch_compat) {
411                 switch (arch_compat) {
412                 case PVR_ARCH_205:
413                         guest_pcr_bit = PCR_ARCH_205;
414                         break;
415                 case PVR_ARCH_206:
416                 case PVR_ARCH_206p:
417                         guest_pcr_bit = PCR_ARCH_206;
418                         break;
419                 case PVR_ARCH_207:
420                         guest_pcr_bit = PCR_ARCH_207;
421                         break;
422                 case PVR_ARCH_300:
423                         guest_pcr_bit = PCR_ARCH_300;
424                         break;
425                 case PVR_ARCH_31:
426                         guest_pcr_bit = PCR_ARCH_31;
427                         break;
428                 default:
429                         return -EINVAL;
430                 }
431         }
432
433         /* Check requested PCR bits don't exceed our capabilities */
434         if (guest_pcr_bit > host_pcr_bit)
435                 return -EINVAL;
436
437         spin_lock(&vc->lock);
438         vc->arch_compat = arch_compat;
439         /*
440          * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
441          * Also set all reserved PCR bits
442          */
443         vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
444         spin_unlock(&vc->lock);
445
446         return 0;
447 }
448
449 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
450 {
451         int r;
452
453         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
454         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
455                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
456         for (r = 0; r < 16; ++r)
457                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
458                        r, kvmppc_get_gpr(vcpu, r),
459                        r+16, kvmppc_get_gpr(vcpu, r+16));
460         pr_err("ctr = %.16lx  lr  = %.16lx\n",
461                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
462         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
463                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
464         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
465                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
466         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
467                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
468         pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
469                vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
470         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
471         pr_err("fault dar = %.16lx dsisr = %.8x\n",
472                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
473         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
474         for (r = 0; r < vcpu->arch.slb_max; ++r)
475                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
476                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
477         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
478                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
479                vcpu->arch.last_inst);
480 }
481
482 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
483 {
484         return kvm_get_vcpu_by_id(kvm, id);
485 }
486
487 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
488 {
489         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
490         vpa->yield_count = cpu_to_be32(1);
491 }
492
493 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
494                    unsigned long addr, unsigned long len)
495 {
496         /* check address is cacheline aligned */
497         if (addr & (L1_CACHE_BYTES - 1))
498                 return -EINVAL;
499         spin_lock(&vcpu->arch.vpa_update_lock);
500         if (v->next_gpa != addr || v->len != len) {
501                 v->next_gpa = addr;
502                 v->len = addr ? len : 0;
503                 v->update_pending = 1;
504         }
505         spin_unlock(&vcpu->arch.vpa_update_lock);
506         return 0;
507 }
508
509 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
510 struct reg_vpa {
511         u32 dummy;
512         union {
513                 __be16 hword;
514                 __be32 word;
515         } length;
516 };
517
518 static int vpa_is_registered(struct kvmppc_vpa *vpap)
519 {
520         if (vpap->update_pending)
521                 return vpap->next_gpa != 0;
522         return vpap->pinned_addr != NULL;
523 }
524
525 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
526                                        unsigned long flags,
527                                        unsigned long vcpuid, unsigned long vpa)
528 {
529         struct kvm *kvm = vcpu->kvm;
530         unsigned long len, nb;
531         void *va;
532         struct kvm_vcpu *tvcpu;
533         int err;
534         int subfunc;
535         struct kvmppc_vpa *vpap;
536
537         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
538         if (!tvcpu)
539                 return H_PARAMETER;
540
541         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
542         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
543             subfunc == H_VPA_REG_SLB) {
544                 /* Registering new area - address must be cache-line aligned */
545                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
546                         return H_PARAMETER;
547
548                 /* convert logical addr to kernel addr and read length */
549                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
550                 if (va == NULL)
551                         return H_PARAMETER;
552                 if (subfunc == H_VPA_REG_VPA)
553                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
554                 else
555                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
556                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
557
558                 /* Check length */
559                 if (len > nb || len < sizeof(struct reg_vpa))
560                         return H_PARAMETER;
561         } else {
562                 vpa = 0;
563                 len = 0;
564         }
565
566         err = H_PARAMETER;
567         vpap = NULL;
568         spin_lock(&tvcpu->arch.vpa_update_lock);
569
570         switch (subfunc) {
571         case H_VPA_REG_VPA:             /* register VPA */
572                 /*
573                  * The size of our lppaca is 1kB because of the way we align
574                  * it for the guest to avoid crossing a 4kB boundary. We only
575                  * use 640 bytes of the structure though, so we should accept
576                  * clients that set a size of 640.
577                  */
578                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
579                 if (len < sizeof(struct lppaca))
580                         break;
581                 vpap = &tvcpu->arch.vpa;
582                 err = 0;
583                 break;
584
585         case H_VPA_REG_DTL:             /* register DTL */
586                 if (len < sizeof(struct dtl_entry))
587                         break;
588                 len -= len % sizeof(struct dtl_entry);
589
590                 /* Check that they have previously registered a VPA */
591                 err = H_RESOURCE;
592                 if (!vpa_is_registered(&tvcpu->arch.vpa))
593                         break;
594
595                 vpap = &tvcpu->arch.dtl;
596                 err = 0;
597                 break;
598
599         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
600                 /* Check that they have previously registered a VPA */
601                 err = H_RESOURCE;
602                 if (!vpa_is_registered(&tvcpu->arch.vpa))
603                         break;
604
605                 vpap = &tvcpu->arch.slb_shadow;
606                 err = 0;
607                 break;
608
609         case H_VPA_DEREG_VPA:           /* deregister VPA */
610                 /* Check they don't still have a DTL or SLB buf registered */
611                 err = H_RESOURCE;
612                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
613                     vpa_is_registered(&tvcpu->arch.slb_shadow))
614                         break;
615
616                 vpap = &tvcpu->arch.vpa;
617                 err = 0;
618                 break;
619
620         case H_VPA_DEREG_DTL:           /* deregister DTL */
621                 vpap = &tvcpu->arch.dtl;
622                 err = 0;
623                 break;
624
625         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
626                 vpap = &tvcpu->arch.slb_shadow;
627                 err = 0;
628                 break;
629         }
630
631         if (vpap) {
632                 vpap->next_gpa = vpa;
633                 vpap->len = len;
634                 vpap->update_pending = 1;
635         }
636
637         spin_unlock(&tvcpu->arch.vpa_update_lock);
638
639         return err;
640 }
641
642 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
643 {
644         struct kvm *kvm = vcpu->kvm;
645         void *va;
646         unsigned long nb;
647         unsigned long gpa;
648
649         /*
650          * We need to pin the page pointed to by vpap->next_gpa,
651          * but we can't call kvmppc_pin_guest_page under the lock
652          * as it does get_user_pages() and down_read().  So we
653          * have to drop the lock, pin the page, then get the lock
654          * again and check that a new area didn't get registered
655          * in the meantime.
656          */
657         for (;;) {
658                 gpa = vpap->next_gpa;
659                 spin_unlock(&vcpu->arch.vpa_update_lock);
660                 va = NULL;
661                 nb = 0;
662                 if (gpa)
663                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
664                 spin_lock(&vcpu->arch.vpa_update_lock);
665                 if (gpa == vpap->next_gpa)
666                         break;
667                 /* sigh... unpin that one and try again */
668                 if (va)
669                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
670         }
671
672         vpap->update_pending = 0;
673         if (va && nb < vpap->len) {
674                 /*
675                  * If it's now too short, it must be that userspace
676                  * has changed the mappings underlying guest memory,
677                  * so unregister the region.
678                  */
679                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
680                 va = NULL;
681         }
682         if (vpap->pinned_addr)
683                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
684                                         vpap->dirty);
685         vpap->gpa = gpa;
686         vpap->pinned_addr = va;
687         vpap->dirty = false;
688         if (va)
689                 vpap->pinned_end = va + vpap->len;
690 }
691
692 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
693 {
694         if (!(vcpu->arch.vpa.update_pending ||
695               vcpu->arch.slb_shadow.update_pending ||
696               vcpu->arch.dtl.update_pending))
697                 return;
698
699         spin_lock(&vcpu->arch.vpa_update_lock);
700         if (vcpu->arch.vpa.update_pending) {
701                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
702                 if (vcpu->arch.vpa.pinned_addr)
703                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
704         }
705         if (vcpu->arch.dtl.update_pending) {
706                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
707                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
708                 vcpu->arch.dtl_index = 0;
709         }
710         if (vcpu->arch.slb_shadow.update_pending)
711                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
712         spin_unlock(&vcpu->arch.vpa_update_lock);
713 }
714
715 /*
716  * Return the accumulated stolen time for the vcore up until `now'.
717  * The caller should hold the vcore lock.
718  */
719 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
720 {
721         u64 p;
722         unsigned long flags;
723
724         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
725
726         spin_lock_irqsave(&vc->stoltb_lock, flags);
727         p = vc->stolen_tb;
728         if (vc->vcore_state != VCORE_INACTIVE &&
729             vc->preempt_tb != TB_NIL)
730                 p += now - vc->preempt_tb;
731         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
732         return p;
733 }
734
735 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
736                                         struct lppaca *vpa,
737                                         unsigned int pcpu, u64 now,
738                                         unsigned long stolen)
739 {
740         struct dtl_entry *dt;
741
742         dt = vcpu->arch.dtl_ptr;
743
744         if (!dt)
745                 return;
746
747         dt->dispatch_reason = 7;
748         dt->preempt_reason = 0;
749         dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
750         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
751         dt->ready_to_enqueue_time = 0;
752         dt->waiting_to_ready_time = 0;
753         dt->timebase = cpu_to_be64(now);
754         dt->fault_addr = 0;
755         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
756         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
757
758         ++dt;
759         if (dt == vcpu->arch.dtl.pinned_end)
760                 dt = vcpu->arch.dtl.pinned_addr;
761         vcpu->arch.dtl_ptr = dt;
762         /* order writing *dt vs. writing vpa->dtl_idx */
763         smp_wmb();
764         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
765
766         /* vcpu->arch.dtl.dirty is set by the caller */
767 }
768
769 static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu,
770                                        struct kvmppc_vcore *vc)
771 {
772         struct lppaca *vpa;
773         unsigned long stolen;
774         unsigned long core_stolen;
775         u64 now;
776         unsigned long flags;
777
778         vpa = vcpu->arch.vpa.pinned_addr;
779         if (!vpa)
780                 return;
781
782         now = mftb();
783
784         core_stolen = vcore_stolen_time(vc, now);
785         stolen = core_stolen - vcpu->arch.stolen_logged;
786         vcpu->arch.stolen_logged = core_stolen;
787         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
788         stolen += vcpu->arch.busy_stolen;
789         vcpu->arch.busy_stolen = 0;
790         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
791
792         vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen);
793
794         __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + vc->tb_offset, stolen);
795
796         vcpu->arch.vpa.dirty = true;
797 }
798
799 static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu,
800                                        struct kvmppc_vcore *vc,
801                                        u64 now)
802 {
803         struct lppaca *vpa;
804         unsigned long stolen;
805         unsigned long stolen_delta;
806
807         vpa = vcpu->arch.vpa.pinned_addr;
808         if (!vpa)
809                 return;
810
811         stolen = vc->stolen_tb;
812         stolen_delta = stolen - vcpu->arch.stolen_logged;
813         vcpu->arch.stolen_logged = stolen;
814
815         vpa->enqueue_dispatch_tb = cpu_to_be64(stolen);
816
817         __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta);
818
819         vcpu->arch.vpa.dirty = true;
820 }
821
822 /* See if there is a doorbell interrupt pending for a vcpu */
823 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
824 {
825         int thr;
826         struct kvmppc_vcore *vc;
827
828         if (vcpu->arch.doorbell_request)
829                 return true;
830         if (cpu_has_feature(CPU_FTR_ARCH_300))
831                 return false;
832         /*
833          * Ensure that the read of vcore->dpdes comes after the read
834          * of vcpu->doorbell_request.  This barrier matches the
835          * smp_wmb() in kvmppc_guest_entry_inject().
836          */
837         smp_rmb();
838         vc = vcpu->arch.vcore;
839         thr = vcpu->vcpu_id - vc->first_vcpuid;
840         return !!(vc->dpdes & (1 << thr));
841 }
842
843 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
844 {
845         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
846                 return true;
847         if ((!vcpu->arch.vcore->arch_compat) &&
848             cpu_has_feature(CPU_FTR_ARCH_207S))
849                 return true;
850         return false;
851 }
852
853 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
854                              unsigned long resource, unsigned long value1,
855                              unsigned long value2)
856 {
857         switch (resource) {
858         case H_SET_MODE_RESOURCE_SET_CIABR:
859                 if (!kvmppc_power8_compatible(vcpu))
860                         return H_P2;
861                 if (value2)
862                         return H_P4;
863                 if (mflags)
864                         return H_UNSUPPORTED_FLAG_START;
865                 /* Guests can't breakpoint the hypervisor */
866                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
867                         return H_P3;
868                 vcpu->arch.ciabr  = value1;
869                 return H_SUCCESS;
870         case H_SET_MODE_RESOURCE_SET_DAWR0:
871                 if (!kvmppc_power8_compatible(vcpu))
872                         return H_P2;
873                 if (!ppc_breakpoint_available())
874                         return H_P2;
875                 if (mflags)
876                         return H_UNSUPPORTED_FLAG_START;
877                 if (value2 & DABRX_HYP)
878                         return H_P4;
879                 vcpu->arch.dawr0  = value1;
880                 vcpu->arch.dawrx0 = value2;
881                 return H_SUCCESS;
882         case H_SET_MODE_RESOURCE_SET_DAWR1:
883                 if (!kvmppc_power8_compatible(vcpu))
884                         return H_P2;
885                 if (!ppc_breakpoint_available())
886                         return H_P2;
887                 if (!cpu_has_feature(CPU_FTR_DAWR1))
888                         return H_P2;
889                 if (!vcpu->kvm->arch.dawr1_enabled)
890                         return H_FUNCTION;
891                 if (mflags)
892                         return H_UNSUPPORTED_FLAG_START;
893                 if (value2 & DABRX_HYP)
894                         return H_P4;
895                 vcpu->arch.dawr1  = value1;
896                 vcpu->arch.dawrx1 = value2;
897                 return H_SUCCESS;
898         case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
899                 /*
900                  * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
901                  * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
902                  */
903                 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
904                                 kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
905                         return H_UNSUPPORTED_FLAG_START;
906                 return H_TOO_HARD;
907         default:
908                 return H_TOO_HARD;
909         }
910 }
911
912 /* Copy guest memory in place - must reside within a single memslot */
913 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
914                                   unsigned long len)
915 {
916         struct kvm_memory_slot *to_memslot = NULL;
917         struct kvm_memory_slot *from_memslot = NULL;
918         unsigned long to_addr, from_addr;
919         int r;
920
921         /* Get HPA for from address */
922         from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
923         if (!from_memslot)
924                 return -EFAULT;
925         if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
926                              << PAGE_SHIFT))
927                 return -EINVAL;
928         from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
929         if (kvm_is_error_hva(from_addr))
930                 return -EFAULT;
931         from_addr |= (from & (PAGE_SIZE - 1));
932
933         /* Get HPA for to address */
934         to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
935         if (!to_memslot)
936                 return -EFAULT;
937         if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
938                            << PAGE_SHIFT))
939                 return -EINVAL;
940         to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
941         if (kvm_is_error_hva(to_addr))
942                 return -EFAULT;
943         to_addr |= (to & (PAGE_SIZE - 1));
944
945         /* Perform copy */
946         r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
947                              len);
948         if (r)
949                 return -EFAULT;
950         mark_page_dirty(kvm, to >> PAGE_SHIFT);
951         return 0;
952 }
953
954 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
955                                unsigned long dest, unsigned long src)
956 {
957         u64 pg_sz = SZ_4K;              /* 4K page size */
958         u64 pg_mask = SZ_4K - 1;
959         int ret;
960
961         /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
962         if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
963                       H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
964                 return H_PARAMETER;
965
966         /* dest (and src if copy_page flag set) must be page aligned */
967         if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
968                 return H_PARAMETER;
969
970         /* zero and/or copy the page as determined by the flags */
971         if (flags & H_COPY_PAGE) {
972                 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
973                 if (ret < 0)
974                         return H_PARAMETER;
975         } else if (flags & H_ZERO_PAGE) {
976                 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
977                 if (ret < 0)
978                         return H_PARAMETER;
979         }
980
981         /* We can ignore the remaining flags */
982
983         return H_SUCCESS;
984 }
985
986 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
987 {
988         struct kvmppc_vcore *vcore = target->arch.vcore;
989
990         /*
991          * We expect to have been called by the real mode handler
992          * (kvmppc_rm_h_confer()) which would have directly returned
993          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
994          * have useful work to do and should not confer) so we don't
995          * recheck that here.
996          *
997          * In the case of the P9 single vcpu per vcore case, the real
998          * mode handler is not called but no other threads are in the
999          * source vcore.
1000          */
1001         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1002                 spin_lock(&vcore->lock);
1003                 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
1004                     vcore->vcore_state != VCORE_INACTIVE &&
1005                     vcore->runner)
1006                         target = vcore->runner;
1007                 spin_unlock(&vcore->lock);
1008         }
1009
1010         return kvm_vcpu_yield_to(target);
1011 }
1012
1013 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
1014 {
1015         int yield_count = 0;
1016         struct lppaca *lppaca;
1017
1018         spin_lock(&vcpu->arch.vpa_update_lock);
1019         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
1020         if (lppaca)
1021                 yield_count = be32_to_cpu(lppaca->yield_count);
1022         spin_unlock(&vcpu->arch.vpa_update_lock);
1023         return yield_count;
1024 }
1025
1026 /*
1027  * H_RPT_INVALIDATE hcall handler for nested guests.
1028  *
1029  * Handles only nested process-scoped invalidation requests in L0.
1030  */
1031 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
1032 {
1033         unsigned long type = kvmppc_get_gpr(vcpu, 6);
1034         unsigned long pid, pg_sizes, start, end;
1035
1036         /*
1037          * The partition-scoped invalidations aren't handled here in L0.
1038          */
1039         if (type & H_RPTI_TYPE_NESTED)
1040                 return RESUME_HOST;
1041
1042         pid = kvmppc_get_gpr(vcpu, 4);
1043         pg_sizes = kvmppc_get_gpr(vcpu, 7);
1044         start = kvmppc_get_gpr(vcpu, 8);
1045         end = kvmppc_get_gpr(vcpu, 9);
1046
1047         do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
1048                                 type, pg_sizes, start, end);
1049
1050         kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
1051         return RESUME_GUEST;
1052 }
1053
1054 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
1055                                     unsigned long id, unsigned long target,
1056                                     unsigned long type, unsigned long pg_sizes,
1057                                     unsigned long start, unsigned long end)
1058 {
1059         if (!kvm_is_radix(vcpu->kvm))
1060                 return H_UNSUPPORTED;
1061
1062         if (end < start)
1063                 return H_P5;
1064
1065         /*
1066          * Partition-scoped invalidation for nested guests.
1067          */
1068         if (type & H_RPTI_TYPE_NESTED) {
1069                 if (!nesting_enabled(vcpu->kvm))
1070                         return H_FUNCTION;
1071
1072                 /* Support only cores as target */
1073                 if (target != H_RPTI_TARGET_CMMU)
1074                         return H_P2;
1075
1076                 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1077                                                start, end);
1078         }
1079
1080         /*
1081          * Process-scoped invalidation for L1 guests.
1082          */
1083         do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1084                                 type, pg_sizes, start, end);
1085         return H_SUCCESS;
1086 }
1087
1088 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1089 {
1090         struct kvm *kvm = vcpu->kvm;
1091         unsigned long req = kvmppc_get_gpr(vcpu, 3);
1092         unsigned long target, ret = H_SUCCESS;
1093         int yield_count;
1094         struct kvm_vcpu *tvcpu;
1095         int idx, rc;
1096
1097         if (req <= MAX_HCALL_OPCODE &&
1098             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1099                 return RESUME_HOST;
1100
1101         switch (req) {
1102         case H_REMOVE:
1103                 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1104                                         kvmppc_get_gpr(vcpu, 5),
1105                                         kvmppc_get_gpr(vcpu, 6));
1106                 if (ret == H_TOO_HARD)
1107                         return RESUME_HOST;
1108                 break;
1109         case H_ENTER:
1110                 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1111                                         kvmppc_get_gpr(vcpu, 5),
1112                                         kvmppc_get_gpr(vcpu, 6),
1113                                         kvmppc_get_gpr(vcpu, 7));
1114                 if (ret == H_TOO_HARD)
1115                         return RESUME_HOST;
1116                 break;
1117         case H_READ:
1118                 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1119                                         kvmppc_get_gpr(vcpu, 5));
1120                 if (ret == H_TOO_HARD)
1121                         return RESUME_HOST;
1122                 break;
1123         case H_CLEAR_MOD:
1124                 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1125                                         kvmppc_get_gpr(vcpu, 5));
1126                 if (ret == H_TOO_HARD)
1127                         return RESUME_HOST;
1128                 break;
1129         case H_CLEAR_REF:
1130                 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1131                                         kvmppc_get_gpr(vcpu, 5));
1132                 if (ret == H_TOO_HARD)
1133                         return RESUME_HOST;
1134                 break;
1135         case H_PROTECT:
1136                 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1137                                         kvmppc_get_gpr(vcpu, 5),
1138                                         kvmppc_get_gpr(vcpu, 6));
1139                 if (ret == H_TOO_HARD)
1140                         return RESUME_HOST;
1141                 break;
1142         case H_BULK_REMOVE:
1143                 ret = kvmppc_h_bulk_remove(vcpu);
1144                 if (ret == H_TOO_HARD)
1145                         return RESUME_HOST;
1146                 break;
1147
1148         case H_CEDE:
1149                 break;
1150         case H_PROD:
1151                 target = kvmppc_get_gpr(vcpu, 4);
1152                 tvcpu = kvmppc_find_vcpu(kvm, target);
1153                 if (!tvcpu) {
1154                         ret = H_PARAMETER;
1155                         break;
1156                 }
1157                 tvcpu->arch.prodded = 1;
1158                 smp_mb(); /* This orders prodded store vs ceded load */
1159                 if (tvcpu->arch.ceded)
1160                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1161                 break;
1162         case H_CONFER:
1163                 target = kvmppc_get_gpr(vcpu, 4);
1164                 if (target == -1)
1165                         break;
1166                 tvcpu = kvmppc_find_vcpu(kvm, target);
1167                 if (!tvcpu) {
1168                         ret = H_PARAMETER;
1169                         break;
1170                 }
1171                 yield_count = kvmppc_get_gpr(vcpu, 5);
1172                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
1173                         break;
1174                 kvm_arch_vcpu_yield_to(tvcpu);
1175                 break;
1176         case H_REGISTER_VPA:
1177                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1178                                         kvmppc_get_gpr(vcpu, 5),
1179                                         kvmppc_get_gpr(vcpu, 6));
1180                 break;
1181         case H_RTAS:
1182                 if (list_empty(&kvm->arch.rtas_tokens))
1183                         return RESUME_HOST;
1184
1185                 idx = srcu_read_lock(&kvm->srcu);
1186                 rc = kvmppc_rtas_hcall(vcpu);
1187                 srcu_read_unlock(&kvm->srcu, idx);
1188
1189                 if (rc == -ENOENT)
1190                         return RESUME_HOST;
1191                 else if (rc == 0)
1192                         break;
1193
1194                 /* Send the error out to userspace via KVM_RUN */
1195                 return rc;
1196         case H_LOGICAL_CI_LOAD:
1197                 ret = kvmppc_h_logical_ci_load(vcpu);
1198                 if (ret == H_TOO_HARD)
1199                         return RESUME_HOST;
1200                 break;
1201         case H_LOGICAL_CI_STORE:
1202                 ret = kvmppc_h_logical_ci_store(vcpu);
1203                 if (ret == H_TOO_HARD)
1204                         return RESUME_HOST;
1205                 break;
1206         case H_SET_MODE:
1207                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1208                                         kvmppc_get_gpr(vcpu, 5),
1209                                         kvmppc_get_gpr(vcpu, 6),
1210                                         kvmppc_get_gpr(vcpu, 7));
1211                 if (ret == H_TOO_HARD)
1212                         return RESUME_HOST;
1213                 break;
1214         case H_XIRR:
1215         case H_CPPR:
1216         case H_EOI:
1217         case H_IPI:
1218         case H_IPOLL:
1219         case H_XIRR_X:
1220                 if (kvmppc_xics_enabled(vcpu)) {
1221                         if (xics_on_xive()) {
1222                                 ret = H_NOT_AVAILABLE;
1223                                 return RESUME_GUEST;
1224                         }
1225                         ret = kvmppc_xics_hcall(vcpu, req);
1226                         break;
1227                 }
1228                 return RESUME_HOST;
1229         case H_SET_DABR:
1230                 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1231                 break;
1232         case H_SET_XDABR:
1233                 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1234                                                 kvmppc_get_gpr(vcpu, 5));
1235                 break;
1236 #ifdef CONFIG_SPAPR_TCE_IOMMU
1237         case H_GET_TCE:
1238                 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1239                                                 kvmppc_get_gpr(vcpu, 5));
1240                 if (ret == H_TOO_HARD)
1241                         return RESUME_HOST;
1242                 break;
1243         case H_PUT_TCE:
1244                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1245                                                 kvmppc_get_gpr(vcpu, 5),
1246                                                 kvmppc_get_gpr(vcpu, 6));
1247                 if (ret == H_TOO_HARD)
1248                         return RESUME_HOST;
1249                 break;
1250         case H_PUT_TCE_INDIRECT:
1251                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1252                                                 kvmppc_get_gpr(vcpu, 5),
1253                                                 kvmppc_get_gpr(vcpu, 6),
1254                                                 kvmppc_get_gpr(vcpu, 7));
1255                 if (ret == H_TOO_HARD)
1256                         return RESUME_HOST;
1257                 break;
1258         case H_STUFF_TCE:
1259                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1260                                                 kvmppc_get_gpr(vcpu, 5),
1261                                                 kvmppc_get_gpr(vcpu, 6),
1262                                                 kvmppc_get_gpr(vcpu, 7));
1263                 if (ret == H_TOO_HARD)
1264                         return RESUME_HOST;
1265                 break;
1266 #endif
1267         case H_RANDOM:
1268                 if (!arch_get_random_seed_longs(&vcpu->arch.regs.gpr[4], 1))
1269                         ret = H_HARDWARE;
1270                 break;
1271         case H_RPT_INVALIDATE:
1272                 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1273                                               kvmppc_get_gpr(vcpu, 5),
1274                                               kvmppc_get_gpr(vcpu, 6),
1275                                               kvmppc_get_gpr(vcpu, 7),
1276                                               kvmppc_get_gpr(vcpu, 8),
1277                                               kvmppc_get_gpr(vcpu, 9));
1278                 break;
1279
1280         case H_SET_PARTITION_TABLE:
1281                 ret = H_FUNCTION;
1282                 if (nesting_enabled(kvm))
1283                         ret = kvmhv_set_partition_table(vcpu);
1284                 break;
1285         case H_ENTER_NESTED:
1286                 ret = H_FUNCTION;
1287                 if (!nesting_enabled(kvm))
1288                         break;
1289                 ret = kvmhv_enter_nested_guest(vcpu);
1290                 if (ret == H_INTERRUPT) {
1291                         kvmppc_set_gpr(vcpu, 3, 0);
1292                         vcpu->arch.hcall_needed = 0;
1293                         return -EINTR;
1294                 } else if (ret == H_TOO_HARD) {
1295                         kvmppc_set_gpr(vcpu, 3, 0);
1296                         vcpu->arch.hcall_needed = 0;
1297                         return RESUME_HOST;
1298                 }
1299                 break;
1300         case H_TLB_INVALIDATE:
1301                 ret = H_FUNCTION;
1302                 if (nesting_enabled(kvm))
1303                         ret = kvmhv_do_nested_tlbie(vcpu);
1304                 break;
1305         case H_COPY_TOFROM_GUEST:
1306                 ret = H_FUNCTION;
1307                 if (nesting_enabled(kvm))
1308                         ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1309                 break;
1310         case H_PAGE_INIT:
1311                 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1312                                          kvmppc_get_gpr(vcpu, 5),
1313                                          kvmppc_get_gpr(vcpu, 6));
1314                 break;
1315         case H_SVM_PAGE_IN:
1316                 ret = H_UNSUPPORTED;
1317                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1318                         ret = kvmppc_h_svm_page_in(kvm,
1319                                                    kvmppc_get_gpr(vcpu, 4),
1320                                                    kvmppc_get_gpr(vcpu, 5),
1321                                                    kvmppc_get_gpr(vcpu, 6));
1322                 break;
1323         case H_SVM_PAGE_OUT:
1324                 ret = H_UNSUPPORTED;
1325                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1326                         ret = kvmppc_h_svm_page_out(kvm,
1327                                                     kvmppc_get_gpr(vcpu, 4),
1328                                                     kvmppc_get_gpr(vcpu, 5),
1329                                                     kvmppc_get_gpr(vcpu, 6));
1330                 break;
1331         case H_SVM_INIT_START:
1332                 ret = H_UNSUPPORTED;
1333                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1334                         ret = kvmppc_h_svm_init_start(kvm);
1335                 break;
1336         case H_SVM_INIT_DONE:
1337                 ret = H_UNSUPPORTED;
1338                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1339                         ret = kvmppc_h_svm_init_done(kvm);
1340                 break;
1341         case H_SVM_INIT_ABORT:
1342                 /*
1343                  * Even if that call is made by the Ultravisor, the SSR1 value
1344                  * is the guest context one, with the secure bit clear as it has
1345                  * not yet been secured. So we can't check it here.
1346                  * Instead the kvm->arch.secure_guest flag is checked inside
1347                  * kvmppc_h_svm_init_abort().
1348                  */
1349                 ret = kvmppc_h_svm_init_abort(kvm);
1350                 break;
1351
1352         default:
1353                 return RESUME_HOST;
1354         }
1355         WARN_ON_ONCE(ret == H_TOO_HARD);
1356         kvmppc_set_gpr(vcpu, 3, ret);
1357         vcpu->arch.hcall_needed = 0;
1358         return RESUME_GUEST;
1359 }
1360
1361 /*
1362  * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1363  * handlers in book3s_hv_rmhandlers.S.
1364  *
1365  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1366  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1367  */
1368 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1369 {
1370         vcpu->arch.shregs.msr |= MSR_EE;
1371         vcpu->arch.ceded = 1;
1372         smp_mb();
1373         if (vcpu->arch.prodded) {
1374                 vcpu->arch.prodded = 0;
1375                 smp_mb();
1376                 vcpu->arch.ceded = 0;
1377         }
1378 }
1379
1380 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1381 {
1382         switch (cmd) {
1383         case H_CEDE:
1384         case H_PROD:
1385         case H_CONFER:
1386         case H_REGISTER_VPA:
1387         case H_SET_MODE:
1388 #ifdef CONFIG_SPAPR_TCE_IOMMU
1389         case H_GET_TCE:
1390         case H_PUT_TCE:
1391         case H_PUT_TCE_INDIRECT:
1392         case H_STUFF_TCE:
1393 #endif
1394         case H_LOGICAL_CI_LOAD:
1395         case H_LOGICAL_CI_STORE:
1396 #ifdef CONFIG_KVM_XICS
1397         case H_XIRR:
1398         case H_CPPR:
1399         case H_EOI:
1400         case H_IPI:
1401         case H_IPOLL:
1402         case H_XIRR_X:
1403 #endif
1404         case H_PAGE_INIT:
1405         case H_RPT_INVALIDATE:
1406                 return 1;
1407         }
1408
1409         /* See if it's in the real-mode table */
1410         return kvmppc_hcall_impl_hv_realmode(cmd);
1411 }
1412
1413 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1414 {
1415         u32 last_inst;
1416
1417         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1418                                         EMULATE_DONE) {
1419                 /*
1420                  * Fetch failed, so return to guest and
1421                  * try executing it again.
1422                  */
1423                 return RESUME_GUEST;
1424         }
1425
1426         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1427                 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1428                 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1429                 return RESUME_HOST;
1430         } else {
1431                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1432                 return RESUME_GUEST;
1433         }
1434 }
1435
1436 static void do_nothing(void *x)
1437 {
1438 }
1439
1440 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1441 {
1442         int thr, cpu, pcpu, nthreads;
1443         struct kvm_vcpu *v;
1444         unsigned long dpdes;
1445
1446         nthreads = vcpu->kvm->arch.emul_smt_mode;
1447         dpdes = 0;
1448         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1449         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1450                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1451                 if (!v)
1452                         continue;
1453                 /*
1454                  * If the vcpu is currently running on a physical cpu thread,
1455                  * interrupt it in order to pull it out of the guest briefly,
1456                  * which will update its vcore->dpdes value.
1457                  */
1458                 pcpu = READ_ONCE(v->cpu);
1459                 if (pcpu >= 0)
1460                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1461                 if (kvmppc_doorbell_pending(v))
1462                         dpdes |= 1 << thr;
1463         }
1464         return dpdes;
1465 }
1466
1467 /*
1468  * On POWER9, emulate doorbell-related instructions in order to
1469  * give the guest the illusion of running on a multi-threaded core.
1470  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1471  * and mfspr DPDES.
1472  */
1473 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1474 {
1475         u32 inst, rb, thr;
1476         unsigned long arg;
1477         struct kvm *kvm = vcpu->kvm;
1478         struct kvm_vcpu *tvcpu;
1479
1480         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1481                 return RESUME_GUEST;
1482         if (get_op(inst) != 31)
1483                 return EMULATE_FAIL;
1484         rb = get_rb(inst);
1485         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1486         switch (get_xop(inst)) {
1487         case OP_31_XOP_MSGSNDP:
1488                 arg = kvmppc_get_gpr(vcpu, rb);
1489                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1490                         break;
1491                 arg &= 0x7f;
1492                 if (arg >= kvm->arch.emul_smt_mode)
1493                         break;
1494                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1495                 if (!tvcpu)
1496                         break;
1497                 if (!tvcpu->arch.doorbell_request) {
1498                         tvcpu->arch.doorbell_request = 1;
1499                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1500                 }
1501                 break;
1502         case OP_31_XOP_MSGCLRP:
1503                 arg = kvmppc_get_gpr(vcpu, rb);
1504                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1505                         break;
1506                 vcpu->arch.vcore->dpdes = 0;
1507                 vcpu->arch.doorbell_request = 0;
1508                 break;
1509         case OP_31_XOP_MFSPR:
1510                 switch (get_sprn(inst)) {
1511                 case SPRN_TIR:
1512                         arg = thr;
1513                         break;
1514                 case SPRN_DPDES:
1515                         arg = kvmppc_read_dpdes(vcpu);
1516                         break;
1517                 default:
1518                         return EMULATE_FAIL;
1519                 }
1520                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1521                 break;
1522         default:
1523                 return EMULATE_FAIL;
1524         }
1525         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1526         return RESUME_GUEST;
1527 }
1528
1529 /*
1530  * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1531  * HFSCR_PM is cleared for next entry. If the guest then tries to access
1532  * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1533  * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1534  * allow the guest access to continue.
1535  */
1536 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1537 {
1538         if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1539                 return EMULATE_FAIL;
1540
1541         vcpu->arch.hfscr |= HFSCR_PM;
1542
1543         return RESUME_GUEST;
1544 }
1545
1546 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1547 {
1548         if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1549                 return EMULATE_FAIL;
1550
1551         vcpu->arch.hfscr |= HFSCR_EBB;
1552
1553         return RESUME_GUEST;
1554 }
1555
1556 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1557 {
1558         if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1559                 return EMULATE_FAIL;
1560
1561         vcpu->arch.hfscr |= HFSCR_TM;
1562
1563         return RESUME_GUEST;
1564 }
1565
1566 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1567                                  struct task_struct *tsk)
1568 {
1569         struct kvm_run *run = vcpu->run;
1570         int r = RESUME_HOST;
1571
1572         vcpu->stat.sum_exits++;
1573
1574         /*
1575          * This can happen if an interrupt occurs in the last stages
1576          * of guest entry or the first stages of guest exit (i.e. after
1577          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1578          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1579          * That can happen due to a bug, or due to a machine check
1580          * occurring at just the wrong time.
1581          */
1582         if (vcpu->arch.shregs.msr & MSR_HV) {
1583                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1584                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1585                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1586                         vcpu->arch.shregs.msr);
1587                 kvmppc_dump_regs(vcpu);
1588                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1589                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1590                 return RESUME_HOST;
1591         }
1592         run->exit_reason = KVM_EXIT_UNKNOWN;
1593         run->ready_for_interrupt_injection = 1;
1594         switch (vcpu->arch.trap) {
1595         /* We're good on these - the host merely wanted to get our attention */
1596         case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1597                 WARN_ON_ONCE(1); /* Should never happen */
1598                 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1599                 fallthrough;
1600         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1601                 vcpu->stat.dec_exits++;
1602                 r = RESUME_GUEST;
1603                 break;
1604         case BOOK3S_INTERRUPT_EXTERNAL:
1605         case BOOK3S_INTERRUPT_H_DOORBELL:
1606         case BOOK3S_INTERRUPT_H_VIRT:
1607                 vcpu->stat.ext_intr_exits++;
1608                 r = RESUME_GUEST;
1609                 break;
1610         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1611         case BOOK3S_INTERRUPT_HMI:
1612         case BOOK3S_INTERRUPT_PERFMON:
1613         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1614                 r = RESUME_GUEST;
1615                 break;
1616         case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1617                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1618                                               DEFAULT_RATELIMIT_BURST);
1619                 /*
1620                  * Print the MCE event to host console. Ratelimit so the guest
1621                  * can't flood the host log.
1622                  */
1623                 if (__ratelimit(&rs))
1624                         machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1625
1626                 /*
1627                  * If the guest can do FWNMI, exit to userspace so it can
1628                  * deliver a FWNMI to the guest.
1629                  * Otherwise we synthesize a machine check for the guest
1630                  * so that it knows that the machine check occurred.
1631                  */
1632                 if (!vcpu->kvm->arch.fwnmi_enabled) {
1633                         ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1634                         kvmppc_core_queue_machine_check(vcpu, flags);
1635                         r = RESUME_GUEST;
1636                         break;
1637                 }
1638
1639                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1640                 run->exit_reason = KVM_EXIT_NMI;
1641                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1642                 /* Clear out the old NMI status from run->flags */
1643                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1644                 /* Now set the NMI status */
1645                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1646                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1647                 else
1648                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1649
1650                 r = RESUME_HOST;
1651                 break;
1652         }
1653         case BOOK3S_INTERRUPT_PROGRAM:
1654         {
1655                 ulong flags;
1656                 /*
1657                  * Normally program interrupts are delivered directly
1658                  * to the guest by the hardware, but we can get here
1659                  * as a result of a hypervisor emulation interrupt
1660                  * (e40) getting turned into a 700 by BML RTAS.
1661                  */
1662                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1663                 kvmppc_core_queue_program(vcpu, flags);
1664                 r = RESUME_GUEST;
1665                 break;
1666         }
1667         case BOOK3S_INTERRUPT_SYSCALL:
1668         {
1669                 int i;
1670
1671                 if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) {
1672                         /*
1673                          * Guest userspace executed sc 1. This can only be
1674                          * reached by the P9 path because the old path
1675                          * handles this case in realmode hcall handlers.
1676                          */
1677                         if (!kvmhv_vcpu_is_radix(vcpu)) {
1678                                 /*
1679                                  * A guest could be running PR KVM, so this
1680                                  * may be a PR KVM hcall. It must be reflected
1681                                  * to the guest kernel as a sc interrupt.
1682                                  */
1683                                 kvmppc_core_queue_syscall(vcpu);
1684                         } else {
1685                                 /*
1686                                  * Radix guests can not run PR KVM or nested HV
1687                                  * hash guests which might run PR KVM, so this
1688                                  * is always a privilege fault. Send a program
1689                                  * check to guest kernel.
1690                                  */
1691                                 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1692                         }
1693                         r = RESUME_GUEST;
1694                         break;
1695                 }
1696
1697                 /*
1698                  * hcall - gather args and set exit_reason. This will next be
1699                  * handled by kvmppc_pseries_do_hcall which may be able to deal
1700                  * with it and resume guest, or may punt to userspace.
1701                  */
1702                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1703                 for (i = 0; i < 9; ++i)
1704                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1705                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1706                 vcpu->arch.hcall_needed = 1;
1707                 r = RESUME_HOST;
1708                 break;
1709         }
1710         /*
1711          * We get these next two if the guest accesses a page which it thinks
1712          * it has mapped but which is not actually present, either because
1713          * it is for an emulated I/O device or because the corresonding
1714          * host page has been paged out.
1715          *
1716          * Any other HDSI/HISI interrupts have been handled already for P7/8
1717          * guests. For POWER9 hash guests not using rmhandlers, basic hash
1718          * fault handling is done here.
1719          */
1720         case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1721                 unsigned long vsid;
1722                 long err;
1723
1724                 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1725                     unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1726                         r = RESUME_GUEST; /* Just retry if it's the canary */
1727                         break;
1728                 }
1729
1730                 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1731                         /*
1732                          * Radix doesn't require anything, and pre-ISAv3.0 hash
1733                          * already attempted to handle this in rmhandlers. The
1734                          * hash fault handling below is v3 only (it uses ASDR
1735                          * via fault_gpa).
1736                          */
1737                         r = RESUME_PAGE_FAULT;
1738                         break;
1739                 }
1740
1741                 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1742                         kvmppc_core_queue_data_storage(vcpu,
1743                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1744                         r = RESUME_GUEST;
1745                         break;
1746                 }
1747
1748                 if (!(vcpu->arch.shregs.msr & MSR_DR))
1749                         vsid = vcpu->kvm->arch.vrma_slb_v;
1750                 else
1751                         vsid = vcpu->arch.fault_gpa;
1752
1753                 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1754                                 vsid, vcpu->arch.fault_dsisr, true);
1755                 if (err == 0) {
1756                         r = RESUME_GUEST;
1757                 } else if (err == -1 || err == -2) {
1758                         r = RESUME_PAGE_FAULT;
1759                 } else {
1760                         kvmppc_core_queue_data_storage(vcpu,
1761                                 vcpu->arch.fault_dar, err);
1762                         r = RESUME_GUEST;
1763                 }
1764                 break;
1765         }
1766         case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1767                 unsigned long vsid;
1768                 long err;
1769
1770                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1771                 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1772                         DSISR_SRR1_MATCH_64S;
1773                 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1774                         /*
1775                          * Radix doesn't require anything, and pre-ISAv3.0 hash
1776                          * already attempted to handle this in rmhandlers. The
1777                          * hash fault handling below is v3 only (it uses ASDR
1778                          * via fault_gpa).
1779                          */
1780                         if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1781                                 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1782                         r = RESUME_PAGE_FAULT;
1783                         break;
1784                 }
1785
1786                 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1787                         kvmppc_core_queue_inst_storage(vcpu,
1788                                 vcpu->arch.fault_dsisr);
1789                         r = RESUME_GUEST;
1790                         break;
1791                 }
1792
1793                 if (!(vcpu->arch.shregs.msr & MSR_IR))
1794                         vsid = vcpu->kvm->arch.vrma_slb_v;
1795                 else
1796                         vsid = vcpu->arch.fault_gpa;
1797
1798                 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1799                                 vsid, vcpu->arch.fault_dsisr, false);
1800                 if (err == 0) {
1801                         r = RESUME_GUEST;
1802                 } else if (err == -1) {
1803                         r = RESUME_PAGE_FAULT;
1804                 } else {
1805                         kvmppc_core_queue_inst_storage(vcpu, err);
1806                         r = RESUME_GUEST;
1807                 }
1808                 break;
1809         }
1810
1811         /*
1812          * This occurs if the guest executes an illegal instruction.
1813          * If the guest debug is disabled, generate a program interrupt
1814          * to the guest. If guest debug is enabled, we need to check
1815          * whether the instruction is a software breakpoint instruction.
1816          * Accordingly return to Guest or Host.
1817          */
1818         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1819                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1820                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1821                                 swab32(vcpu->arch.emul_inst) :
1822                                 vcpu->arch.emul_inst;
1823                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1824                         r = kvmppc_emulate_debug_inst(vcpu);
1825                 } else {
1826                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1827                         r = RESUME_GUEST;
1828                 }
1829                 break;
1830
1831 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1832         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1833                 /*
1834                  * This occurs for various TM-related instructions that
1835                  * we need to emulate on POWER9 DD2.2.  We have already
1836                  * handled the cases where the guest was in real-suspend
1837                  * mode and was transitioning to transactional state.
1838                  */
1839                 r = kvmhv_p9_tm_emulation(vcpu);
1840                 if (r != -1)
1841                         break;
1842                 fallthrough; /* go to facility unavailable handler */
1843 #endif
1844
1845         /*
1846          * This occurs if the guest (kernel or userspace), does something that
1847          * is prohibited by HFSCR.
1848          * On POWER9, this could be a doorbell instruction that we need
1849          * to emulate.
1850          * Otherwise, we just generate a program interrupt to the guest.
1851          */
1852         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1853                 u64 cause = vcpu->arch.hfscr >> 56;
1854
1855                 r = EMULATE_FAIL;
1856                 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1857                         if (cause == FSCR_MSGP_LG)
1858                                 r = kvmppc_emulate_doorbell_instr(vcpu);
1859                         if (cause == FSCR_PM_LG)
1860                                 r = kvmppc_pmu_unavailable(vcpu);
1861                         if (cause == FSCR_EBB_LG)
1862                                 r = kvmppc_ebb_unavailable(vcpu);
1863                         if (cause == FSCR_TM_LG)
1864                                 r = kvmppc_tm_unavailable(vcpu);
1865                 }
1866                 if (r == EMULATE_FAIL) {
1867                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1868                         r = RESUME_GUEST;
1869                 }
1870                 break;
1871         }
1872
1873         case BOOK3S_INTERRUPT_HV_RM_HARD:
1874                 r = RESUME_PASSTHROUGH;
1875                 break;
1876         default:
1877                 kvmppc_dump_regs(vcpu);
1878                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1879                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1880                         vcpu->arch.shregs.msr);
1881                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1882                 r = RESUME_HOST;
1883                 break;
1884         }
1885
1886         return r;
1887 }
1888
1889 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1890 {
1891         int r;
1892         int srcu_idx;
1893
1894         vcpu->stat.sum_exits++;
1895
1896         /*
1897          * This can happen if an interrupt occurs in the last stages
1898          * of guest entry or the first stages of guest exit (i.e. after
1899          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1900          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1901          * That can happen due to a bug, or due to a machine check
1902          * occurring at just the wrong time.
1903          */
1904         if (vcpu->arch.shregs.msr & MSR_HV) {
1905                 pr_emerg("KVM trap in HV mode while nested!\n");
1906                 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1907                          vcpu->arch.trap, kvmppc_get_pc(vcpu),
1908                          vcpu->arch.shregs.msr);
1909                 kvmppc_dump_regs(vcpu);
1910                 return RESUME_HOST;
1911         }
1912         switch (vcpu->arch.trap) {
1913         /* We're good on these - the host merely wanted to get our attention */
1914         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1915                 vcpu->stat.dec_exits++;
1916                 r = RESUME_GUEST;
1917                 break;
1918         case BOOK3S_INTERRUPT_EXTERNAL:
1919                 vcpu->stat.ext_intr_exits++;
1920                 r = RESUME_HOST;
1921                 break;
1922         case BOOK3S_INTERRUPT_H_DOORBELL:
1923         case BOOK3S_INTERRUPT_H_VIRT:
1924                 vcpu->stat.ext_intr_exits++;
1925                 r = RESUME_GUEST;
1926                 break;
1927         /* These need to go to the nested HV */
1928         case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1929                 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1930                 vcpu->stat.dec_exits++;
1931                 r = RESUME_HOST;
1932                 break;
1933         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1934         case BOOK3S_INTERRUPT_HMI:
1935         case BOOK3S_INTERRUPT_PERFMON:
1936         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1937                 r = RESUME_GUEST;
1938                 break;
1939         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1940         {
1941                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1942                                               DEFAULT_RATELIMIT_BURST);
1943                 /* Pass the machine check to the L1 guest */
1944                 r = RESUME_HOST;
1945                 /* Print the MCE event to host console. */
1946                 if (__ratelimit(&rs))
1947                         machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1948                 break;
1949         }
1950         /*
1951          * We get these next two if the guest accesses a page which it thinks
1952          * it has mapped but which is not actually present, either because
1953          * it is for an emulated I/O device or because the corresonding
1954          * host page has been paged out.
1955          */
1956         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1957                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1958                 r = kvmhv_nested_page_fault(vcpu);
1959                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1960                 break;
1961         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1962                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1963                 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1964                                          DSISR_SRR1_MATCH_64S;
1965                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1966                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1967                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1968                 r = kvmhv_nested_page_fault(vcpu);
1969                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1970                 break;
1971
1972 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1973         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1974                 /*
1975                  * This occurs for various TM-related instructions that
1976                  * we need to emulate on POWER9 DD2.2.  We have already
1977                  * handled the cases where the guest was in real-suspend
1978                  * mode and was transitioning to transactional state.
1979                  */
1980                 r = kvmhv_p9_tm_emulation(vcpu);
1981                 if (r != -1)
1982                         break;
1983                 fallthrough; /* go to facility unavailable handler */
1984 #endif
1985
1986         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1987                 u64 cause = vcpu->arch.hfscr >> 56;
1988
1989                 /*
1990                  * Only pass HFU interrupts to the L1 if the facility is
1991                  * permitted but disabled by the L1's HFSCR, otherwise
1992                  * the interrupt does not make sense to the L1 so turn
1993                  * it into a HEAI.
1994                  */
1995                 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
1996                                 (vcpu->arch.nested_hfscr & (1UL << cause))) {
1997                         vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
1998
1999                         /*
2000                          * If the fetch failed, return to guest and
2001                          * try executing it again.
2002                          */
2003                         r = kvmppc_get_last_inst(vcpu, INST_GENERIC,
2004                                                  &vcpu->arch.emul_inst);
2005                         if (r != EMULATE_DONE)
2006                                 r = RESUME_GUEST;
2007                         else
2008                                 r = RESUME_HOST;
2009                 } else {
2010                         r = RESUME_HOST;
2011                 }
2012
2013                 break;
2014         }
2015
2016         case BOOK3S_INTERRUPT_HV_RM_HARD:
2017                 vcpu->arch.trap = 0;
2018                 r = RESUME_GUEST;
2019                 if (!xics_on_xive())
2020                         kvmppc_xics_rm_complete(vcpu, 0);
2021                 break;
2022         case BOOK3S_INTERRUPT_SYSCALL:
2023         {
2024                 unsigned long req = kvmppc_get_gpr(vcpu, 3);
2025
2026                 /*
2027                  * The H_RPT_INVALIDATE hcalls issued by nested
2028                  * guests for process-scoped invalidations when
2029                  * GTSE=0, are handled here in L0.
2030                  */
2031                 if (req == H_RPT_INVALIDATE) {
2032                         r = kvmppc_nested_h_rpt_invalidate(vcpu);
2033                         break;
2034                 }
2035
2036                 r = RESUME_HOST;
2037                 break;
2038         }
2039         default:
2040                 r = RESUME_HOST;
2041                 break;
2042         }
2043
2044         return r;
2045 }
2046
2047 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
2048                                             struct kvm_sregs *sregs)
2049 {
2050         int i;
2051
2052         memset(sregs, 0, sizeof(struct kvm_sregs));
2053         sregs->pvr = vcpu->arch.pvr;
2054         for (i = 0; i < vcpu->arch.slb_max; i++) {
2055                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
2056                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
2057         }
2058
2059         return 0;
2060 }
2061
2062 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
2063                                             struct kvm_sregs *sregs)
2064 {
2065         int i, j;
2066
2067         /* Only accept the same PVR as the host's, since we can't spoof it */
2068         if (sregs->pvr != vcpu->arch.pvr)
2069                 return -EINVAL;
2070
2071         j = 0;
2072         for (i = 0; i < vcpu->arch.slb_nr; i++) {
2073                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2074                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2075                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2076                         ++j;
2077                 }
2078         }
2079         vcpu->arch.slb_max = j;
2080
2081         return 0;
2082 }
2083
2084 /*
2085  * Enforce limits on guest LPCR values based on hardware availability,
2086  * guest configuration, and possibly hypervisor support and security
2087  * concerns.
2088  */
2089 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2090 {
2091         /* LPCR_TC only applies to HPT guests */
2092         if (kvm_is_radix(kvm))
2093                 lpcr &= ~LPCR_TC;
2094
2095         /* On POWER8 and above, userspace can modify AIL */
2096         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2097                 lpcr &= ~LPCR_AIL;
2098         if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2099                 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2100         /*
2101          * On some POWER9s we force AIL off for radix guests to prevent
2102          * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2103          * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2104          * be cached, which the host TLB management does not expect.
2105          */
2106         if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2107                 lpcr &= ~LPCR_AIL;
2108
2109         /*
2110          * On POWER9, allow userspace to enable large decrementer for the
2111          * guest, whether or not the host has it enabled.
2112          */
2113         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2114                 lpcr &= ~LPCR_LD;
2115
2116         return lpcr;
2117 }
2118
2119 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2120 {
2121         if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2122                 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2123                           lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2124         }
2125 }
2126
2127 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2128                 bool preserve_top32)
2129 {
2130         struct kvm *kvm = vcpu->kvm;
2131         struct kvmppc_vcore *vc = vcpu->arch.vcore;
2132         u64 mask;
2133
2134         spin_lock(&vc->lock);
2135
2136         /*
2137          * Userspace can only modify
2138          * DPFD (default prefetch depth), ILE (interrupt little-endian),
2139          * TC (translation control), AIL (alternate interrupt location),
2140          * LD (large decrementer).
2141          * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2142          */
2143         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2144
2145         /* Broken 32-bit version of LPCR must not clear top bits */
2146         if (preserve_top32)
2147                 mask &= 0xFFFFFFFF;
2148
2149         new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2150                         (vc->lpcr & ~mask) | (new_lpcr & mask));
2151
2152         /*
2153          * If ILE (interrupt little-endian) has changed, update the
2154          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2155          */
2156         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2157                 struct kvm_vcpu *vcpu;
2158                 unsigned long i;
2159
2160                 kvm_for_each_vcpu(i, vcpu, kvm) {
2161                         if (vcpu->arch.vcore != vc)
2162                                 continue;
2163                         if (new_lpcr & LPCR_ILE)
2164                                 vcpu->arch.intr_msr |= MSR_LE;
2165                         else
2166                                 vcpu->arch.intr_msr &= ~MSR_LE;
2167                 }
2168         }
2169
2170         vc->lpcr = new_lpcr;
2171
2172         spin_unlock(&vc->lock);
2173 }
2174
2175 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2176                                  union kvmppc_one_reg *val)
2177 {
2178         int r = 0;
2179         long int i;
2180
2181         switch (id) {
2182         case KVM_REG_PPC_DEBUG_INST:
2183                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2184                 break;
2185         case KVM_REG_PPC_HIOR:
2186                 *val = get_reg_val(id, 0);
2187                 break;
2188         case KVM_REG_PPC_DABR:
2189                 *val = get_reg_val(id, vcpu->arch.dabr);
2190                 break;
2191         case KVM_REG_PPC_DABRX:
2192                 *val = get_reg_val(id, vcpu->arch.dabrx);
2193                 break;
2194         case KVM_REG_PPC_DSCR:
2195                 *val = get_reg_val(id, vcpu->arch.dscr);
2196                 break;
2197         case KVM_REG_PPC_PURR:
2198                 *val = get_reg_val(id, vcpu->arch.purr);
2199                 break;
2200         case KVM_REG_PPC_SPURR:
2201                 *val = get_reg_val(id, vcpu->arch.spurr);
2202                 break;
2203         case KVM_REG_PPC_AMR:
2204                 *val = get_reg_val(id, vcpu->arch.amr);
2205                 break;
2206         case KVM_REG_PPC_UAMOR:
2207                 *val = get_reg_val(id, vcpu->arch.uamor);
2208                 break;
2209         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2210                 i = id - KVM_REG_PPC_MMCR0;
2211                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
2212                 break;
2213         case KVM_REG_PPC_MMCR2:
2214                 *val = get_reg_val(id, vcpu->arch.mmcr[2]);
2215                 break;
2216         case KVM_REG_PPC_MMCRA:
2217                 *val = get_reg_val(id, vcpu->arch.mmcra);
2218                 break;
2219         case KVM_REG_PPC_MMCRS:
2220                 *val = get_reg_val(id, vcpu->arch.mmcrs);
2221                 break;
2222         case KVM_REG_PPC_MMCR3:
2223                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2224                 break;
2225         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2226                 i = id - KVM_REG_PPC_PMC1;
2227                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
2228                 break;
2229         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2230                 i = id - KVM_REG_PPC_SPMC1;
2231                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
2232                 break;
2233         case KVM_REG_PPC_SIAR:
2234                 *val = get_reg_val(id, vcpu->arch.siar);
2235                 break;
2236         case KVM_REG_PPC_SDAR:
2237                 *val = get_reg_val(id, vcpu->arch.sdar);
2238                 break;
2239         case KVM_REG_PPC_SIER:
2240                 *val = get_reg_val(id, vcpu->arch.sier[0]);
2241                 break;
2242         case KVM_REG_PPC_SIER2:
2243                 *val = get_reg_val(id, vcpu->arch.sier[1]);
2244                 break;
2245         case KVM_REG_PPC_SIER3:
2246                 *val = get_reg_val(id, vcpu->arch.sier[2]);
2247                 break;
2248         case KVM_REG_PPC_IAMR:
2249                 *val = get_reg_val(id, vcpu->arch.iamr);
2250                 break;
2251         case KVM_REG_PPC_PSPB:
2252                 *val = get_reg_val(id, vcpu->arch.pspb);
2253                 break;
2254         case KVM_REG_PPC_DPDES:
2255                 /*
2256                  * On POWER9, where we are emulating msgsndp etc.,
2257                  * we return 1 bit for each vcpu, which can come from
2258                  * either vcore->dpdes or doorbell_request.
2259                  * On POWER8, doorbell_request is 0.
2260                  */
2261                 if (cpu_has_feature(CPU_FTR_ARCH_300))
2262                         *val = get_reg_val(id, vcpu->arch.doorbell_request);
2263                 else
2264                         *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
2265                 break;
2266         case KVM_REG_PPC_VTB:
2267                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
2268                 break;
2269         case KVM_REG_PPC_DAWR:
2270                 *val = get_reg_val(id, vcpu->arch.dawr0);
2271                 break;
2272         case KVM_REG_PPC_DAWRX:
2273                 *val = get_reg_val(id, vcpu->arch.dawrx0);
2274                 break;
2275         case KVM_REG_PPC_DAWR1:
2276                 *val = get_reg_val(id, vcpu->arch.dawr1);
2277                 break;
2278         case KVM_REG_PPC_DAWRX1:
2279                 *val = get_reg_val(id, vcpu->arch.dawrx1);
2280                 break;
2281         case KVM_REG_PPC_CIABR:
2282                 *val = get_reg_val(id, vcpu->arch.ciabr);
2283                 break;
2284         case KVM_REG_PPC_CSIGR:
2285                 *val = get_reg_val(id, vcpu->arch.csigr);
2286                 break;
2287         case KVM_REG_PPC_TACR:
2288                 *val = get_reg_val(id, vcpu->arch.tacr);
2289                 break;
2290         case KVM_REG_PPC_TCSCR:
2291                 *val = get_reg_val(id, vcpu->arch.tcscr);
2292                 break;
2293         case KVM_REG_PPC_PID:
2294                 *val = get_reg_val(id, vcpu->arch.pid);
2295                 break;
2296         case KVM_REG_PPC_ACOP:
2297                 *val = get_reg_val(id, vcpu->arch.acop);
2298                 break;
2299         case KVM_REG_PPC_WORT:
2300                 *val = get_reg_val(id, vcpu->arch.wort);
2301                 break;
2302         case KVM_REG_PPC_TIDR:
2303                 *val = get_reg_val(id, vcpu->arch.tid);
2304                 break;
2305         case KVM_REG_PPC_PSSCR:
2306                 *val = get_reg_val(id, vcpu->arch.psscr);
2307                 break;
2308         case KVM_REG_PPC_VPA_ADDR:
2309                 spin_lock(&vcpu->arch.vpa_update_lock);
2310                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2311                 spin_unlock(&vcpu->arch.vpa_update_lock);
2312                 break;
2313         case KVM_REG_PPC_VPA_SLB:
2314                 spin_lock(&vcpu->arch.vpa_update_lock);
2315                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2316                 val->vpaval.length = vcpu->arch.slb_shadow.len;
2317                 spin_unlock(&vcpu->arch.vpa_update_lock);
2318                 break;
2319         case KVM_REG_PPC_VPA_DTL:
2320                 spin_lock(&vcpu->arch.vpa_update_lock);
2321                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2322                 val->vpaval.length = vcpu->arch.dtl.len;
2323                 spin_unlock(&vcpu->arch.vpa_update_lock);
2324                 break;
2325         case KVM_REG_PPC_TB_OFFSET:
2326                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
2327                 break;
2328         case KVM_REG_PPC_LPCR:
2329         case KVM_REG_PPC_LPCR_64:
2330                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
2331                 break;
2332         case KVM_REG_PPC_PPR:
2333                 *val = get_reg_val(id, vcpu->arch.ppr);
2334                 break;
2335 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2336         case KVM_REG_PPC_TFHAR:
2337                 *val = get_reg_val(id, vcpu->arch.tfhar);
2338                 break;
2339         case KVM_REG_PPC_TFIAR:
2340                 *val = get_reg_val(id, vcpu->arch.tfiar);
2341                 break;
2342         case KVM_REG_PPC_TEXASR:
2343                 *val = get_reg_val(id, vcpu->arch.texasr);
2344                 break;
2345         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2346                 i = id - KVM_REG_PPC_TM_GPR0;
2347                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2348                 break;
2349         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2350         {
2351                 int j;
2352                 i = id - KVM_REG_PPC_TM_VSR0;
2353                 if (i < 32)
2354                         for (j = 0; j < TS_FPRWIDTH; j++)
2355                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2356                 else {
2357                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2358                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
2359                         else
2360                                 r = -ENXIO;
2361                 }
2362                 break;
2363         }
2364         case KVM_REG_PPC_TM_CR:
2365                 *val = get_reg_val(id, vcpu->arch.cr_tm);
2366                 break;
2367         case KVM_REG_PPC_TM_XER:
2368                 *val = get_reg_val(id, vcpu->arch.xer_tm);
2369                 break;
2370         case KVM_REG_PPC_TM_LR:
2371                 *val = get_reg_val(id, vcpu->arch.lr_tm);
2372                 break;
2373         case KVM_REG_PPC_TM_CTR:
2374                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
2375                 break;
2376         case KVM_REG_PPC_TM_FPSCR:
2377                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2378                 break;
2379         case KVM_REG_PPC_TM_AMR:
2380                 *val = get_reg_val(id, vcpu->arch.amr_tm);
2381                 break;
2382         case KVM_REG_PPC_TM_PPR:
2383                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
2384                 break;
2385         case KVM_REG_PPC_TM_VRSAVE:
2386                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
2387                 break;
2388         case KVM_REG_PPC_TM_VSCR:
2389                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2390                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2391                 else
2392                         r = -ENXIO;
2393                 break;
2394         case KVM_REG_PPC_TM_DSCR:
2395                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
2396                 break;
2397         case KVM_REG_PPC_TM_TAR:
2398                 *val = get_reg_val(id, vcpu->arch.tar_tm);
2399                 break;
2400 #endif
2401         case KVM_REG_PPC_ARCH_COMPAT:
2402                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
2403                 break;
2404         case KVM_REG_PPC_DEC_EXPIRY:
2405                 *val = get_reg_val(id, vcpu->arch.dec_expires);
2406                 break;
2407         case KVM_REG_PPC_ONLINE:
2408                 *val = get_reg_val(id, vcpu->arch.online);
2409                 break;
2410         case KVM_REG_PPC_PTCR:
2411                 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2412                 break;
2413         default:
2414                 r = -EINVAL;
2415                 break;
2416         }
2417
2418         return r;
2419 }
2420
2421 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2422                                  union kvmppc_one_reg *val)
2423 {
2424         int r = 0;
2425         long int i;
2426         unsigned long addr, len;
2427
2428         switch (id) {
2429         case KVM_REG_PPC_HIOR:
2430                 /* Only allow this to be set to zero */
2431                 if (set_reg_val(id, *val))
2432                         r = -EINVAL;
2433                 break;
2434         case KVM_REG_PPC_DABR:
2435                 vcpu->arch.dabr = set_reg_val(id, *val);
2436                 break;
2437         case KVM_REG_PPC_DABRX:
2438                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2439                 break;
2440         case KVM_REG_PPC_DSCR:
2441                 vcpu->arch.dscr = set_reg_val(id, *val);
2442                 break;
2443         case KVM_REG_PPC_PURR:
2444                 vcpu->arch.purr = set_reg_val(id, *val);
2445                 break;
2446         case KVM_REG_PPC_SPURR:
2447                 vcpu->arch.spurr = set_reg_val(id, *val);
2448                 break;
2449         case KVM_REG_PPC_AMR:
2450                 vcpu->arch.amr = set_reg_val(id, *val);
2451                 break;
2452         case KVM_REG_PPC_UAMOR:
2453                 vcpu->arch.uamor = set_reg_val(id, *val);
2454                 break;
2455         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2456                 i = id - KVM_REG_PPC_MMCR0;
2457                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
2458                 break;
2459         case KVM_REG_PPC_MMCR2:
2460                 vcpu->arch.mmcr[2] = set_reg_val(id, *val);
2461                 break;
2462         case KVM_REG_PPC_MMCRA:
2463                 vcpu->arch.mmcra = set_reg_val(id, *val);
2464                 break;
2465         case KVM_REG_PPC_MMCRS:
2466                 vcpu->arch.mmcrs = set_reg_val(id, *val);
2467                 break;
2468         case KVM_REG_PPC_MMCR3:
2469                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2470                 break;
2471         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2472                 i = id - KVM_REG_PPC_PMC1;
2473                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
2474                 break;
2475         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2476                 i = id - KVM_REG_PPC_SPMC1;
2477                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
2478                 break;
2479         case KVM_REG_PPC_SIAR:
2480                 vcpu->arch.siar = set_reg_val(id, *val);
2481                 break;
2482         case KVM_REG_PPC_SDAR:
2483                 vcpu->arch.sdar = set_reg_val(id, *val);
2484                 break;
2485         case KVM_REG_PPC_SIER:
2486                 vcpu->arch.sier[0] = set_reg_val(id, *val);
2487                 break;
2488         case KVM_REG_PPC_SIER2:
2489                 vcpu->arch.sier[1] = set_reg_val(id, *val);
2490                 break;
2491         case KVM_REG_PPC_SIER3:
2492                 vcpu->arch.sier[2] = set_reg_val(id, *val);
2493                 break;
2494         case KVM_REG_PPC_IAMR:
2495                 vcpu->arch.iamr = set_reg_val(id, *val);
2496                 break;
2497         case KVM_REG_PPC_PSPB:
2498                 vcpu->arch.pspb = set_reg_val(id, *val);
2499                 break;
2500         case KVM_REG_PPC_DPDES:
2501                 if (cpu_has_feature(CPU_FTR_ARCH_300))
2502                         vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
2503                 else
2504                         vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2505                 break;
2506         case KVM_REG_PPC_VTB:
2507                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2508                 break;
2509         case KVM_REG_PPC_DAWR:
2510                 vcpu->arch.dawr0 = set_reg_val(id, *val);
2511                 break;
2512         case KVM_REG_PPC_DAWRX:
2513                 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2514                 break;
2515         case KVM_REG_PPC_DAWR1:
2516                 vcpu->arch.dawr1 = set_reg_val(id, *val);
2517                 break;
2518         case KVM_REG_PPC_DAWRX1:
2519                 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2520                 break;
2521         case KVM_REG_PPC_CIABR:
2522                 vcpu->arch.ciabr = set_reg_val(id, *val);
2523                 /* Don't allow setting breakpoints in hypervisor code */
2524                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2525                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
2526                 break;
2527         case KVM_REG_PPC_CSIGR:
2528                 vcpu->arch.csigr = set_reg_val(id, *val);
2529                 break;
2530         case KVM_REG_PPC_TACR:
2531                 vcpu->arch.tacr = set_reg_val(id, *val);
2532                 break;
2533         case KVM_REG_PPC_TCSCR:
2534                 vcpu->arch.tcscr = set_reg_val(id, *val);
2535                 break;
2536         case KVM_REG_PPC_PID:
2537                 vcpu->arch.pid = set_reg_val(id, *val);
2538                 break;
2539         case KVM_REG_PPC_ACOP:
2540                 vcpu->arch.acop = set_reg_val(id, *val);
2541                 break;
2542         case KVM_REG_PPC_WORT:
2543                 vcpu->arch.wort = set_reg_val(id, *val);
2544                 break;
2545         case KVM_REG_PPC_TIDR:
2546                 vcpu->arch.tid = set_reg_val(id, *val);
2547                 break;
2548         case KVM_REG_PPC_PSSCR:
2549                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2550                 break;
2551         case KVM_REG_PPC_VPA_ADDR:
2552                 addr = set_reg_val(id, *val);
2553                 r = -EINVAL;
2554                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2555                               vcpu->arch.dtl.next_gpa))
2556                         break;
2557                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2558                 break;
2559         case KVM_REG_PPC_VPA_SLB:
2560                 addr = val->vpaval.addr;
2561                 len = val->vpaval.length;
2562                 r = -EINVAL;
2563                 if (addr && !vcpu->arch.vpa.next_gpa)
2564                         break;
2565                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2566                 break;
2567         case KVM_REG_PPC_VPA_DTL:
2568                 addr = val->vpaval.addr;
2569                 len = val->vpaval.length;
2570                 r = -EINVAL;
2571                 if (addr && (len < sizeof(struct dtl_entry) ||
2572                              !vcpu->arch.vpa.next_gpa))
2573                         break;
2574                 len -= len % sizeof(struct dtl_entry);
2575                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2576                 break;
2577         case KVM_REG_PPC_TB_OFFSET:
2578         {
2579                 /* round up to multiple of 2^24 */
2580                 u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24);
2581
2582                 /*
2583                  * Now that we know the timebase offset, update the
2584                  * decrementer expiry with a guest timebase value. If
2585                  * the userspace does not set DEC_EXPIRY, this ensures
2586                  * a migrated vcpu at least starts with an expired
2587                  * decrementer, which is better than a large one that
2588                  * causes a hang.
2589                  */
2590                 if (!vcpu->arch.dec_expires && tb_offset)
2591                         vcpu->arch.dec_expires = get_tb() + tb_offset;
2592
2593                 vcpu->arch.vcore->tb_offset = tb_offset;
2594                 break;
2595         }
2596         case KVM_REG_PPC_LPCR:
2597                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2598                 break;
2599         case KVM_REG_PPC_LPCR_64:
2600                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2601                 break;
2602         case KVM_REG_PPC_PPR:
2603                 vcpu->arch.ppr = set_reg_val(id, *val);
2604                 break;
2605 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2606         case KVM_REG_PPC_TFHAR:
2607                 vcpu->arch.tfhar = set_reg_val(id, *val);
2608                 break;
2609         case KVM_REG_PPC_TFIAR:
2610                 vcpu->arch.tfiar = set_reg_val(id, *val);
2611                 break;
2612         case KVM_REG_PPC_TEXASR:
2613                 vcpu->arch.texasr = set_reg_val(id, *val);
2614                 break;
2615         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2616                 i = id - KVM_REG_PPC_TM_GPR0;
2617                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2618                 break;
2619         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2620         {
2621                 int j;
2622                 i = id - KVM_REG_PPC_TM_VSR0;
2623                 if (i < 32)
2624                         for (j = 0; j < TS_FPRWIDTH; j++)
2625                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2626                 else
2627                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2628                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2629                         else
2630                                 r = -ENXIO;
2631                 break;
2632         }
2633         case KVM_REG_PPC_TM_CR:
2634                 vcpu->arch.cr_tm = set_reg_val(id, *val);
2635                 break;
2636         case KVM_REG_PPC_TM_XER:
2637                 vcpu->arch.xer_tm = set_reg_val(id, *val);
2638                 break;
2639         case KVM_REG_PPC_TM_LR:
2640                 vcpu->arch.lr_tm = set_reg_val(id, *val);
2641                 break;
2642         case KVM_REG_PPC_TM_CTR:
2643                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2644                 break;
2645         case KVM_REG_PPC_TM_FPSCR:
2646                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2647                 break;
2648         case KVM_REG_PPC_TM_AMR:
2649                 vcpu->arch.amr_tm = set_reg_val(id, *val);
2650                 break;
2651         case KVM_REG_PPC_TM_PPR:
2652                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2653                 break;
2654         case KVM_REG_PPC_TM_VRSAVE:
2655                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2656                 break;
2657         case KVM_REG_PPC_TM_VSCR:
2658                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2659                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2660                 else
2661                         r = - ENXIO;
2662                 break;
2663         case KVM_REG_PPC_TM_DSCR:
2664                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2665                 break;
2666         case KVM_REG_PPC_TM_TAR:
2667                 vcpu->arch.tar_tm = set_reg_val(id, *val);
2668                 break;
2669 #endif
2670         case KVM_REG_PPC_ARCH_COMPAT:
2671                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2672                 break;
2673         case KVM_REG_PPC_DEC_EXPIRY:
2674                 vcpu->arch.dec_expires = set_reg_val(id, *val);
2675                 break;
2676         case KVM_REG_PPC_ONLINE:
2677                 i = set_reg_val(id, *val);
2678                 if (i && !vcpu->arch.online)
2679                         atomic_inc(&vcpu->arch.vcore->online_count);
2680                 else if (!i && vcpu->arch.online)
2681                         atomic_dec(&vcpu->arch.vcore->online_count);
2682                 vcpu->arch.online = i;
2683                 break;
2684         case KVM_REG_PPC_PTCR:
2685                 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2686                 break;
2687         default:
2688                 r = -EINVAL;
2689                 break;
2690         }
2691
2692         return r;
2693 }
2694
2695 /*
2696  * On POWER9, threads are independent and can be in different partitions.
2697  * Therefore we consider each thread to be a subcore.
2698  * There is a restriction that all threads have to be in the same
2699  * MMU mode (radix or HPT), unfortunately, but since we only support
2700  * HPT guests on a HPT host so far, that isn't an impediment yet.
2701  */
2702 static int threads_per_vcore(struct kvm *kvm)
2703 {
2704         if (cpu_has_feature(CPU_FTR_ARCH_300))
2705                 return 1;
2706         return threads_per_subcore;
2707 }
2708
2709 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2710 {
2711         struct kvmppc_vcore *vcore;
2712
2713         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2714
2715         if (vcore == NULL)
2716                 return NULL;
2717
2718         spin_lock_init(&vcore->lock);
2719         spin_lock_init(&vcore->stoltb_lock);
2720         rcuwait_init(&vcore->wait);
2721         vcore->preempt_tb = TB_NIL;
2722         vcore->lpcr = kvm->arch.lpcr;
2723         vcore->first_vcpuid = id;
2724         vcore->kvm = kvm;
2725         INIT_LIST_HEAD(&vcore->preempt_list);
2726
2727         return vcore;
2728 }
2729
2730 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2731 static struct debugfs_timings_element {
2732         const char *name;
2733         size_t offset;
2734 } timings[] = {
2735 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
2736         {"vcpu_entry",  offsetof(struct kvm_vcpu, arch.vcpu_entry)},
2737         {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)},
2738         {"in_guest",    offsetof(struct kvm_vcpu, arch.in_guest)},
2739         {"guest_exit",  offsetof(struct kvm_vcpu, arch.guest_exit)},
2740         {"vcpu_exit",   offsetof(struct kvm_vcpu, arch.vcpu_exit)},
2741         {"hypercall",   offsetof(struct kvm_vcpu, arch.hcall)},
2742         {"page_fault",  offsetof(struct kvm_vcpu, arch.pg_fault)},
2743 #else
2744         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2745         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2746         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2747         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2748         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2749 #endif
2750 };
2751
2752 #define N_TIMINGS       (ARRAY_SIZE(timings))
2753
2754 struct debugfs_timings_state {
2755         struct kvm_vcpu *vcpu;
2756         unsigned int    buflen;
2757         char            buf[N_TIMINGS * 100];
2758 };
2759
2760 static int debugfs_timings_open(struct inode *inode, struct file *file)
2761 {
2762         struct kvm_vcpu *vcpu = inode->i_private;
2763         struct debugfs_timings_state *p;
2764
2765         p = kzalloc(sizeof(*p), GFP_KERNEL);
2766         if (!p)
2767                 return -ENOMEM;
2768
2769         kvm_get_kvm(vcpu->kvm);
2770         p->vcpu = vcpu;
2771         file->private_data = p;
2772
2773         return nonseekable_open(inode, file);
2774 }
2775
2776 static int debugfs_timings_release(struct inode *inode, struct file *file)
2777 {
2778         struct debugfs_timings_state *p = file->private_data;
2779
2780         kvm_put_kvm(p->vcpu->kvm);
2781         kfree(p);
2782         return 0;
2783 }
2784
2785 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2786                                     size_t len, loff_t *ppos)
2787 {
2788         struct debugfs_timings_state *p = file->private_data;
2789         struct kvm_vcpu *vcpu = p->vcpu;
2790         char *s, *buf_end;
2791         struct kvmhv_tb_accumulator tb;
2792         u64 count;
2793         loff_t pos;
2794         ssize_t n;
2795         int i, loops;
2796         bool ok;
2797
2798         if (!p->buflen) {
2799                 s = p->buf;
2800                 buf_end = s + sizeof(p->buf);
2801                 for (i = 0; i < N_TIMINGS; ++i) {
2802                         struct kvmhv_tb_accumulator *acc;
2803
2804                         acc = (struct kvmhv_tb_accumulator *)
2805                                 ((unsigned long)vcpu + timings[i].offset);
2806                         ok = false;
2807                         for (loops = 0; loops < 1000; ++loops) {
2808                                 count = acc->seqcount;
2809                                 if (!(count & 1)) {
2810                                         smp_rmb();
2811                                         tb = *acc;
2812                                         smp_rmb();
2813                                         if (count == acc->seqcount) {
2814                                                 ok = true;
2815                                                 break;
2816                                         }
2817                                 }
2818                                 udelay(1);
2819                         }
2820                         if (!ok)
2821                                 snprintf(s, buf_end - s, "%s: stuck\n",
2822                                         timings[i].name);
2823                         else
2824                                 snprintf(s, buf_end - s,
2825                                         "%s: %llu %llu %llu %llu\n",
2826                                         timings[i].name, count / 2,
2827                                         tb_to_ns(tb.tb_total),
2828                                         tb_to_ns(tb.tb_min),
2829                                         tb_to_ns(tb.tb_max));
2830                         s += strlen(s);
2831                 }
2832                 p->buflen = s - p->buf;
2833         }
2834
2835         pos = *ppos;
2836         if (pos >= p->buflen)
2837                 return 0;
2838         if (len > p->buflen - pos)
2839                 len = p->buflen - pos;
2840         n = copy_to_user(buf, p->buf + pos, len);
2841         if (n) {
2842                 if (n == len)
2843                         return -EFAULT;
2844                 len -= n;
2845         }
2846         *ppos = pos + len;
2847         return len;
2848 }
2849
2850 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2851                                      size_t len, loff_t *ppos)
2852 {
2853         return -EACCES;
2854 }
2855
2856 static const struct file_operations debugfs_timings_ops = {
2857         .owner   = THIS_MODULE,
2858         .open    = debugfs_timings_open,
2859         .release = debugfs_timings_release,
2860         .read    = debugfs_timings_read,
2861         .write   = debugfs_timings_write,
2862         .llseek  = generic_file_llseek,
2863 };
2864
2865 /* Create a debugfs directory for the vcpu */
2866 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2867 {
2868         if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING))
2869                 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
2870                                     &debugfs_timings_ops);
2871         return 0;
2872 }
2873
2874 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2875 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2876 {
2877         return 0;
2878 }
2879 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2880
2881 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2882 {
2883         int err;
2884         int core;
2885         struct kvmppc_vcore *vcore;
2886         struct kvm *kvm;
2887         unsigned int id;
2888
2889         kvm = vcpu->kvm;
2890         id = vcpu->vcpu_id;
2891
2892         vcpu->arch.shared = &vcpu->arch.shregs;
2893 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2894         /*
2895          * The shared struct is never shared on HV,
2896          * so we can always use host endianness
2897          */
2898 #ifdef __BIG_ENDIAN__
2899         vcpu->arch.shared_big_endian = true;
2900 #else
2901         vcpu->arch.shared_big_endian = false;
2902 #endif
2903 #endif
2904         vcpu->arch.mmcr[0] = MMCR0_FC;
2905         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2906                 vcpu->arch.mmcr[0] |= MMCR0_PMCCEXT;
2907                 vcpu->arch.mmcra = MMCRA_BHRB_DISABLE;
2908         }
2909
2910         vcpu->arch.ctrl = CTRL_RUNLATCH;
2911         /* default to host PVR, since we can't spoof it */
2912         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2913         spin_lock_init(&vcpu->arch.vpa_update_lock);
2914         spin_lock_init(&vcpu->arch.tbacct_lock);
2915         vcpu->arch.busy_preempt = TB_NIL;
2916         vcpu->arch.shregs.msr = MSR_ME;
2917         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2918
2919         /*
2920          * Set the default HFSCR for the guest from the host value.
2921          * This value is only used on POWER9.
2922          * On POWER9, we want to virtualize the doorbell facility, so we
2923          * don't set the HFSCR_MSGP bit, and that causes those instructions
2924          * to trap and then we emulate them.
2925          */
2926         vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2927                 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2928         if (cpu_has_feature(CPU_FTR_HVMODE)) {
2929                 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2930 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2931                 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2932                         vcpu->arch.hfscr |= HFSCR_TM;
2933 #endif
2934         }
2935         if (cpu_has_feature(CPU_FTR_TM_COMP))
2936                 vcpu->arch.hfscr |= HFSCR_TM;
2937
2938         vcpu->arch.hfscr_permitted = vcpu->arch.hfscr;
2939
2940         /*
2941          * PM, EBB, TM are demand-faulted so start with it clear.
2942          */
2943         vcpu->arch.hfscr &= ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM);
2944
2945         kvmppc_mmu_book3s_hv_init(vcpu);
2946
2947         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2948
2949         init_waitqueue_head(&vcpu->arch.cpu_run);
2950
2951         mutex_lock(&kvm->lock);
2952         vcore = NULL;
2953         err = -EINVAL;
2954         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2955                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2956                         pr_devel("KVM: VCPU ID too high\n");
2957                         core = KVM_MAX_VCORES;
2958                 } else {
2959                         BUG_ON(kvm->arch.smt_mode != 1);
2960                         core = kvmppc_pack_vcpu_id(kvm, id);
2961                 }
2962         } else {
2963                 core = id / kvm->arch.smt_mode;
2964         }
2965         if (core < KVM_MAX_VCORES) {
2966                 vcore = kvm->arch.vcores[core];
2967                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2968                         pr_devel("KVM: collision on id %u", id);
2969                         vcore = NULL;
2970                 } else if (!vcore) {
2971                         /*
2972                          * Take mmu_setup_lock for mutual exclusion
2973                          * with kvmppc_update_lpcr().
2974                          */
2975                         err = -ENOMEM;
2976                         vcore = kvmppc_vcore_create(kvm,
2977                                         id & ~(kvm->arch.smt_mode - 1));
2978                         mutex_lock(&kvm->arch.mmu_setup_lock);
2979                         kvm->arch.vcores[core] = vcore;
2980                         kvm->arch.online_vcores++;
2981                         mutex_unlock(&kvm->arch.mmu_setup_lock);
2982                 }
2983         }
2984         mutex_unlock(&kvm->lock);
2985
2986         if (!vcore)
2987                 return err;
2988
2989         spin_lock(&vcore->lock);
2990         ++vcore->num_threads;
2991         spin_unlock(&vcore->lock);
2992         vcpu->arch.vcore = vcore;
2993         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2994         vcpu->arch.thread_cpu = -1;
2995         vcpu->arch.prev_cpu = -1;
2996
2997         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2998         kvmppc_sanity_check(vcpu);
2999
3000         return 0;
3001 }
3002
3003 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
3004                               unsigned long flags)
3005 {
3006         int err;
3007         int esmt = 0;
3008
3009         if (flags)
3010                 return -EINVAL;
3011         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
3012                 return -EINVAL;
3013         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3014                 /*
3015                  * On POWER8 (or POWER7), the threading mode is "strict",
3016                  * so we pack smt_mode vcpus per vcore.
3017                  */
3018                 if (smt_mode > threads_per_subcore)
3019                         return -EINVAL;
3020         } else {
3021                 /*
3022                  * On POWER9, the threading mode is "loose",
3023                  * so each vcpu gets its own vcore.
3024                  */
3025                 esmt = smt_mode;
3026                 smt_mode = 1;
3027         }
3028         mutex_lock(&kvm->lock);
3029         err = -EBUSY;
3030         if (!kvm->arch.online_vcores) {
3031                 kvm->arch.smt_mode = smt_mode;
3032                 kvm->arch.emul_smt_mode = esmt;
3033                 err = 0;
3034         }
3035         mutex_unlock(&kvm->lock);
3036
3037         return err;
3038 }
3039
3040 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
3041 {
3042         if (vpa->pinned_addr)
3043                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
3044                                         vpa->dirty);
3045 }
3046
3047 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
3048 {
3049         spin_lock(&vcpu->arch.vpa_update_lock);
3050         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
3051         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
3052         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
3053         spin_unlock(&vcpu->arch.vpa_update_lock);
3054 }
3055
3056 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
3057 {
3058         /* Indicate we want to get back into the guest */
3059         return 1;
3060 }
3061
3062 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
3063 {
3064         unsigned long dec_nsec, now;
3065
3066         now = get_tb();
3067         if (now > kvmppc_dec_expires_host_tb(vcpu)) {
3068                 /* decrementer has already gone negative */
3069                 kvmppc_core_queue_dec(vcpu);
3070                 kvmppc_core_prepare_to_enter(vcpu);
3071                 return;
3072         }
3073         dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
3074         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
3075         vcpu->arch.timer_running = 1;
3076 }
3077
3078 extern int __kvmppc_vcore_entry(void);
3079
3080 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
3081                                    struct kvm_vcpu *vcpu, u64 tb)
3082 {
3083         u64 now;
3084
3085         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3086                 return;
3087         spin_lock_irq(&vcpu->arch.tbacct_lock);
3088         now = tb;
3089         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
3090                 vcpu->arch.stolen_logged;
3091         vcpu->arch.busy_preempt = now;
3092         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3093         spin_unlock_irq(&vcpu->arch.tbacct_lock);
3094         --vc->n_runnable;
3095         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
3096 }
3097
3098 static int kvmppc_grab_hwthread(int cpu)
3099 {
3100         struct paca_struct *tpaca;
3101         long timeout = 10000;
3102
3103         tpaca = paca_ptrs[cpu];
3104
3105         /* Ensure the thread won't go into the kernel if it wakes */
3106         tpaca->kvm_hstate.kvm_vcpu = NULL;
3107         tpaca->kvm_hstate.kvm_vcore = NULL;
3108         tpaca->kvm_hstate.napping = 0;
3109         smp_wmb();
3110         tpaca->kvm_hstate.hwthread_req = 1;
3111
3112         /*
3113          * If the thread is already executing in the kernel (e.g. handling
3114          * a stray interrupt), wait for it to get back to nap mode.
3115          * The smp_mb() is to ensure that our setting of hwthread_req
3116          * is visible before we look at hwthread_state, so if this
3117          * races with the code at system_reset_pSeries and the thread
3118          * misses our setting of hwthread_req, we are sure to see its
3119          * setting of hwthread_state, and vice versa.
3120          */
3121         smp_mb();
3122         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3123                 if (--timeout <= 0) {
3124                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
3125                         return -EBUSY;
3126                 }
3127                 udelay(1);
3128         }
3129         return 0;
3130 }
3131
3132 static void kvmppc_release_hwthread(int cpu)
3133 {
3134         struct paca_struct *tpaca;
3135
3136         tpaca = paca_ptrs[cpu];
3137         tpaca->kvm_hstate.hwthread_req = 0;
3138         tpaca->kvm_hstate.kvm_vcpu = NULL;
3139         tpaca->kvm_hstate.kvm_vcore = NULL;
3140         tpaca->kvm_hstate.kvm_split_mode = NULL;
3141 }
3142
3143 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3144
3145 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3146 {
3147         struct kvm_nested_guest *nested = vcpu->arch.nested;
3148         cpumask_t *need_tlb_flush;
3149         int i;
3150
3151         if (nested)
3152                 need_tlb_flush = &nested->need_tlb_flush;
3153         else
3154                 need_tlb_flush = &kvm->arch.need_tlb_flush;
3155
3156         cpu = cpu_first_tlb_thread_sibling(cpu);
3157         for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3158                                         i += cpu_tlb_thread_sibling_step())
3159                 cpumask_set_cpu(i, need_tlb_flush);
3160
3161         /*
3162          * Make sure setting of bit in need_tlb_flush precedes testing of
3163          * cpu_in_guest. The matching barrier on the other side is hwsync
3164          * when switching to guest MMU mode, which happens between
3165          * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3166          * being tested.
3167          */
3168         smp_mb();
3169
3170         for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3171                                         i += cpu_tlb_thread_sibling_step()) {
3172                 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3173
3174                 if (running == kvm)
3175                         smp_call_function_single(i, do_nothing, NULL, 1);
3176         }
3177 }
3178
3179 static void do_migrate_away_vcpu(void *arg)
3180 {
3181         struct kvm_vcpu *vcpu = arg;
3182         struct kvm *kvm = vcpu->kvm;
3183
3184         /*
3185          * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3186          * ptesync sequence on the old CPU before migrating to a new one, in
3187          * case we interrupted the guest between a tlbie ; eieio ;
3188          * tlbsync; ptesync sequence.
3189          *
3190          * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3191          */
3192         if (kvm->arch.lpcr & LPCR_GTSE)
3193                 asm volatile("eieio; tlbsync; ptesync");
3194         else
3195                 asm volatile("ptesync");
3196 }
3197
3198 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3199 {
3200         struct kvm_nested_guest *nested = vcpu->arch.nested;
3201         struct kvm *kvm = vcpu->kvm;
3202         int prev_cpu;
3203
3204         if (!cpu_has_feature(CPU_FTR_HVMODE))
3205                 return;
3206
3207         if (nested)
3208                 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3209         else
3210                 prev_cpu = vcpu->arch.prev_cpu;
3211
3212         /*
3213          * With radix, the guest can do TLB invalidations itself,
3214          * and it could choose to use the local form (tlbiel) if
3215          * it is invalidating a translation that has only ever been
3216          * used on one vcpu.  However, that doesn't mean it has
3217          * only ever been used on one physical cpu, since vcpus
3218          * can move around between pcpus.  To cope with this, when
3219          * a vcpu moves from one pcpu to another, we need to tell
3220          * any vcpus running on the same core as this vcpu previously
3221          * ran to flush the TLB.
3222          */
3223         if (prev_cpu != pcpu) {
3224                 if (prev_cpu >= 0) {
3225                         if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3226                             cpu_first_tlb_thread_sibling(pcpu))
3227                                 radix_flush_cpu(kvm, prev_cpu, vcpu);
3228
3229                         smp_call_function_single(prev_cpu,
3230                                         do_migrate_away_vcpu, vcpu, 1);
3231                 }
3232                 if (nested)
3233                         nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3234                 else
3235                         vcpu->arch.prev_cpu = pcpu;
3236         }
3237 }
3238
3239 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3240 {
3241         int cpu;
3242         struct paca_struct *tpaca;
3243
3244         cpu = vc->pcpu;
3245         if (vcpu) {
3246                 if (vcpu->arch.timer_running) {
3247                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3248                         vcpu->arch.timer_running = 0;
3249                 }
3250                 cpu += vcpu->arch.ptid;
3251                 vcpu->cpu = vc->pcpu;
3252                 vcpu->arch.thread_cpu = cpu;
3253         }
3254         tpaca = paca_ptrs[cpu];
3255         tpaca->kvm_hstate.kvm_vcpu = vcpu;
3256         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3257         tpaca->kvm_hstate.fake_suspend = 0;
3258         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3259         smp_wmb();
3260         tpaca->kvm_hstate.kvm_vcore = vc;
3261         if (cpu != smp_processor_id())
3262                 kvmppc_ipi_thread(cpu);
3263 }
3264
3265 static void kvmppc_wait_for_nap(int n_threads)
3266 {
3267         int cpu = smp_processor_id();
3268         int i, loops;
3269
3270         if (n_threads <= 1)
3271                 return;
3272         for (loops = 0; loops < 1000000; ++loops) {
3273                 /*
3274                  * Check if all threads are finished.
3275                  * We set the vcore pointer when starting a thread
3276                  * and the thread clears it when finished, so we look
3277                  * for any threads that still have a non-NULL vcore ptr.
3278                  */
3279                 for (i = 1; i < n_threads; ++i)
3280                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3281                                 break;
3282                 if (i == n_threads) {
3283                         HMT_medium();
3284                         return;
3285                 }
3286                 HMT_low();
3287         }
3288         HMT_medium();
3289         for (i = 1; i < n_threads; ++i)
3290                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3291                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3292 }
3293
3294 /*
3295  * Check that we are on thread 0 and that any other threads in
3296  * this core are off-line.  Then grab the threads so they can't
3297  * enter the kernel.
3298  */
3299 static int on_primary_thread(void)
3300 {
3301         int cpu = smp_processor_id();
3302         int thr;
3303
3304         /* Are we on a primary subcore? */
3305         if (cpu_thread_in_subcore(cpu))
3306                 return 0;
3307
3308         thr = 0;
3309         while (++thr < threads_per_subcore)
3310                 if (cpu_online(cpu + thr))
3311                         return 0;
3312
3313         /* Grab all hw threads so they can't go into the kernel */
3314         for (thr = 1; thr < threads_per_subcore; ++thr) {
3315                 if (kvmppc_grab_hwthread(cpu + thr)) {
3316                         /* Couldn't grab one; let the others go */
3317                         do {
3318                                 kvmppc_release_hwthread(cpu + thr);
3319                         } while (--thr > 0);
3320                         return 0;
3321                 }
3322         }
3323         return 1;
3324 }
3325
3326 /*
3327  * A list of virtual cores for each physical CPU.
3328  * These are vcores that could run but their runner VCPU tasks are
3329  * (or may be) preempted.
3330  */
3331 struct preempted_vcore_list {
3332         struct list_head        list;
3333         spinlock_t              lock;
3334 };
3335
3336 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3337
3338 static void init_vcore_lists(void)
3339 {
3340         int cpu;
3341
3342         for_each_possible_cpu(cpu) {
3343                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3344                 spin_lock_init(&lp->lock);
3345                 INIT_LIST_HEAD(&lp->list);
3346         }
3347 }
3348
3349 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3350 {
3351         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3352
3353         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3354
3355         vc->vcore_state = VCORE_PREEMPT;
3356         vc->pcpu = smp_processor_id();
3357         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3358                 spin_lock(&lp->lock);
3359                 list_add_tail(&vc->preempt_list, &lp->list);
3360                 spin_unlock(&lp->lock);
3361         }
3362
3363         /* Start accumulating stolen time */
3364         kvmppc_core_start_stolen(vc, mftb());
3365 }
3366
3367 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3368 {
3369         struct preempted_vcore_list *lp;
3370
3371         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3372
3373         kvmppc_core_end_stolen(vc, mftb());
3374         if (!list_empty(&vc->preempt_list)) {
3375                 lp = &per_cpu(preempted_vcores, vc->pcpu);
3376                 spin_lock(&lp->lock);
3377                 list_del_init(&vc->preempt_list);
3378                 spin_unlock(&lp->lock);
3379         }
3380         vc->vcore_state = VCORE_INACTIVE;
3381 }
3382
3383 /*
3384  * This stores information about the virtual cores currently
3385  * assigned to a physical core.
3386  */
3387 struct core_info {
3388         int             n_subcores;
3389         int             max_subcore_threads;
3390         int             total_threads;
3391         int             subcore_threads[MAX_SUBCORES];
3392         struct kvmppc_vcore *vc[MAX_SUBCORES];
3393 };
3394
3395 /*
3396  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3397  * respectively in 2-way micro-threading (split-core) mode on POWER8.
3398  */
3399 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3400
3401 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3402 {
3403         memset(cip, 0, sizeof(*cip));
3404         cip->n_subcores = 1;
3405         cip->max_subcore_threads = vc->num_threads;
3406         cip->total_threads = vc->num_threads;
3407         cip->subcore_threads[0] = vc->num_threads;
3408         cip->vc[0] = vc;
3409 }
3410
3411 static bool subcore_config_ok(int n_subcores, int n_threads)
3412 {
3413         /*
3414          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3415          * split-core mode, with one thread per subcore.
3416          */
3417         if (cpu_has_feature(CPU_FTR_ARCH_300))
3418                 return n_subcores <= 4 && n_threads == 1;
3419
3420         /* On POWER8, can only dynamically split if unsplit to begin with */
3421         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3422                 return false;
3423         if (n_subcores > MAX_SUBCORES)
3424                 return false;
3425         if (n_subcores > 1) {
3426                 if (!(dynamic_mt_modes & 2))
3427                         n_subcores = 4;
3428                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3429                         return false;
3430         }
3431
3432         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3433 }
3434
3435 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3436 {
3437         vc->entry_exit_map = 0;
3438         vc->in_guest = 0;
3439         vc->napping_threads = 0;
3440         vc->conferring_threads = 0;
3441         vc->tb_offset_applied = 0;
3442 }
3443
3444 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3445 {
3446         int n_threads = vc->num_threads;
3447         int sub;
3448
3449         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3450                 return false;
3451
3452         /* In one_vm_per_core mode, require all vcores to be from the same vm */
3453         if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3454                 return false;
3455
3456         if (n_threads < cip->max_subcore_threads)
3457                 n_threads = cip->max_subcore_threads;
3458         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3459                 return false;
3460         cip->max_subcore_threads = n_threads;
3461
3462         sub = cip->n_subcores;
3463         ++cip->n_subcores;
3464         cip->total_threads += vc->num_threads;
3465         cip->subcore_threads[sub] = vc->num_threads;
3466         cip->vc[sub] = vc;
3467         init_vcore_to_run(vc);
3468         list_del_init(&vc->preempt_list);
3469
3470         return true;
3471 }
3472
3473 /*
3474  * Work out whether it is possible to piggyback the execution of
3475  * vcore *pvc onto the execution of the other vcores described in *cip.
3476  */
3477 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3478                           int target_threads)
3479 {
3480         if (cip->total_threads + pvc->num_threads > target_threads)
3481                 return false;
3482
3483         return can_dynamic_split(pvc, cip);
3484 }
3485
3486 static void prepare_threads(struct kvmppc_vcore *vc)
3487 {
3488         int i;
3489         struct kvm_vcpu *vcpu;
3490
3491         for_each_runnable_thread(i, vcpu, vc) {
3492                 if (signal_pending(vcpu->arch.run_task))
3493                         vcpu->arch.ret = -EINTR;
3494                 else if (vcpu->arch.vpa.update_pending ||
3495                          vcpu->arch.slb_shadow.update_pending ||
3496                          vcpu->arch.dtl.update_pending)
3497                         vcpu->arch.ret = RESUME_GUEST;
3498                 else
3499                         continue;
3500                 kvmppc_remove_runnable(vc, vcpu, mftb());
3501                 wake_up(&vcpu->arch.cpu_run);
3502         }
3503 }
3504
3505 static void collect_piggybacks(struct core_info *cip, int target_threads)
3506 {
3507         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3508         struct kvmppc_vcore *pvc, *vcnext;
3509
3510         spin_lock(&lp->lock);
3511         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3512                 if (!spin_trylock(&pvc->lock))
3513                         continue;
3514                 prepare_threads(pvc);
3515                 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3516                         list_del_init(&pvc->preempt_list);
3517                         if (pvc->runner == NULL) {
3518                                 pvc->vcore_state = VCORE_INACTIVE;
3519                                 kvmppc_core_end_stolen(pvc, mftb());
3520                         }
3521                         spin_unlock(&pvc->lock);
3522                         continue;
3523                 }
3524                 if (!can_piggyback(pvc, cip, target_threads)) {
3525                         spin_unlock(&pvc->lock);
3526                         continue;
3527                 }
3528                 kvmppc_core_end_stolen(pvc, mftb());
3529                 pvc->vcore_state = VCORE_PIGGYBACK;
3530                 if (cip->total_threads >= target_threads)
3531                         break;
3532         }
3533         spin_unlock(&lp->lock);
3534 }
3535
3536 static bool recheck_signals_and_mmu(struct core_info *cip)
3537 {
3538         int sub, i;
3539         struct kvm_vcpu *vcpu;
3540         struct kvmppc_vcore *vc;
3541
3542         for (sub = 0; sub < cip->n_subcores; ++sub) {
3543                 vc = cip->vc[sub];
3544                 if (!vc->kvm->arch.mmu_ready)
3545                         return true;
3546                 for_each_runnable_thread(i, vcpu, vc)
3547                         if (signal_pending(vcpu->arch.run_task))
3548                                 return true;
3549         }
3550         return false;
3551 }
3552
3553 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3554 {
3555         int still_running = 0, i;
3556         u64 now;
3557         long ret;
3558         struct kvm_vcpu *vcpu;
3559
3560         spin_lock(&vc->lock);
3561         now = get_tb();
3562         for_each_runnable_thread(i, vcpu, vc) {
3563                 /*
3564                  * It's safe to unlock the vcore in the loop here, because
3565                  * for_each_runnable_thread() is safe against removal of
3566                  * the vcpu, and the vcore state is VCORE_EXITING here,
3567                  * so any vcpus becoming runnable will have their arch.trap
3568                  * set to zero and can't actually run in the guest.
3569                  */
3570                 spin_unlock(&vc->lock);
3571                 /* cancel pending dec exception if dec is positive */
3572                 if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3573                     kvmppc_core_pending_dec(vcpu))
3574                         kvmppc_core_dequeue_dec(vcpu);
3575
3576                 trace_kvm_guest_exit(vcpu);
3577
3578                 ret = RESUME_GUEST;
3579                 if (vcpu->arch.trap)
3580                         ret = kvmppc_handle_exit_hv(vcpu,
3581                                                     vcpu->arch.run_task);
3582
3583                 vcpu->arch.ret = ret;
3584                 vcpu->arch.trap = 0;
3585
3586                 spin_lock(&vc->lock);
3587                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3588                         if (vcpu->arch.pending_exceptions)
3589                                 kvmppc_core_prepare_to_enter(vcpu);
3590                         if (vcpu->arch.ceded)
3591                                 kvmppc_set_timer(vcpu);
3592                         else
3593                                 ++still_running;
3594                 } else {
3595                         kvmppc_remove_runnable(vc, vcpu, mftb());
3596                         wake_up(&vcpu->arch.cpu_run);
3597                 }
3598         }
3599         if (!is_master) {
3600                 if (still_running > 0) {
3601                         kvmppc_vcore_preempt(vc);
3602                 } else if (vc->runner) {
3603                         vc->vcore_state = VCORE_PREEMPT;
3604                         kvmppc_core_start_stolen(vc, mftb());
3605                 } else {
3606                         vc->vcore_state = VCORE_INACTIVE;
3607                 }
3608                 if (vc->n_runnable > 0 && vc->runner == NULL) {
3609                         /* make sure there's a candidate runner awake */
3610                         i = -1;
3611                         vcpu = next_runnable_thread(vc, &i);
3612                         wake_up(&vcpu->arch.cpu_run);
3613                 }
3614         }
3615         spin_unlock(&vc->lock);
3616 }
3617
3618 /*
3619  * Clear core from the list of active host cores as we are about to
3620  * enter the guest. Only do this if it is the primary thread of the
3621  * core (not if a subcore) that is entering the guest.
3622  */
3623 static inline int kvmppc_clear_host_core(unsigned int cpu)
3624 {
3625         int core;
3626
3627         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3628                 return 0;
3629         /*
3630          * Memory barrier can be omitted here as we will do a smp_wmb()
3631          * later in kvmppc_start_thread and we need ensure that state is
3632          * visible to other CPUs only after we enter guest.
3633          */
3634         core = cpu >> threads_shift;
3635         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3636         return 0;
3637 }
3638
3639 /*
3640  * Advertise this core as an active host core since we exited the guest
3641  * Only need to do this if it is the primary thread of the core that is
3642  * exiting.
3643  */
3644 static inline int kvmppc_set_host_core(unsigned int cpu)
3645 {
3646         int core;
3647
3648         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3649                 return 0;
3650
3651         /*
3652          * Memory barrier can be omitted here because we do a spin_unlock
3653          * immediately after this which provides the memory barrier.
3654          */
3655         core = cpu >> threads_shift;
3656         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3657         return 0;
3658 }
3659
3660 static void set_irq_happened(int trap)
3661 {
3662         switch (trap) {
3663         case BOOK3S_INTERRUPT_EXTERNAL:
3664                 local_paca->irq_happened |= PACA_IRQ_EE;
3665                 break;
3666         case BOOK3S_INTERRUPT_H_DOORBELL:
3667                 local_paca->irq_happened |= PACA_IRQ_DBELL;
3668                 break;
3669         case BOOK3S_INTERRUPT_HMI:
3670                 local_paca->irq_happened |= PACA_IRQ_HMI;
3671                 break;
3672         case BOOK3S_INTERRUPT_SYSTEM_RESET:
3673                 replay_system_reset();
3674                 break;
3675         }
3676 }
3677
3678 /*
3679  * Run a set of guest threads on a physical core.
3680  * Called with vc->lock held.
3681  */
3682 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3683 {
3684         struct kvm_vcpu *vcpu;
3685         int i;
3686         int srcu_idx;
3687         struct core_info core_info;
3688         struct kvmppc_vcore *pvc;
3689         struct kvm_split_mode split_info, *sip;
3690         int split, subcore_size, active;
3691         int sub;
3692         bool thr0_done;
3693         unsigned long cmd_bit, stat_bit;
3694         int pcpu, thr;
3695         int target_threads;
3696         int controlled_threads;
3697         int trap;
3698         bool is_power8;
3699
3700         if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3701                 return;
3702
3703         /*
3704          * Remove from the list any threads that have a signal pending
3705          * or need a VPA update done
3706          */
3707         prepare_threads(vc);
3708
3709         /* if the runner is no longer runnable, let the caller pick a new one */
3710         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3711                 return;
3712
3713         /*
3714          * Initialize *vc.
3715          */
3716         init_vcore_to_run(vc);
3717         vc->preempt_tb = TB_NIL;
3718
3719         /*
3720          * Number of threads that we will be controlling: the same as
3721          * the number of threads per subcore, except on POWER9,
3722          * where it's 1 because the threads are (mostly) independent.
3723          */
3724         controlled_threads = threads_per_vcore(vc->kvm);
3725
3726         /*
3727          * Make sure we are running on primary threads, and that secondary
3728          * threads are offline.  Also check if the number of threads in this
3729          * guest are greater than the current system threads per guest.
3730          */
3731         if ((controlled_threads > 1) &&
3732             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3733                 for_each_runnable_thread(i, vcpu, vc) {
3734                         vcpu->arch.ret = -EBUSY;
3735                         kvmppc_remove_runnable(vc, vcpu, mftb());
3736                         wake_up(&vcpu->arch.cpu_run);
3737                 }
3738                 goto out;
3739         }
3740
3741         /*
3742          * See if we could run any other vcores on the physical core
3743          * along with this one.
3744          */
3745         init_core_info(&core_info, vc);
3746         pcpu = smp_processor_id();
3747         target_threads = controlled_threads;
3748         if (target_smt_mode && target_smt_mode < target_threads)
3749                 target_threads = target_smt_mode;
3750         if (vc->num_threads < target_threads)
3751                 collect_piggybacks(&core_info, target_threads);
3752
3753         /*
3754          * Hard-disable interrupts, and check resched flag and signals.
3755          * If we need to reschedule or deliver a signal, clean up
3756          * and return without going into the guest(s).
3757          * If the mmu_ready flag has been cleared, don't go into the
3758          * guest because that means a HPT resize operation is in progress.
3759          */
3760         local_irq_disable();
3761         hard_irq_disable();
3762         if (lazy_irq_pending() || need_resched() ||
3763             recheck_signals_and_mmu(&core_info)) {
3764                 local_irq_enable();
3765                 vc->vcore_state = VCORE_INACTIVE;
3766                 /* Unlock all except the primary vcore */
3767                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3768                         pvc = core_info.vc[sub];
3769                         /* Put back on to the preempted vcores list */
3770                         kvmppc_vcore_preempt(pvc);
3771                         spin_unlock(&pvc->lock);
3772                 }
3773                 for (i = 0; i < controlled_threads; ++i)
3774                         kvmppc_release_hwthread(pcpu + i);
3775                 return;
3776         }
3777
3778         kvmppc_clear_host_core(pcpu);
3779
3780         /* Decide on micro-threading (split-core) mode */
3781         subcore_size = threads_per_subcore;
3782         cmd_bit = stat_bit = 0;
3783         split = core_info.n_subcores;
3784         sip = NULL;
3785         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3786
3787         if (split > 1) {
3788                 sip = &split_info;
3789                 memset(&split_info, 0, sizeof(split_info));
3790                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3791                         split_info.vc[sub] = core_info.vc[sub];
3792
3793                 if (is_power8) {
3794                         if (split == 2 && (dynamic_mt_modes & 2)) {
3795                                 cmd_bit = HID0_POWER8_1TO2LPAR;
3796                                 stat_bit = HID0_POWER8_2LPARMODE;
3797                         } else {
3798                                 split = 4;
3799                                 cmd_bit = HID0_POWER8_1TO4LPAR;
3800                                 stat_bit = HID0_POWER8_4LPARMODE;
3801                         }
3802                         subcore_size = MAX_SMT_THREADS / split;
3803                         split_info.rpr = mfspr(SPRN_RPR);
3804                         split_info.pmmar = mfspr(SPRN_PMMAR);
3805                         split_info.ldbar = mfspr(SPRN_LDBAR);
3806                         split_info.subcore_size = subcore_size;
3807                 } else {
3808                         split_info.subcore_size = 1;
3809                 }
3810
3811                 /* order writes to split_info before kvm_split_mode pointer */
3812                 smp_wmb();
3813         }
3814
3815         for (thr = 0; thr < controlled_threads; ++thr) {
3816                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3817
3818                 paca->kvm_hstate.napping = 0;
3819                 paca->kvm_hstate.kvm_split_mode = sip;
3820         }
3821
3822         /* Initiate micro-threading (split-core) on POWER8 if required */
3823         if (cmd_bit) {
3824                 unsigned long hid0 = mfspr(SPRN_HID0);
3825
3826                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3827                 mb();
3828                 mtspr(SPRN_HID0, hid0);
3829                 isync();
3830                 for (;;) {
3831                         hid0 = mfspr(SPRN_HID0);
3832                         if (hid0 & stat_bit)
3833                                 break;
3834                         cpu_relax();
3835                 }
3836         }
3837
3838         /*
3839          * On POWER8, set RWMR register.
3840          * Since it only affects PURR and SPURR, it doesn't affect
3841          * the host, so we don't save/restore the host value.
3842          */
3843         if (is_power8) {
3844                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3845                 int n_online = atomic_read(&vc->online_count);
3846
3847                 /*
3848                  * Use the 8-thread value if we're doing split-core
3849                  * or if the vcore's online count looks bogus.
3850                  */
3851                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3852                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
3853                         rwmr_val = p8_rwmr_values[n_online];
3854                 mtspr(SPRN_RWMR, rwmr_val);
3855         }
3856
3857         /* Start all the threads */
3858         active = 0;
3859         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3860                 thr = is_power8 ? subcore_thread_map[sub] : sub;
3861                 thr0_done = false;
3862                 active |= 1 << thr;
3863                 pvc = core_info.vc[sub];
3864                 pvc->pcpu = pcpu + thr;
3865                 for_each_runnable_thread(i, vcpu, pvc) {
3866                         /*
3867                          * XXX: is kvmppc_start_thread called too late here?
3868                          * It updates vcpu->cpu and vcpu->arch.thread_cpu
3869                          * which are used by kvmppc_fast_vcpu_kick_hv(), but
3870                          * kick is called after new exceptions become available
3871                          * and exceptions are checked earlier than here, by
3872                          * kvmppc_core_prepare_to_enter.
3873                          */
3874                         kvmppc_start_thread(vcpu, pvc);
3875                         kvmppc_update_vpa_dispatch(vcpu, pvc);
3876                         trace_kvm_guest_enter(vcpu);
3877                         if (!vcpu->arch.ptid)
3878                                 thr0_done = true;
3879                         active |= 1 << (thr + vcpu->arch.ptid);
3880                 }
3881                 /*
3882                  * We need to start the first thread of each subcore
3883                  * even if it doesn't have a vcpu.
3884                  */
3885                 if (!thr0_done)
3886                         kvmppc_start_thread(NULL, pvc);
3887         }
3888
3889         /*
3890          * Ensure that split_info.do_nap is set after setting
3891          * the vcore pointer in the PACA of the secondaries.
3892          */
3893         smp_mb();
3894
3895         /*
3896          * When doing micro-threading, poke the inactive threads as well.
3897          * This gets them to the nap instruction after kvm_do_nap,
3898          * which reduces the time taken to unsplit later.
3899          */
3900         if (cmd_bit) {
3901                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
3902                 for (thr = 1; thr < threads_per_subcore; ++thr)
3903                         if (!(active & (1 << thr)))
3904                                 kvmppc_ipi_thread(pcpu + thr);
3905         }
3906
3907         vc->vcore_state = VCORE_RUNNING;
3908         preempt_disable();
3909
3910         trace_kvmppc_run_core(vc, 0);
3911
3912         for (sub = 0; sub < core_info.n_subcores; ++sub)
3913                 spin_unlock(&core_info.vc[sub]->lock);
3914
3915         guest_timing_enter_irqoff();
3916
3917         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3918
3919         guest_state_enter_irqoff();
3920         this_cpu_disable_ftrace();
3921
3922         trap = __kvmppc_vcore_entry();
3923
3924         this_cpu_enable_ftrace();
3925         guest_state_exit_irqoff();
3926
3927         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3928
3929         set_irq_happened(trap);
3930
3931         spin_lock(&vc->lock);
3932         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3933         vc->vcore_state = VCORE_EXITING;
3934
3935         /* wait for secondary threads to finish writing their state to memory */
3936         kvmppc_wait_for_nap(controlled_threads);
3937
3938         /* Return to whole-core mode if we split the core earlier */
3939         if (cmd_bit) {
3940                 unsigned long hid0 = mfspr(SPRN_HID0);
3941                 unsigned long loops = 0;
3942
3943                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3944                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3945                 mb();
3946                 mtspr(SPRN_HID0, hid0);
3947                 isync();
3948                 for (;;) {
3949                         hid0 = mfspr(SPRN_HID0);
3950                         if (!(hid0 & stat_bit))
3951                                 break;
3952                         cpu_relax();
3953                         ++loops;
3954                 }
3955                 split_info.do_nap = 0;
3956         }
3957
3958         kvmppc_set_host_core(pcpu);
3959
3960         if (!vtime_accounting_enabled_this_cpu()) {
3961                 local_irq_enable();
3962                 /*
3963                  * Service IRQs here before guest_timing_exit_irqoff() so any
3964                  * ticks that occurred while running the guest are accounted to
3965                  * the guest. If vtime accounting is enabled, accounting uses
3966                  * TB rather than ticks, so it can be done without enabling
3967                  * interrupts here, which has the problem that it accounts
3968                  * interrupt processing overhead to the host.
3969                  */
3970                 local_irq_disable();
3971         }
3972         guest_timing_exit_irqoff();
3973
3974         local_irq_enable();
3975
3976         /* Let secondaries go back to the offline loop */
3977         for (i = 0; i < controlled_threads; ++i) {
3978                 kvmppc_release_hwthread(pcpu + i);
3979                 if (sip && sip->napped[i])
3980                         kvmppc_ipi_thread(pcpu + i);
3981         }
3982
3983         spin_unlock(&vc->lock);
3984
3985         /* make sure updates to secondary vcpu structs are visible now */
3986         smp_mb();
3987
3988         preempt_enable();
3989
3990         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3991                 pvc = core_info.vc[sub];
3992                 post_guest_process(pvc, pvc == vc);
3993         }
3994
3995         spin_lock(&vc->lock);
3996
3997  out:
3998         vc->vcore_state = VCORE_INACTIVE;
3999         trace_kvmppc_run_core(vc, 1);
4000 }
4001
4002 static inline bool hcall_is_xics(unsigned long req)
4003 {
4004         return req == H_EOI || req == H_CPPR || req == H_IPI ||
4005                 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
4006 }
4007
4008 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
4009 {
4010         struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
4011         if (lp) {
4012                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
4013                 lp->yield_count = cpu_to_be32(yield_count);
4014                 vcpu->arch.vpa.dirty = 1;
4015         }
4016 }
4017
4018 /* call our hypervisor to load up HV regs and go */
4019 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
4020 {
4021         struct kvmppc_vcore *vc = vcpu->arch.vcore;
4022         unsigned long host_psscr;
4023         unsigned long msr;
4024         struct hv_guest_state hvregs;
4025         struct p9_host_os_sprs host_os_sprs;
4026         s64 dec;
4027         int trap;
4028
4029         msr = mfmsr();
4030
4031         save_p9_host_os_sprs(&host_os_sprs);
4032
4033         /*
4034          * We need to save and restore the guest visible part of the
4035          * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
4036          * doesn't do this for us. Note only required if pseries since
4037          * this is done in kvmhv_vcpu_entry_p9() below otherwise.
4038          */
4039         host_psscr = mfspr(SPRN_PSSCR_PR);
4040
4041         kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4042         if (lazy_irq_pending())
4043                 return 0;
4044
4045         if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
4046                 msr = mfmsr(); /* TM restore can update msr */
4047
4048         if (vcpu->arch.psscr != host_psscr)
4049                 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
4050
4051         kvmhv_save_hv_regs(vcpu, &hvregs);
4052         hvregs.lpcr = lpcr;
4053         hvregs.amor = ~0;
4054         vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
4055         hvregs.version = HV_GUEST_STATE_VERSION;
4056         if (vcpu->arch.nested) {
4057                 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
4058                 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
4059         } else {
4060                 hvregs.lpid = vcpu->kvm->arch.lpid;
4061                 hvregs.vcpu_token = vcpu->vcpu_id;
4062         }
4063         hvregs.hdec_expiry = time_limit;
4064
4065         /*
4066          * When setting DEC, we must always deal with irq_work_raise
4067          * via NMI vs setting DEC. The problem occurs right as we
4068          * switch into guest mode if a NMI hits and sets pending work
4069          * and sets DEC, then that will apply to the guest and not
4070          * bring us back to the host.
4071          *
4072          * irq_work_raise could check a flag (or possibly LPCR[HDICE]
4073          * for example) and set HDEC to 1? That wouldn't solve the
4074          * nested hv case which needs to abort the hcall or zero the
4075          * time limit.
4076          *
4077          * XXX: Another day's problem.
4078          */
4079         mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
4080
4081         mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
4082         mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
4083         switch_pmu_to_guest(vcpu, &host_os_sprs);
4084         accumulate_time(vcpu, &vcpu->arch.in_guest);
4085         trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
4086                                   __pa(&vcpu->arch.regs));
4087         accumulate_time(vcpu, &vcpu->arch.guest_exit);
4088         kvmhv_restore_hv_return_state(vcpu, &hvregs);
4089         switch_pmu_to_host(vcpu, &host_os_sprs);
4090         vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
4091         vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
4092         vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
4093         vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
4094
4095         store_vcpu_state(vcpu);
4096
4097         dec = mfspr(SPRN_DEC);
4098         if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4099                 dec = (s32) dec;
4100         *tb = mftb();
4101         vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset);
4102
4103         timer_rearm_host_dec(*tb);
4104
4105         restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4106         if (vcpu->arch.psscr != host_psscr)
4107                 mtspr(SPRN_PSSCR_PR, host_psscr);
4108
4109         return trap;
4110 }
4111
4112 /*
4113  * Guest entry for POWER9 and later CPUs.
4114  */
4115 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4116                          unsigned long lpcr, u64 *tb)
4117 {
4118         struct kvm *kvm = vcpu->kvm;
4119         struct kvm_nested_guest *nested = vcpu->arch.nested;
4120         u64 next_timer;
4121         int trap;
4122
4123         next_timer = timer_get_next_tb();
4124         if (*tb >= next_timer)
4125                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
4126         if (next_timer < time_limit)
4127                 time_limit = next_timer;
4128         else if (*tb >= time_limit) /* nested time limit */
4129                 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4130
4131         vcpu->arch.ceded = 0;
4132
4133         vcpu_vpa_increment_dispatch(vcpu);
4134
4135         if (kvmhv_on_pseries()) {
4136                 trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4137
4138                 /* H_CEDE has to be handled now, not later */
4139                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
4140                     kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4141                         kvmppc_cede(vcpu);
4142                         kvmppc_set_gpr(vcpu, 3, 0);
4143                         trap = 0;
4144                 }
4145
4146         } else if (nested) {
4147                 __this_cpu_write(cpu_in_guest, kvm);
4148                 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4149                 __this_cpu_write(cpu_in_guest, NULL);
4150
4151         } else {
4152                 kvmppc_xive_push_vcpu(vcpu);
4153
4154                 __this_cpu_write(cpu_in_guest, kvm);
4155                 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4156                 __this_cpu_write(cpu_in_guest, NULL);
4157
4158                 if (trap == BOOK3S_INTERRUPT_SYSCALL &&
4159                     !(vcpu->arch.shregs.msr & MSR_PR)) {
4160                         unsigned long req = kvmppc_get_gpr(vcpu, 3);
4161
4162                         /*
4163                          * XIVE rearm and XICS hcalls must be handled
4164                          * before xive context is pulled (is this
4165                          * true?)
4166                          */
4167                         if (req == H_CEDE) {
4168                                 /* H_CEDE has to be handled now */
4169                                 kvmppc_cede(vcpu);
4170                                 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4171                                         /*
4172                                          * Pending escalation so abort
4173                                          * the cede.
4174                                          */
4175                                         vcpu->arch.ceded = 0;
4176                                 }
4177                                 kvmppc_set_gpr(vcpu, 3, 0);
4178                                 trap = 0;
4179
4180                         } else if (req == H_ENTER_NESTED) {
4181                                 /*
4182                                  * L2 should not run with the L1
4183                                  * context so rearm and pull it.
4184                                  */
4185                                 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4186                                         /*
4187                                          * Pending escalation so abort
4188                                          * H_ENTER_NESTED.
4189                                          */
4190                                         kvmppc_set_gpr(vcpu, 3, 0);
4191                                         trap = 0;
4192                                 }
4193
4194                         } else if (hcall_is_xics(req)) {
4195                                 int ret;
4196
4197                                 ret = kvmppc_xive_xics_hcall(vcpu, req);
4198                                 if (ret != H_TOO_HARD) {
4199                                         kvmppc_set_gpr(vcpu, 3, ret);
4200                                         trap = 0;
4201                                 }
4202                         }
4203                 }
4204                 kvmppc_xive_pull_vcpu(vcpu);
4205
4206                 if (kvm_is_radix(kvm))
4207                         vcpu->arch.slb_max = 0;
4208         }
4209
4210         vcpu_vpa_increment_dispatch(vcpu);
4211
4212         return trap;
4213 }
4214
4215 /*
4216  * Wait for some other vcpu thread to execute us, and
4217  * wake us up when we need to handle something in the host.
4218  */
4219 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4220                                  struct kvm_vcpu *vcpu, int wait_state)
4221 {
4222         DEFINE_WAIT(wait);
4223
4224         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4225         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4226                 spin_unlock(&vc->lock);
4227                 schedule();
4228                 spin_lock(&vc->lock);
4229         }
4230         finish_wait(&vcpu->arch.cpu_run, &wait);
4231 }
4232
4233 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4234 {
4235         if (!halt_poll_ns_grow)
4236                 return;
4237
4238         vc->halt_poll_ns *= halt_poll_ns_grow;
4239         if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4240                 vc->halt_poll_ns = halt_poll_ns_grow_start;
4241 }
4242
4243 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4244 {
4245         if (halt_poll_ns_shrink == 0)
4246                 vc->halt_poll_ns = 0;
4247         else
4248                 vc->halt_poll_ns /= halt_poll_ns_shrink;
4249 }
4250
4251 #ifdef CONFIG_KVM_XICS
4252 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4253 {
4254         if (!xics_on_xive())
4255                 return false;
4256         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4257                 vcpu->arch.xive_saved_state.cppr;
4258 }
4259 #else
4260 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4261 {
4262         return false;
4263 }
4264 #endif /* CONFIG_KVM_XICS */
4265
4266 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4267 {
4268         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4269             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4270                 return true;
4271
4272         return false;
4273 }
4274
4275 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4276 {
4277         if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4278                 return true;
4279         return false;
4280 }
4281
4282 /*
4283  * Check to see if any of the runnable vcpus on the vcore have pending
4284  * exceptions or are no longer ceded
4285  */
4286 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4287 {
4288         struct kvm_vcpu *vcpu;
4289         int i;
4290
4291         for_each_runnable_thread(i, vcpu, vc) {
4292                 if (kvmppc_vcpu_check_block(vcpu))
4293                         return 1;
4294         }
4295
4296         return 0;
4297 }
4298
4299 /*
4300  * All the vcpus in this vcore are idle, so wait for a decrementer
4301  * or external interrupt to one of the vcpus.  vc->lock is held.
4302  */
4303 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4304 {
4305         ktime_t cur, start_poll, start_wait;
4306         int do_sleep = 1;
4307         u64 block_ns;
4308
4309         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4310
4311         /* Poll for pending exceptions and ceded state */
4312         cur = start_poll = ktime_get();
4313         if (vc->halt_poll_ns) {
4314                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4315                 ++vc->runner->stat.generic.halt_attempted_poll;
4316
4317                 vc->vcore_state = VCORE_POLLING;
4318                 spin_unlock(&vc->lock);
4319
4320                 do {
4321                         if (kvmppc_vcore_check_block(vc)) {
4322                                 do_sleep = 0;
4323                                 break;
4324                         }
4325                         cur = ktime_get();
4326                 } while (kvm_vcpu_can_poll(cur, stop));
4327
4328                 spin_lock(&vc->lock);
4329                 vc->vcore_state = VCORE_INACTIVE;
4330
4331                 if (!do_sleep) {
4332                         ++vc->runner->stat.generic.halt_successful_poll;
4333                         goto out;
4334                 }
4335         }
4336
4337         prepare_to_rcuwait(&vc->wait);
4338         set_current_state(TASK_INTERRUPTIBLE);
4339         if (kvmppc_vcore_check_block(vc)) {
4340                 finish_rcuwait(&vc->wait);
4341                 do_sleep = 0;
4342                 /* If we polled, count this as a successful poll */
4343                 if (vc->halt_poll_ns)
4344                         ++vc->runner->stat.generic.halt_successful_poll;
4345                 goto out;
4346         }
4347
4348         start_wait = ktime_get();
4349
4350         vc->vcore_state = VCORE_SLEEPING;
4351         trace_kvmppc_vcore_blocked(vc->runner, 0);
4352         spin_unlock(&vc->lock);
4353         schedule();
4354         finish_rcuwait(&vc->wait);
4355         spin_lock(&vc->lock);
4356         vc->vcore_state = VCORE_INACTIVE;
4357         trace_kvmppc_vcore_blocked(vc->runner, 1);
4358         ++vc->runner->stat.halt_successful_wait;
4359
4360         cur = ktime_get();
4361
4362 out:
4363         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4364
4365         /* Attribute wait time */
4366         if (do_sleep) {
4367                 vc->runner->stat.generic.halt_wait_ns +=
4368                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
4369                 KVM_STATS_LOG_HIST_UPDATE(
4370                                 vc->runner->stat.generic.halt_wait_hist,
4371                                 ktime_to_ns(cur) - ktime_to_ns(start_wait));
4372                 /* Attribute failed poll time */
4373                 if (vc->halt_poll_ns) {
4374                         vc->runner->stat.generic.halt_poll_fail_ns +=
4375                                 ktime_to_ns(start_wait) -
4376                                 ktime_to_ns(start_poll);
4377                         KVM_STATS_LOG_HIST_UPDATE(
4378                                 vc->runner->stat.generic.halt_poll_fail_hist,
4379                                 ktime_to_ns(start_wait) -
4380                                 ktime_to_ns(start_poll));
4381                 }
4382         } else {
4383                 /* Attribute successful poll time */
4384                 if (vc->halt_poll_ns) {
4385                         vc->runner->stat.generic.halt_poll_success_ns +=
4386                                 ktime_to_ns(cur) -
4387                                 ktime_to_ns(start_poll);
4388                         KVM_STATS_LOG_HIST_UPDATE(
4389                                 vc->runner->stat.generic.halt_poll_success_hist,
4390                                 ktime_to_ns(cur) - ktime_to_ns(start_poll));
4391                 }
4392         }
4393
4394         /* Adjust poll time */
4395         if (halt_poll_ns) {
4396                 if (block_ns <= vc->halt_poll_ns)
4397                         ;
4398                 /* We slept and blocked for longer than the max halt time */
4399                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4400                         shrink_halt_poll_ns(vc);
4401                 /* We slept and our poll time is too small */
4402                 else if (vc->halt_poll_ns < halt_poll_ns &&
4403                                 block_ns < halt_poll_ns)
4404                         grow_halt_poll_ns(vc);
4405                 if (vc->halt_poll_ns > halt_poll_ns)
4406                         vc->halt_poll_ns = halt_poll_ns;
4407         } else
4408                 vc->halt_poll_ns = 0;
4409
4410         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4411 }
4412
4413 /*
4414  * This never fails for a radix guest, as none of the operations it does
4415  * for a radix guest can fail or have a way to report failure.
4416  */
4417 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4418 {
4419         int r = 0;
4420         struct kvm *kvm = vcpu->kvm;
4421
4422         mutex_lock(&kvm->arch.mmu_setup_lock);
4423         if (!kvm->arch.mmu_ready) {
4424                 if (!kvm_is_radix(kvm))
4425                         r = kvmppc_hv_setup_htab_rma(vcpu);
4426                 if (!r) {
4427                         if (cpu_has_feature(CPU_FTR_ARCH_300))
4428                                 kvmppc_setup_partition_table(kvm);
4429                         kvm->arch.mmu_ready = 1;
4430                 }
4431         }
4432         mutex_unlock(&kvm->arch.mmu_setup_lock);
4433         return r;
4434 }
4435
4436 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4437 {
4438         struct kvm_run *run = vcpu->run;
4439         int n_ceded, i, r;
4440         struct kvmppc_vcore *vc;
4441         struct kvm_vcpu *v;
4442
4443         trace_kvmppc_run_vcpu_enter(vcpu);
4444
4445         run->exit_reason = 0;
4446         vcpu->arch.ret = RESUME_GUEST;
4447         vcpu->arch.trap = 0;
4448         kvmppc_update_vpas(vcpu);
4449
4450         /*
4451          * Synchronize with other threads in this virtual core
4452          */
4453         vc = vcpu->arch.vcore;
4454         spin_lock(&vc->lock);
4455         vcpu->arch.ceded = 0;
4456         vcpu->arch.run_task = current;
4457         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4458         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4459         vcpu->arch.busy_preempt = TB_NIL;
4460         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4461         ++vc->n_runnable;
4462
4463         /*
4464          * This happens the first time this is called for a vcpu.
4465          * If the vcore is already running, we may be able to start
4466          * this thread straight away and have it join in.
4467          */
4468         if (!signal_pending(current)) {
4469                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4470                      vc->vcore_state == VCORE_RUNNING) &&
4471                            !VCORE_IS_EXITING(vc)) {
4472                         kvmppc_update_vpa_dispatch(vcpu, vc);
4473                         kvmppc_start_thread(vcpu, vc);
4474                         trace_kvm_guest_enter(vcpu);
4475                 } else if (vc->vcore_state == VCORE_SLEEPING) {
4476                         rcuwait_wake_up(&vc->wait);
4477                 }
4478
4479         }
4480
4481         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4482                !signal_pending(current)) {
4483                 /* See if the MMU is ready to go */
4484                 if (!vcpu->kvm->arch.mmu_ready) {
4485                         spin_unlock(&vc->lock);
4486                         r = kvmhv_setup_mmu(vcpu);
4487                         spin_lock(&vc->lock);
4488                         if (r) {
4489                                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4490                                 run->fail_entry.
4491                                         hardware_entry_failure_reason = 0;
4492                                 vcpu->arch.ret = r;
4493                                 break;
4494                         }
4495                 }
4496
4497                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4498                         kvmppc_vcore_end_preempt(vc);
4499
4500                 if (vc->vcore_state != VCORE_INACTIVE) {
4501                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4502                         continue;
4503                 }
4504                 for_each_runnable_thread(i, v, vc) {
4505                         kvmppc_core_prepare_to_enter(v);
4506                         if (signal_pending(v->arch.run_task)) {
4507                                 kvmppc_remove_runnable(vc, v, mftb());
4508                                 v->stat.signal_exits++;
4509                                 v->run->exit_reason = KVM_EXIT_INTR;
4510                                 v->arch.ret = -EINTR;
4511                                 wake_up(&v->arch.cpu_run);
4512                         }
4513                 }
4514                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4515                         break;
4516                 n_ceded = 0;
4517                 for_each_runnable_thread(i, v, vc) {
4518                         if (!kvmppc_vcpu_woken(v))
4519                                 n_ceded += v->arch.ceded;
4520                         else
4521                                 v->arch.ceded = 0;
4522                 }
4523                 vc->runner = vcpu;
4524                 if (n_ceded == vc->n_runnable) {
4525                         kvmppc_vcore_blocked(vc);
4526                 } else if (need_resched()) {
4527                         kvmppc_vcore_preempt(vc);
4528                         /* Let something else run */
4529                         cond_resched_lock(&vc->lock);
4530                         if (vc->vcore_state == VCORE_PREEMPT)
4531                                 kvmppc_vcore_end_preempt(vc);
4532                 } else {
4533                         kvmppc_run_core(vc);
4534                 }
4535                 vc->runner = NULL;
4536         }
4537
4538         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4539                (vc->vcore_state == VCORE_RUNNING ||
4540                 vc->vcore_state == VCORE_EXITING ||
4541                 vc->vcore_state == VCORE_PIGGYBACK))
4542                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4543
4544         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4545                 kvmppc_vcore_end_preempt(vc);
4546
4547         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4548                 kvmppc_remove_runnable(vc, vcpu, mftb());
4549                 vcpu->stat.signal_exits++;
4550                 run->exit_reason = KVM_EXIT_INTR;
4551                 vcpu->arch.ret = -EINTR;
4552         }
4553
4554         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4555                 /* Wake up some vcpu to run the core */
4556                 i = -1;
4557                 v = next_runnable_thread(vc, &i);
4558                 wake_up(&v->arch.cpu_run);
4559         }
4560
4561         trace_kvmppc_run_vcpu_exit(vcpu);
4562         spin_unlock(&vc->lock);
4563         return vcpu->arch.ret;
4564 }
4565
4566 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4567                           unsigned long lpcr)
4568 {
4569         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
4570         struct kvm_run *run = vcpu->run;
4571         int trap, r, pcpu;
4572         int srcu_idx;
4573         struct kvmppc_vcore *vc;
4574         struct kvm *kvm = vcpu->kvm;
4575         struct kvm_nested_guest *nested = vcpu->arch.nested;
4576         unsigned long flags;
4577         u64 tb;
4578
4579         trace_kvmppc_run_vcpu_enter(vcpu);
4580
4581         run->exit_reason = 0;
4582         vcpu->arch.ret = RESUME_GUEST;
4583         vcpu->arch.trap = 0;
4584
4585         vc = vcpu->arch.vcore;
4586         vcpu->arch.ceded = 0;
4587         vcpu->arch.run_task = current;
4588         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4589
4590         /* See if the MMU is ready to go */
4591         if (unlikely(!kvm->arch.mmu_ready)) {
4592                 r = kvmhv_setup_mmu(vcpu);
4593                 if (r) {
4594                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4595                         run->fail_entry.hardware_entry_failure_reason = 0;
4596                         vcpu->arch.ret = r;
4597                         return r;
4598                 }
4599         }
4600
4601         if (need_resched())
4602                 cond_resched();
4603
4604         kvmppc_update_vpas(vcpu);
4605
4606         preempt_disable();
4607         pcpu = smp_processor_id();
4608         if (kvm_is_radix(kvm))
4609                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4610
4611         /* flags save not required, but irq_pmu has no disable/enable API */
4612         powerpc_local_irq_pmu_save(flags);
4613
4614         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4615
4616         if (signal_pending(current))
4617                 goto sigpend;
4618         if (need_resched() || !kvm->arch.mmu_ready)
4619                 goto out;
4620
4621         vcpu->cpu = pcpu;
4622         vcpu->arch.thread_cpu = pcpu;
4623         vc->pcpu = pcpu;
4624         local_paca->kvm_hstate.kvm_vcpu = vcpu;
4625         local_paca->kvm_hstate.ptid = 0;
4626         local_paca->kvm_hstate.fake_suspend = 0;
4627
4628         /*
4629          * Orders set cpu/thread_cpu vs testing for pending interrupts and
4630          * doorbells below. The other side is when these fields are set vs
4631          * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
4632          * kick a vCPU to notice the pending interrupt.
4633          */
4634         smp_mb();
4635
4636         if (!nested) {
4637                 kvmppc_core_prepare_to_enter(vcpu);
4638                 if (vcpu->arch.shregs.msr & MSR_EE) {
4639                         if (xive_interrupt_pending(vcpu))
4640                                 kvmppc_inject_interrupt_hv(vcpu,
4641                                                 BOOK3S_INTERRUPT_EXTERNAL, 0);
4642                 } else if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4643                              &vcpu->arch.pending_exceptions)) {
4644                         lpcr |= LPCR_MER;
4645                 }
4646         } else if (vcpu->arch.pending_exceptions ||
4647                    vcpu->arch.doorbell_request ||
4648                    xive_interrupt_pending(vcpu)) {
4649                 vcpu->arch.ret = RESUME_HOST;
4650                 goto out;
4651         }
4652
4653         if (vcpu->arch.timer_running) {
4654                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
4655                 vcpu->arch.timer_running = 0;
4656         }
4657
4658         tb = mftb();
4659
4660         kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + vc->tb_offset);
4661
4662         trace_kvm_guest_enter(vcpu);
4663
4664         guest_timing_enter_irqoff();
4665
4666         srcu_idx = srcu_read_lock(&kvm->srcu);
4667
4668         guest_state_enter_irqoff();
4669         this_cpu_disable_ftrace();
4670
4671         trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
4672         vcpu->arch.trap = trap;
4673
4674         this_cpu_enable_ftrace();
4675         guest_state_exit_irqoff();
4676
4677         srcu_read_unlock(&kvm->srcu, srcu_idx);
4678
4679         set_irq_happened(trap);
4680
4681         vcpu->cpu = -1;
4682         vcpu->arch.thread_cpu = -1;
4683         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4684
4685         if (!vtime_accounting_enabled_this_cpu()) {
4686                 powerpc_local_irq_pmu_restore(flags);
4687                 /*
4688                  * Service IRQs here before guest_timing_exit_irqoff() so any
4689                  * ticks that occurred while running the guest are accounted to
4690                  * the guest. If vtime accounting is enabled, accounting uses
4691                  * TB rather than ticks, so it can be done without enabling
4692                  * interrupts here, which has the problem that it accounts
4693                  * interrupt processing overhead to the host.
4694                  */
4695                 powerpc_local_irq_pmu_save(flags);
4696         }
4697         guest_timing_exit_irqoff();
4698
4699         powerpc_local_irq_pmu_restore(flags);
4700
4701         preempt_enable();
4702
4703         /*
4704          * cancel pending decrementer exception if DEC is now positive, or if
4705          * entering a nested guest in which case the decrementer is now owned
4706          * by L2 and the L1 decrementer is provided in hdec_expires
4707          */
4708         if (kvmppc_core_pending_dec(vcpu) &&
4709                         ((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
4710                          (trap == BOOK3S_INTERRUPT_SYSCALL &&
4711                           kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4712                 kvmppc_core_dequeue_dec(vcpu);
4713
4714         trace_kvm_guest_exit(vcpu);
4715         r = RESUME_GUEST;
4716         if (trap) {
4717                 if (!nested)
4718                         r = kvmppc_handle_exit_hv(vcpu, current);
4719                 else
4720                         r = kvmppc_handle_nested_exit(vcpu);
4721         }
4722         vcpu->arch.ret = r;
4723
4724         if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
4725                 kvmppc_set_timer(vcpu);
4726
4727                 prepare_to_rcuwait(wait);
4728                 for (;;) {
4729                         set_current_state(TASK_INTERRUPTIBLE);
4730                         if (signal_pending(current)) {
4731                                 vcpu->stat.signal_exits++;
4732                                 run->exit_reason = KVM_EXIT_INTR;
4733                                 vcpu->arch.ret = -EINTR;
4734                                 break;
4735                         }
4736
4737                         if (kvmppc_vcpu_check_block(vcpu))
4738                                 break;
4739
4740                         trace_kvmppc_vcore_blocked(vcpu, 0);
4741                         schedule();
4742                         trace_kvmppc_vcore_blocked(vcpu, 1);
4743                 }
4744                 finish_rcuwait(wait);
4745         }
4746         vcpu->arch.ceded = 0;
4747
4748  done:
4749         trace_kvmppc_run_vcpu_exit(vcpu);
4750
4751         return vcpu->arch.ret;
4752
4753  sigpend:
4754         vcpu->stat.signal_exits++;
4755         run->exit_reason = KVM_EXIT_INTR;
4756         vcpu->arch.ret = -EINTR;
4757  out:
4758         vcpu->cpu = -1;
4759         vcpu->arch.thread_cpu = -1;
4760         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4761         powerpc_local_irq_pmu_restore(flags);
4762         preempt_enable();
4763         goto done;
4764 }
4765
4766 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4767 {
4768         struct kvm_run *run = vcpu->run;
4769         int r;
4770         int srcu_idx;
4771         struct kvm *kvm;
4772         unsigned long msr;
4773
4774         start_timing(vcpu, &vcpu->arch.vcpu_entry);
4775
4776         if (!vcpu->arch.sane) {
4777                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4778                 return -EINVAL;
4779         }
4780
4781         /* No need to go into the guest when all we'll do is come back out */
4782         if (signal_pending(current)) {
4783                 run->exit_reason = KVM_EXIT_INTR;
4784                 return -EINTR;
4785         }
4786
4787 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4788         /*
4789          * Don't allow entry with a suspended transaction, because
4790          * the guest entry/exit code will lose it.
4791          */
4792         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4793             (current->thread.regs->msr & MSR_TM)) {
4794                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4795                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4796                         run->fail_entry.hardware_entry_failure_reason = 0;
4797                         return -EINVAL;
4798                 }
4799         }
4800 #endif
4801
4802         /*
4803          * Force online to 1 for the sake of old userspace which doesn't
4804          * set it.
4805          */
4806         if (!vcpu->arch.online) {
4807                 atomic_inc(&vcpu->arch.vcore->online_count);
4808                 vcpu->arch.online = 1;
4809         }
4810
4811         kvmppc_core_prepare_to_enter(vcpu);
4812
4813         kvm = vcpu->kvm;
4814         atomic_inc(&kvm->arch.vcpus_running);
4815         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4816         smp_mb();
4817
4818         msr = 0;
4819         if (IS_ENABLED(CONFIG_PPC_FPU))
4820                 msr |= MSR_FP;
4821         if (cpu_has_feature(CPU_FTR_ALTIVEC))
4822                 msr |= MSR_VEC;
4823         if (cpu_has_feature(CPU_FTR_VSX))
4824                 msr |= MSR_VSX;
4825         if ((cpu_has_feature(CPU_FTR_TM) ||
4826             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
4827                         (vcpu->arch.hfscr & HFSCR_TM))
4828                 msr |= MSR_TM;
4829         msr = msr_check_and_set(msr);
4830
4831         kvmppc_save_user_regs();
4832
4833         kvmppc_save_current_sprs();
4834
4835         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4836                 vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4837         vcpu->arch.pgdir = kvm->mm->pgd;
4838         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4839
4840         do {
4841                 accumulate_time(vcpu, &vcpu->arch.guest_entry);
4842                 if (cpu_has_feature(CPU_FTR_ARCH_300))
4843                         r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4844                                                   vcpu->arch.vcore->lpcr);
4845                 else
4846                         r = kvmppc_run_vcpu(vcpu);
4847
4848                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4849                         accumulate_time(vcpu, &vcpu->arch.hcall);
4850
4851                         if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) {
4852                                 /*
4853                                  * These should have been caught reflected
4854                                  * into the guest by now. Final sanity check:
4855                                  * don't allow userspace to execute hcalls in
4856                                  * the hypervisor.
4857                                  */
4858                                 r = RESUME_GUEST;
4859                                 continue;
4860                         }
4861                         trace_kvm_hcall_enter(vcpu);
4862                         r = kvmppc_pseries_do_hcall(vcpu);
4863                         trace_kvm_hcall_exit(vcpu, r);
4864                         kvmppc_core_prepare_to_enter(vcpu);
4865                 } else if (r == RESUME_PAGE_FAULT) {
4866                         accumulate_time(vcpu, &vcpu->arch.pg_fault);
4867                         srcu_idx = srcu_read_lock(&kvm->srcu);
4868                         r = kvmppc_book3s_hv_page_fault(vcpu,
4869                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4870                         srcu_read_unlock(&kvm->srcu, srcu_idx);
4871                 } else if (r == RESUME_PASSTHROUGH) {
4872                         if (WARN_ON(xics_on_xive()))
4873                                 r = H_SUCCESS;
4874                         else
4875                                 r = kvmppc_xics_rm_complete(vcpu, 0);
4876                 }
4877         } while (is_kvmppc_resume_guest(r));
4878         accumulate_time(vcpu, &vcpu->arch.vcpu_exit);
4879
4880         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4881         atomic_dec(&kvm->arch.vcpus_running);
4882
4883         srr_regs_clobbered();
4884
4885         end_timing(vcpu);
4886
4887         return r;
4888 }
4889
4890 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4891                                      int shift, int sllp)
4892 {
4893         (*sps)->page_shift = shift;
4894         (*sps)->slb_enc = sllp;
4895         (*sps)->enc[0].page_shift = shift;
4896         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4897         /*
4898          * Add 16MB MPSS support (may get filtered out by userspace)
4899          */
4900         if (shift != 24) {
4901                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4902                 if (penc != -1) {
4903                         (*sps)->enc[1].page_shift = 24;
4904                         (*sps)->enc[1].pte_enc = penc;
4905                 }
4906         }
4907         (*sps)++;
4908 }
4909
4910 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4911                                          struct kvm_ppc_smmu_info *info)
4912 {
4913         struct kvm_ppc_one_seg_page_size *sps;
4914
4915         /*
4916          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4917          * POWER7 doesn't support keys for instruction accesses,
4918          * POWER8 and POWER9 do.
4919          */
4920         info->data_keys = 32;
4921         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4922
4923         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4924         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4925         info->slb_size = 32;
4926
4927         /* We only support these sizes for now, and no muti-size segments */
4928         sps = &info->sps[0];
4929         kvmppc_add_seg_page_size(&sps, 12, 0);
4930         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4931         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4932
4933         /* If running as a nested hypervisor, we don't support HPT guests */
4934         if (kvmhv_on_pseries())
4935                 info->flags |= KVM_PPC_NO_HASH;
4936
4937         return 0;
4938 }
4939
4940 /*
4941  * Get (and clear) the dirty memory log for a memory slot.
4942  */
4943 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4944                                          struct kvm_dirty_log *log)
4945 {
4946         struct kvm_memslots *slots;
4947         struct kvm_memory_slot *memslot;
4948         int r;
4949         unsigned long n, i;
4950         unsigned long *buf, *p;
4951         struct kvm_vcpu *vcpu;
4952
4953         mutex_lock(&kvm->slots_lock);
4954
4955         r = -EINVAL;
4956         if (log->slot >= KVM_USER_MEM_SLOTS)
4957                 goto out;
4958
4959         slots = kvm_memslots(kvm);
4960         memslot = id_to_memslot(slots, log->slot);
4961         r = -ENOENT;
4962         if (!memslot || !memslot->dirty_bitmap)
4963                 goto out;
4964
4965         /*
4966          * Use second half of bitmap area because both HPT and radix
4967          * accumulate bits in the first half.
4968          */
4969         n = kvm_dirty_bitmap_bytes(memslot);
4970         buf = memslot->dirty_bitmap + n / sizeof(long);
4971         memset(buf, 0, n);
4972
4973         if (kvm_is_radix(kvm))
4974                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4975         else
4976                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4977         if (r)
4978                 goto out;
4979
4980         /*
4981          * We accumulate dirty bits in the first half of the
4982          * memslot's dirty_bitmap area, for when pages are paged
4983          * out or modified by the host directly.  Pick up these
4984          * bits and add them to the map.
4985          */
4986         p = memslot->dirty_bitmap;
4987         for (i = 0; i < n / sizeof(long); ++i)
4988                 buf[i] |= xchg(&p[i], 0);
4989
4990         /* Harvest dirty bits from VPA and DTL updates */
4991         /* Note: we never modify the SLB shadow buffer areas */
4992         kvm_for_each_vcpu(i, vcpu, kvm) {
4993                 spin_lock(&vcpu->arch.vpa_update_lock);
4994                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4995                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4996                 spin_unlock(&vcpu->arch.vpa_update_lock);
4997         }
4998
4999         r = -EFAULT;
5000         if (copy_to_user(log->dirty_bitmap, buf, n))
5001                 goto out;
5002
5003         r = 0;
5004 out:
5005         mutex_unlock(&kvm->slots_lock);
5006         return r;
5007 }
5008
5009 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
5010 {
5011         vfree(slot->arch.rmap);
5012         slot->arch.rmap = NULL;
5013 }
5014
5015 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
5016                                 const struct kvm_memory_slot *old,
5017                                 struct kvm_memory_slot *new,
5018                                 enum kvm_mr_change change)
5019 {
5020         if (change == KVM_MR_CREATE) {
5021                 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
5022
5023                 if ((size >> PAGE_SHIFT) > totalram_pages())
5024                         return -ENOMEM;
5025
5026                 new->arch.rmap = vzalloc(size);
5027                 if (!new->arch.rmap)
5028                         return -ENOMEM;
5029         } else if (change != KVM_MR_DELETE) {
5030                 new->arch.rmap = old->arch.rmap;
5031         }
5032
5033         return 0;
5034 }
5035
5036 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
5037                                 struct kvm_memory_slot *old,
5038                                 const struct kvm_memory_slot *new,
5039                                 enum kvm_mr_change change)
5040 {
5041         /*
5042          * If we are creating or modifying a memslot, it might make
5043          * some address that was previously cached as emulated
5044          * MMIO be no longer emulated MMIO, so invalidate
5045          * all the caches of emulated MMIO translations.
5046          */
5047         if (change != KVM_MR_DELETE)
5048                 atomic64_inc(&kvm->arch.mmio_update);
5049
5050         /*
5051          * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
5052          * have already called kvm_arch_flush_shadow_memslot() to
5053          * flush shadow mappings.  For KVM_MR_CREATE we have no
5054          * previous mappings.  So the only case to handle is
5055          * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
5056          * has been changed.
5057          * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
5058          * to get rid of any THP PTEs in the partition-scoped page tables
5059          * so we can track dirtiness at the page level; we flush when
5060          * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
5061          * using THP PTEs.
5062          */
5063         if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
5064             ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
5065                 kvmppc_radix_flush_memslot(kvm, old);
5066         /*
5067          * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
5068          */
5069         if (!kvm->arch.secure_guest)
5070                 return;
5071
5072         switch (change) {
5073         case KVM_MR_CREATE:
5074                 /*
5075                  * @TODO kvmppc_uvmem_memslot_create() can fail and
5076                  * return error. Fix this.
5077                  */
5078                 kvmppc_uvmem_memslot_create(kvm, new);
5079                 break;
5080         case KVM_MR_DELETE:
5081                 kvmppc_uvmem_memslot_delete(kvm, old);
5082                 break;
5083         default:
5084                 /* TODO: Handle KVM_MR_MOVE */
5085                 break;
5086         }
5087 }
5088
5089 /*
5090  * Update LPCR values in kvm->arch and in vcores.
5091  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
5092  * of kvm->arch.lpcr update).
5093  */
5094 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
5095 {
5096         long int i;
5097         u32 cores_done = 0;
5098
5099         if ((kvm->arch.lpcr & mask) == lpcr)
5100                 return;
5101
5102         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
5103
5104         for (i = 0; i < KVM_MAX_VCORES; ++i) {
5105                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
5106                 if (!vc)
5107                         continue;
5108
5109                 spin_lock(&vc->lock);
5110                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
5111                 verify_lpcr(kvm, vc->lpcr);
5112                 spin_unlock(&vc->lock);
5113                 if (++cores_done >= kvm->arch.online_vcores)
5114                         break;
5115         }
5116 }
5117
5118 void kvmppc_setup_partition_table(struct kvm *kvm)
5119 {
5120         unsigned long dw0, dw1;
5121
5122         if (!kvm_is_radix(kvm)) {
5123                 /* PS field - page size for VRMA */
5124                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
5125                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
5126                 /* HTABSIZE and HTABORG fields */
5127                 dw0 |= kvm->arch.sdr1;
5128
5129                 /* Second dword as set by userspace */
5130                 dw1 = kvm->arch.process_table;
5131         } else {
5132                 dw0 = PATB_HR | radix__get_tree_size() |
5133                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
5134                 dw1 = PATB_GR | kvm->arch.process_table;
5135         }
5136         kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
5137 }
5138
5139 /*
5140  * Set up HPT (hashed page table) and RMA (real-mode area).
5141  * Must be called with kvm->arch.mmu_setup_lock held.
5142  */
5143 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
5144 {
5145         int err = 0;
5146         struct kvm *kvm = vcpu->kvm;
5147         unsigned long hva;
5148         struct kvm_memory_slot *memslot;
5149         struct vm_area_struct *vma;
5150         unsigned long lpcr = 0, senc;
5151         unsigned long psize, porder;
5152         int srcu_idx;
5153
5154         /* Allocate hashed page table (if not done already) and reset it */
5155         if (!kvm->arch.hpt.virt) {
5156                 int order = KVM_DEFAULT_HPT_ORDER;
5157                 struct kvm_hpt_info info;
5158
5159                 err = kvmppc_allocate_hpt(&info, order);
5160                 /* If we get here, it means userspace didn't specify a
5161                  * size explicitly.  So, try successively smaller
5162                  * sizes if the default failed. */
5163                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5164                         err  = kvmppc_allocate_hpt(&info, order);
5165
5166                 if (err < 0) {
5167                         pr_err("KVM: Couldn't alloc HPT\n");
5168                         goto out;
5169                 }
5170
5171                 kvmppc_set_hpt(kvm, &info);
5172         }
5173
5174         /* Look up the memslot for guest physical address 0 */
5175         srcu_idx = srcu_read_lock(&kvm->srcu);
5176         memslot = gfn_to_memslot(kvm, 0);
5177
5178         /* We must have some memory at 0 by now */
5179         err = -EINVAL;
5180         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5181                 goto out_srcu;
5182
5183         /* Look up the VMA for the start of this memory slot */
5184         hva = memslot->userspace_addr;
5185         mmap_read_lock(kvm->mm);
5186         vma = vma_lookup(kvm->mm, hva);
5187         if (!vma || (vma->vm_flags & VM_IO))
5188                 goto up_out;
5189
5190         psize = vma_kernel_pagesize(vma);
5191
5192         mmap_read_unlock(kvm->mm);
5193
5194         /* We can handle 4k, 64k or 16M pages in the VRMA */
5195         if (psize >= 0x1000000)
5196                 psize = 0x1000000;
5197         else if (psize >= 0x10000)
5198                 psize = 0x10000;
5199         else
5200                 psize = 0x1000;
5201         porder = __ilog2(psize);
5202
5203         senc = slb_pgsize_encoding(psize);
5204         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5205                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5206         /* Create HPTEs in the hash page table for the VRMA */
5207         kvmppc_map_vrma(vcpu, memslot, porder);
5208
5209         /* Update VRMASD field in the LPCR */
5210         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5211                 /* the -4 is to account for senc values starting at 0x10 */
5212                 lpcr = senc << (LPCR_VRMASD_SH - 4);
5213                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5214         }
5215
5216         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5217         smp_wmb();
5218         err = 0;
5219  out_srcu:
5220         srcu_read_unlock(&kvm->srcu, srcu_idx);
5221  out:
5222         return err;
5223
5224  up_out:
5225         mmap_read_unlock(kvm->mm);
5226         goto out_srcu;
5227 }
5228
5229 /*
5230  * Must be called with kvm->arch.mmu_setup_lock held and
5231  * mmu_ready = 0 and no vcpus running.
5232  */
5233 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5234 {
5235         unsigned long lpcr, lpcr_mask;
5236
5237         if (nesting_enabled(kvm))
5238                 kvmhv_release_all_nested(kvm);
5239         kvmppc_rmap_reset(kvm);
5240         kvm->arch.process_table = 0;
5241         /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5242         spin_lock(&kvm->mmu_lock);
5243         kvm->arch.radix = 0;
5244         spin_unlock(&kvm->mmu_lock);
5245         kvmppc_free_radix(kvm);
5246
5247         lpcr = LPCR_VPM1;
5248         lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5249         if (cpu_has_feature(CPU_FTR_ARCH_31))
5250                 lpcr_mask |= LPCR_HAIL;
5251         kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5252
5253         return 0;
5254 }
5255
5256 /*
5257  * Must be called with kvm->arch.mmu_setup_lock held and
5258  * mmu_ready = 0 and no vcpus running.
5259  */
5260 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5261 {
5262         unsigned long lpcr, lpcr_mask;
5263         int err;
5264
5265         err = kvmppc_init_vm_radix(kvm);
5266         if (err)
5267                 return err;
5268         kvmppc_rmap_reset(kvm);
5269         /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5270         spin_lock(&kvm->mmu_lock);
5271         kvm->arch.radix = 1;
5272         spin_unlock(&kvm->mmu_lock);
5273         kvmppc_free_hpt(&kvm->arch.hpt);
5274
5275         lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5276         lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5277         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5278                 lpcr_mask |= LPCR_HAIL;
5279                 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5280                                 (kvm->arch.host_lpcr & LPCR_HAIL))
5281                         lpcr |= LPCR_HAIL;
5282         }
5283         kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5284
5285         return 0;
5286 }
5287
5288 #ifdef CONFIG_KVM_XICS
5289 /*
5290  * Allocate a per-core structure for managing state about which cores are
5291  * running in the host versus the guest and for exchanging data between
5292  * real mode KVM and CPU running in the host.
5293  * This is only done for the first VM.
5294  * The allocated structure stays even if all VMs have stopped.
5295  * It is only freed when the kvm-hv module is unloaded.
5296  * It's OK for this routine to fail, we just don't support host
5297  * core operations like redirecting H_IPI wakeups.
5298  */
5299 void kvmppc_alloc_host_rm_ops(void)
5300 {
5301         struct kvmppc_host_rm_ops *ops;
5302         unsigned long l_ops;
5303         int cpu, core;
5304         int size;
5305
5306         if (cpu_has_feature(CPU_FTR_ARCH_300))
5307                 return;
5308
5309         /* Not the first time here ? */
5310         if (kvmppc_host_rm_ops_hv != NULL)
5311                 return;
5312
5313         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5314         if (!ops)
5315                 return;
5316
5317         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5318         ops->rm_core = kzalloc(size, GFP_KERNEL);
5319
5320         if (!ops->rm_core) {
5321                 kfree(ops);
5322                 return;
5323         }
5324
5325         cpus_read_lock();
5326
5327         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5328                 if (!cpu_online(cpu))
5329                         continue;
5330
5331                 core = cpu >> threads_shift;
5332                 ops->rm_core[core].rm_state.in_host = 1;
5333         }
5334
5335         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5336
5337         /*
5338          * Make the contents of the kvmppc_host_rm_ops structure visible
5339          * to other CPUs before we assign it to the global variable.
5340          * Do an atomic assignment (no locks used here), but if someone
5341          * beats us to it, just free our copy and return.
5342          */
5343         smp_wmb();
5344         l_ops = (unsigned long) ops;
5345
5346         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5347                 cpus_read_unlock();
5348                 kfree(ops->rm_core);
5349                 kfree(ops);
5350                 return;
5351         }
5352
5353         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5354                                              "ppc/kvm_book3s:prepare",
5355                                              kvmppc_set_host_core,
5356                                              kvmppc_clear_host_core);
5357         cpus_read_unlock();
5358 }
5359
5360 void kvmppc_free_host_rm_ops(void)
5361 {
5362         if (kvmppc_host_rm_ops_hv) {
5363                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5364                 kfree(kvmppc_host_rm_ops_hv->rm_core);
5365                 kfree(kvmppc_host_rm_ops_hv);
5366                 kvmppc_host_rm_ops_hv = NULL;
5367         }
5368 }
5369 #endif
5370
5371 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5372 {
5373         unsigned long lpcr, lpid;
5374         int ret;
5375
5376         mutex_init(&kvm->arch.uvmem_lock);
5377         INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5378         mutex_init(&kvm->arch.mmu_setup_lock);
5379
5380         /* Allocate the guest's logical partition ID */
5381
5382         lpid = kvmppc_alloc_lpid();
5383         if ((long)lpid < 0)
5384                 return -ENOMEM;
5385         kvm->arch.lpid = lpid;
5386
5387         kvmppc_alloc_host_rm_ops();
5388
5389         kvmhv_vm_nested_init(kvm);
5390
5391         /*
5392          * Since we don't flush the TLB when tearing down a VM,
5393          * and this lpid might have previously been used,
5394          * make sure we flush on each core before running the new VM.
5395          * On POWER9, the tlbie in mmu_partition_table_set_entry()
5396          * does this flush for us.
5397          */
5398         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5399                 cpumask_setall(&kvm->arch.need_tlb_flush);
5400
5401         /* Start out with the default set of hcalls enabled */
5402         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5403                sizeof(kvm->arch.enabled_hcalls));
5404
5405         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5406                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5407
5408         /* Init LPCR for virtual RMA mode */
5409         if (cpu_has_feature(CPU_FTR_HVMODE)) {
5410                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
5411                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5412                 lpcr &= LPCR_PECE | LPCR_LPES;
5413         } else {
5414                 /*
5415                  * The L2 LPES mode will be set by the L0 according to whether
5416                  * or not it needs to take external interrupts in HV mode.
5417                  */
5418                 lpcr = 0;
5419         }
5420         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5421                 LPCR_VPM0 | LPCR_VPM1;
5422         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5423                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5424         /* On POWER8 turn on online bit to enable PURR/SPURR */
5425         if (cpu_has_feature(CPU_FTR_ARCH_207S))
5426                 lpcr |= LPCR_ONL;
5427         /*
5428          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5429          * Set HVICE bit to enable hypervisor virtualization interrupts.
5430          * Set HEIC to prevent OS interrupts to go to hypervisor (should
5431          * be unnecessary but better safe than sorry in case we re-enable
5432          * EE in HV mode with this LPCR still set)
5433          */
5434         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5435                 lpcr &= ~LPCR_VPM0;
5436                 lpcr |= LPCR_HVICE | LPCR_HEIC;
5437
5438                 /*
5439                  * If xive is enabled, we route 0x500 interrupts directly
5440                  * to the guest.
5441                  */
5442                 if (xics_on_xive())
5443                         lpcr |= LPCR_LPES;
5444         }
5445
5446         /*
5447          * If the host uses radix, the guest starts out as radix.
5448          */
5449         if (radix_enabled()) {
5450                 kvm->arch.radix = 1;
5451                 kvm->arch.mmu_ready = 1;
5452                 lpcr &= ~LPCR_VPM1;
5453                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5454                 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5455                     cpu_has_feature(CPU_FTR_ARCH_31) &&
5456                     (kvm->arch.host_lpcr & LPCR_HAIL))
5457                         lpcr |= LPCR_HAIL;
5458                 ret = kvmppc_init_vm_radix(kvm);
5459                 if (ret) {
5460                         kvmppc_free_lpid(kvm->arch.lpid);
5461                         return ret;
5462                 }
5463                 kvmppc_setup_partition_table(kvm);
5464         }
5465
5466         verify_lpcr(kvm, lpcr);
5467         kvm->arch.lpcr = lpcr;
5468
5469         /* Initialization for future HPT resizes */
5470         kvm->arch.resize_hpt = NULL;
5471
5472         /*
5473          * Work out how many sets the TLB has, for the use of
5474          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5475          */
5476         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5477                 /*
5478                  * P10 will flush all the congruence class with a single tlbiel
5479                  */
5480                 kvm->arch.tlb_sets = 1;
5481         } else if (radix_enabled())
5482                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
5483         else if (cpu_has_feature(CPU_FTR_ARCH_300))
5484                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
5485         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5486                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
5487         else
5488                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
5489
5490         /*
5491          * Track that we now have a HV mode VM active. This blocks secondary
5492          * CPU threads from coming online.
5493          */
5494         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5495                 kvm_hv_vm_activated();
5496
5497         /*
5498          * Initialize smt_mode depending on processor.
5499          * POWER8 and earlier have to use "strict" threading, where
5500          * all vCPUs in a vcore have to run on the same (sub)core,
5501          * whereas on POWER9 the threads can each run a different
5502          * guest.
5503          */
5504         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5505                 kvm->arch.smt_mode = threads_per_subcore;
5506         else
5507                 kvm->arch.smt_mode = 1;
5508         kvm->arch.emul_smt_mode = 1;
5509
5510         return 0;
5511 }
5512
5513 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
5514 {
5515         kvmppc_mmu_debugfs_init(kvm);
5516         if (radix_enabled())
5517                 kvmhv_radix_debugfs_init(kvm);
5518         return 0;
5519 }
5520
5521 static void kvmppc_free_vcores(struct kvm *kvm)
5522 {
5523         long int i;
5524
5525         for (i = 0; i < KVM_MAX_VCORES; ++i)
5526                 kfree(kvm->arch.vcores[i]);
5527         kvm->arch.online_vcores = 0;
5528 }
5529
5530 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5531 {
5532         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5533                 kvm_hv_vm_deactivated();
5534
5535         kvmppc_free_vcores(kvm);
5536
5537
5538         if (kvm_is_radix(kvm))
5539                 kvmppc_free_radix(kvm);
5540         else
5541                 kvmppc_free_hpt(&kvm->arch.hpt);
5542
5543         /* Perform global invalidation and return lpid to the pool */
5544         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5545                 if (nesting_enabled(kvm))
5546                         kvmhv_release_all_nested(kvm);
5547                 kvm->arch.process_table = 0;
5548                 if (kvm->arch.secure_guest)
5549                         uv_svm_terminate(kvm->arch.lpid);
5550                 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5551         }
5552
5553         kvmppc_free_lpid(kvm->arch.lpid);
5554
5555         kvmppc_free_pimap(kvm);
5556 }
5557
5558 /* We don't need to emulate any privileged instructions or dcbz */
5559 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5560                                      unsigned int inst, int *advance)
5561 {
5562         return EMULATE_FAIL;
5563 }
5564
5565 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5566                                         ulong spr_val)
5567 {
5568         return EMULATE_FAIL;
5569 }
5570
5571 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5572                                         ulong *spr_val)
5573 {
5574         return EMULATE_FAIL;
5575 }
5576
5577 static int kvmppc_core_check_processor_compat_hv(void)
5578 {
5579         if (cpu_has_feature(CPU_FTR_HVMODE) &&
5580             cpu_has_feature(CPU_FTR_ARCH_206))
5581                 return 0;
5582
5583         /* POWER9 in radix mode is capable of being a nested hypervisor. */
5584         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5585                 return 0;
5586
5587         return -EIO;
5588 }
5589
5590 #ifdef CONFIG_KVM_XICS
5591
5592 void kvmppc_free_pimap(struct kvm *kvm)
5593 {
5594         kfree(kvm->arch.pimap);
5595 }
5596
5597 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5598 {
5599         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5600 }
5601
5602 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5603 {
5604         struct irq_desc *desc;
5605         struct kvmppc_irq_map *irq_map;
5606         struct kvmppc_passthru_irqmap *pimap;
5607         struct irq_chip *chip;
5608         int i, rc = 0;
5609         struct irq_data *host_data;
5610
5611         if (!kvm_irq_bypass)
5612                 return 1;
5613
5614         desc = irq_to_desc(host_irq);
5615         if (!desc)
5616                 return -EIO;
5617
5618         mutex_lock(&kvm->lock);
5619
5620         pimap = kvm->arch.pimap;
5621         if (pimap == NULL) {
5622                 /* First call, allocate structure to hold IRQ map */
5623                 pimap = kvmppc_alloc_pimap();
5624                 if (pimap == NULL) {
5625                         mutex_unlock(&kvm->lock);
5626                         return -ENOMEM;
5627                 }
5628                 kvm->arch.pimap = pimap;
5629         }
5630
5631         /*
5632          * For now, we only support interrupts for which the EOI operation
5633          * is an OPAL call followed by a write to XIRR, since that's
5634          * what our real-mode EOI code does, or a XIVE interrupt
5635          */
5636         chip = irq_data_get_irq_chip(&desc->irq_data);
5637         if (!chip || !is_pnv_opal_msi(chip)) {
5638                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5639                         host_irq, guest_gsi);
5640                 mutex_unlock(&kvm->lock);
5641                 return -ENOENT;
5642         }
5643
5644         /*
5645          * See if we already have an entry for this guest IRQ number.
5646          * If it's mapped to a hardware IRQ number, that's an error,
5647          * otherwise re-use this entry.
5648          */
5649         for (i = 0; i < pimap->n_mapped; i++) {
5650                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5651                         if (pimap->mapped[i].r_hwirq) {
5652                                 mutex_unlock(&kvm->lock);
5653                                 return -EINVAL;
5654                         }
5655                         break;
5656                 }
5657         }
5658
5659         if (i == KVMPPC_PIRQ_MAPPED) {
5660                 mutex_unlock(&kvm->lock);
5661                 return -EAGAIN;         /* table is full */
5662         }
5663
5664         irq_map = &pimap->mapped[i];
5665
5666         irq_map->v_hwirq = guest_gsi;
5667         irq_map->desc = desc;
5668
5669         /*
5670          * Order the above two stores before the next to serialize with
5671          * the KVM real mode handler.
5672          */
5673         smp_wmb();
5674
5675         /*
5676          * The 'host_irq' number is mapped in the PCI-MSI domain but
5677          * the underlying calls, which will EOI the interrupt in real
5678          * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5679          */
5680         host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5681         irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5682
5683         if (i == pimap->n_mapped)
5684                 pimap->n_mapped++;
5685
5686         if (xics_on_xive())
5687                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5688         else
5689                 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5690         if (rc)
5691                 irq_map->r_hwirq = 0;
5692
5693         mutex_unlock(&kvm->lock);
5694
5695         return 0;
5696 }
5697
5698 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5699 {
5700         struct irq_desc *desc;
5701         struct kvmppc_passthru_irqmap *pimap;
5702         int i, rc = 0;
5703
5704         if (!kvm_irq_bypass)
5705                 return 0;
5706
5707         desc = irq_to_desc(host_irq);
5708         if (!desc)
5709                 return -EIO;
5710
5711         mutex_lock(&kvm->lock);
5712         if (!kvm->arch.pimap)
5713                 goto unlock;
5714
5715         pimap = kvm->arch.pimap;
5716
5717         for (i = 0; i < pimap->n_mapped; i++) {
5718                 if (guest_gsi == pimap->mapped[i].v_hwirq)
5719                         break;
5720         }
5721
5722         if (i == pimap->n_mapped) {
5723                 mutex_unlock(&kvm->lock);
5724                 return -ENODEV;
5725         }
5726
5727         if (xics_on_xive())
5728                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5729         else
5730                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5731
5732         /* invalidate the entry (what to do on error from the above ?) */
5733         pimap->mapped[i].r_hwirq = 0;
5734
5735         /*
5736          * We don't free this structure even when the count goes to
5737          * zero. The structure is freed when we destroy the VM.
5738          */
5739  unlock:
5740         mutex_unlock(&kvm->lock);
5741         return rc;
5742 }
5743
5744 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5745                                              struct irq_bypass_producer *prod)
5746 {
5747         int ret = 0;
5748         struct kvm_kernel_irqfd *irqfd =
5749                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5750
5751         irqfd->producer = prod;
5752
5753         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5754         if (ret)
5755                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5756                         prod->irq, irqfd->gsi, ret);
5757
5758         return ret;
5759 }
5760
5761 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5762                                               struct irq_bypass_producer *prod)
5763 {
5764         int ret;
5765         struct kvm_kernel_irqfd *irqfd =
5766                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5767
5768         irqfd->producer = NULL;
5769
5770         /*
5771          * When producer of consumer is unregistered, we change back to
5772          * default external interrupt handling mode - KVM real mode
5773          * will switch back to host.
5774          */
5775         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5776         if (ret)
5777                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5778                         prod->irq, irqfd->gsi, ret);
5779 }
5780 #endif
5781
5782 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5783                                  unsigned int ioctl, unsigned long arg)
5784 {
5785         struct kvm *kvm __maybe_unused = filp->private_data;
5786         void __user *argp = (void __user *)arg;
5787         long r;
5788
5789         switch (ioctl) {
5790
5791         case KVM_PPC_ALLOCATE_HTAB: {
5792                 u32 htab_order;
5793
5794                 /* If we're a nested hypervisor, we currently only support radix */
5795                 if (kvmhv_on_pseries()) {
5796                         r = -EOPNOTSUPP;
5797                         break;
5798                 }
5799
5800                 r = -EFAULT;
5801                 if (get_user(htab_order, (u32 __user *)argp))
5802                         break;
5803                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5804                 if (r)
5805                         break;
5806                 r = 0;
5807                 break;
5808         }
5809
5810         case KVM_PPC_GET_HTAB_FD: {
5811                 struct kvm_get_htab_fd ghf;
5812
5813                 r = -EFAULT;
5814                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5815                         break;
5816                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5817                 break;
5818         }
5819
5820         case KVM_PPC_RESIZE_HPT_PREPARE: {
5821                 struct kvm_ppc_resize_hpt rhpt;
5822
5823                 r = -EFAULT;
5824                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5825                         break;
5826
5827                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5828                 break;
5829         }
5830
5831         case KVM_PPC_RESIZE_HPT_COMMIT: {
5832                 struct kvm_ppc_resize_hpt rhpt;
5833
5834                 r = -EFAULT;
5835                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5836                         break;
5837
5838                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5839                 break;
5840         }
5841
5842         default:
5843                 r = -ENOTTY;
5844         }
5845
5846         return r;
5847 }
5848
5849 /*
5850  * List of hcall numbers to enable by default.
5851  * For compatibility with old userspace, we enable by default
5852  * all hcalls that were implemented before the hcall-enabling
5853  * facility was added.  Note this list should not include H_RTAS.
5854  */
5855 static unsigned int default_hcall_list[] = {
5856         H_REMOVE,
5857         H_ENTER,
5858         H_READ,
5859         H_PROTECT,
5860         H_BULK_REMOVE,
5861 #ifdef CONFIG_SPAPR_TCE_IOMMU
5862         H_GET_TCE,
5863         H_PUT_TCE,
5864 #endif
5865         H_SET_DABR,
5866         H_SET_XDABR,
5867         H_CEDE,
5868         H_PROD,
5869         H_CONFER,
5870         H_REGISTER_VPA,
5871 #ifdef CONFIG_KVM_XICS
5872         H_EOI,
5873         H_CPPR,
5874         H_IPI,
5875         H_IPOLL,
5876         H_XIRR,
5877         H_XIRR_X,
5878 #endif
5879         0
5880 };
5881
5882 static void init_default_hcalls(void)
5883 {
5884         int i;
5885         unsigned int hcall;
5886
5887         for (i = 0; default_hcall_list[i]; ++i) {
5888                 hcall = default_hcall_list[i];
5889                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5890                 __set_bit(hcall / 4, default_enabled_hcalls);
5891         }
5892 }
5893
5894 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5895 {
5896         unsigned long lpcr;
5897         int radix;
5898         int err;
5899
5900         /* If not on a POWER9, reject it */
5901         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5902                 return -ENODEV;
5903
5904         /* If any unknown flags set, reject it */
5905         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5906                 return -EINVAL;
5907
5908         /* GR (guest radix) bit in process_table field must match */
5909         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5910         if (!!(cfg->process_table & PATB_GR) != radix)
5911                 return -EINVAL;
5912
5913         /* Process table size field must be reasonable, i.e. <= 24 */
5914         if ((cfg->process_table & PRTS_MASK) > 24)
5915                 return -EINVAL;
5916
5917         /* We can change a guest to/from radix now, if the host is radix */
5918         if (radix && !radix_enabled())
5919                 return -EINVAL;
5920
5921         /* If we're a nested hypervisor, we currently only support radix */
5922         if (kvmhv_on_pseries() && !radix)
5923                 return -EINVAL;
5924
5925         mutex_lock(&kvm->arch.mmu_setup_lock);
5926         if (radix != kvm_is_radix(kvm)) {
5927                 if (kvm->arch.mmu_ready) {
5928                         kvm->arch.mmu_ready = 0;
5929                         /* order mmu_ready vs. vcpus_running */
5930                         smp_mb();
5931                         if (atomic_read(&kvm->arch.vcpus_running)) {
5932                                 kvm->arch.mmu_ready = 1;
5933                                 err = -EBUSY;
5934                                 goto out_unlock;
5935                         }
5936                 }
5937                 if (radix)
5938                         err = kvmppc_switch_mmu_to_radix(kvm);
5939                 else
5940                         err = kvmppc_switch_mmu_to_hpt(kvm);
5941                 if (err)
5942                         goto out_unlock;
5943         }
5944
5945         kvm->arch.process_table = cfg->process_table;
5946         kvmppc_setup_partition_table(kvm);
5947
5948         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5949         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5950         err = 0;
5951
5952  out_unlock:
5953         mutex_unlock(&kvm->arch.mmu_setup_lock);
5954         return err;
5955 }
5956
5957 static int kvmhv_enable_nested(struct kvm *kvm)
5958 {
5959         if (!nested)
5960                 return -EPERM;
5961         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5962                 return -ENODEV;
5963         if (!radix_enabled())
5964                 return -ENODEV;
5965
5966         /* kvm == NULL means the caller is testing if the capability exists */
5967         if (kvm)
5968                 kvm->arch.nested_enable = true;
5969         return 0;
5970 }
5971
5972 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5973                                  int size)
5974 {
5975         int rc = -EINVAL;
5976
5977         if (kvmhv_vcpu_is_radix(vcpu)) {
5978                 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5979
5980                 if (rc > 0)
5981                         rc = -EINVAL;
5982         }
5983
5984         /* For now quadrants are the only way to access nested guest memory */
5985         if (rc && vcpu->arch.nested)
5986                 rc = -EAGAIN;
5987
5988         return rc;
5989 }
5990
5991 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5992                                 int size)
5993 {
5994         int rc = -EINVAL;
5995
5996         if (kvmhv_vcpu_is_radix(vcpu)) {
5997                 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5998
5999                 if (rc > 0)
6000                         rc = -EINVAL;
6001         }
6002
6003         /* For now quadrants are the only way to access nested guest memory */
6004         if (rc && vcpu->arch.nested)
6005                 rc = -EAGAIN;
6006
6007         return rc;
6008 }
6009
6010 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
6011 {
6012         unpin_vpa(kvm, vpa);
6013         vpa->gpa = 0;
6014         vpa->pinned_addr = NULL;
6015         vpa->dirty = false;
6016         vpa->update_pending = 0;
6017 }
6018
6019 /*
6020  * Enable a guest to become a secure VM, or test whether
6021  * that could be enabled.
6022  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
6023  * tested (kvm == NULL) or enabled (kvm != NULL).
6024  */
6025 static int kvmhv_enable_svm(struct kvm *kvm)
6026 {
6027         if (!kvmppc_uvmem_available())
6028                 return -EINVAL;
6029         if (kvm)
6030                 kvm->arch.svm_enabled = 1;
6031         return 0;
6032 }
6033
6034 /*
6035  *  IOCTL handler to turn off secure mode of guest
6036  *
6037  * - Release all device pages
6038  * - Issue ucall to terminate the guest on the UV side
6039  * - Unpin the VPA pages.
6040  * - Reinit the partition scoped page tables
6041  */
6042 static int kvmhv_svm_off(struct kvm *kvm)
6043 {
6044         struct kvm_vcpu *vcpu;
6045         int mmu_was_ready;
6046         int srcu_idx;
6047         int ret = 0;
6048         unsigned long i;
6049
6050         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
6051                 return ret;
6052
6053         mutex_lock(&kvm->arch.mmu_setup_lock);
6054         mmu_was_ready = kvm->arch.mmu_ready;
6055         if (kvm->arch.mmu_ready) {
6056                 kvm->arch.mmu_ready = 0;
6057                 /* order mmu_ready vs. vcpus_running */
6058                 smp_mb();
6059                 if (atomic_read(&kvm->arch.vcpus_running)) {
6060                         kvm->arch.mmu_ready = 1;
6061                         ret = -EBUSY;
6062                         goto out;
6063                 }
6064         }
6065
6066         srcu_idx = srcu_read_lock(&kvm->srcu);
6067         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6068                 struct kvm_memory_slot *memslot;
6069                 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
6070                 int bkt;
6071
6072                 if (!slots)
6073                         continue;
6074
6075                 kvm_for_each_memslot(memslot, bkt, slots) {
6076                         kvmppc_uvmem_drop_pages(memslot, kvm, true);
6077                         uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
6078                 }
6079         }
6080         srcu_read_unlock(&kvm->srcu, srcu_idx);
6081
6082         ret = uv_svm_terminate(kvm->arch.lpid);
6083         if (ret != U_SUCCESS) {
6084                 ret = -EINVAL;
6085                 goto out;
6086         }
6087
6088         /*
6089          * When secure guest is reset, all the guest pages are sent
6090          * to UV via UV_PAGE_IN before the non-boot vcpus get a
6091          * chance to run and unpin their VPA pages. Unpinning of all
6092          * VPA pages is done here explicitly so that VPA pages
6093          * can be migrated to the secure side.
6094          *
6095          * This is required to for the secure SMP guest to reboot
6096          * correctly.
6097          */
6098         kvm_for_each_vcpu(i, vcpu, kvm) {
6099                 spin_lock(&vcpu->arch.vpa_update_lock);
6100                 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
6101                 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
6102                 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
6103                 spin_unlock(&vcpu->arch.vpa_update_lock);
6104         }
6105
6106         kvmppc_setup_partition_table(kvm);
6107         kvm->arch.secure_guest = 0;
6108         kvm->arch.mmu_ready = mmu_was_ready;
6109 out:
6110         mutex_unlock(&kvm->arch.mmu_setup_lock);
6111         return ret;
6112 }
6113
6114 static int kvmhv_enable_dawr1(struct kvm *kvm)
6115 {
6116         if (!cpu_has_feature(CPU_FTR_DAWR1))
6117                 return -ENODEV;
6118
6119         /* kvm == NULL means the caller is testing if the capability exists */
6120         if (kvm)
6121                 kvm->arch.dawr1_enabled = true;
6122         return 0;
6123 }
6124
6125 static bool kvmppc_hash_v3_possible(void)
6126 {
6127         if (!cpu_has_feature(CPU_FTR_ARCH_300))
6128                 return false;
6129
6130         if (!cpu_has_feature(CPU_FTR_HVMODE))
6131                 return false;
6132
6133         /*
6134          * POWER9 chips before version 2.02 can't have some threads in
6135          * HPT mode and some in radix mode on the same core.
6136          */
6137         if (radix_enabled()) {
6138                 unsigned int pvr = mfspr(SPRN_PVR);
6139                 if ((pvr >> 16) == PVR_POWER9 &&
6140                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
6141                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
6142                         return false;
6143         }
6144
6145         return true;
6146 }
6147
6148 static struct kvmppc_ops kvm_ops_hv = {
6149         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6150         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6151         .get_one_reg = kvmppc_get_one_reg_hv,
6152         .set_one_reg = kvmppc_set_one_reg_hv,
6153         .vcpu_load   = kvmppc_core_vcpu_load_hv,
6154         .vcpu_put    = kvmppc_core_vcpu_put_hv,
6155         .inject_interrupt = kvmppc_inject_interrupt_hv,
6156         .set_msr     = kvmppc_set_msr_hv,
6157         .vcpu_run    = kvmppc_vcpu_run_hv,
6158         .vcpu_create = kvmppc_core_vcpu_create_hv,
6159         .vcpu_free   = kvmppc_core_vcpu_free_hv,
6160         .check_requests = kvmppc_core_check_requests_hv,
6161         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
6162         .flush_memslot  = kvmppc_core_flush_memslot_hv,
6163         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6164         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
6165         .unmap_gfn_range = kvm_unmap_gfn_range_hv,
6166         .age_gfn = kvm_age_gfn_hv,
6167         .test_age_gfn = kvm_test_age_gfn_hv,
6168         .set_spte_gfn = kvm_set_spte_gfn_hv,
6169         .free_memslot = kvmppc_core_free_memslot_hv,
6170         .init_vm =  kvmppc_core_init_vm_hv,
6171         .destroy_vm = kvmppc_core_destroy_vm_hv,
6172         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6173         .emulate_op = kvmppc_core_emulate_op_hv,
6174         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6175         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6176         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6177         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
6178         .hcall_implemented = kvmppc_hcall_impl_hv,
6179 #ifdef CONFIG_KVM_XICS
6180         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6181         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6182 #endif
6183         .configure_mmu = kvmhv_configure_mmu,
6184         .get_rmmu_info = kvmhv_get_rmmu_info,
6185         .set_smt_mode = kvmhv_set_smt_mode,
6186         .enable_nested = kvmhv_enable_nested,
6187         .load_from_eaddr = kvmhv_load_from_eaddr,
6188         .store_to_eaddr = kvmhv_store_to_eaddr,
6189         .enable_svm = kvmhv_enable_svm,
6190         .svm_off = kvmhv_svm_off,
6191         .enable_dawr1 = kvmhv_enable_dawr1,
6192         .hash_v3_possible = kvmppc_hash_v3_possible,
6193         .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
6194         .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
6195 };
6196
6197 static int kvm_init_subcore_bitmap(void)
6198 {
6199         int i, j;
6200         int nr_cores = cpu_nr_cores();
6201         struct sibling_subcore_state *sibling_subcore_state;
6202
6203         for (i = 0; i < nr_cores; i++) {
6204                 int first_cpu = i * threads_per_core;
6205                 int node = cpu_to_node(first_cpu);
6206
6207                 /* Ignore if it is already allocated. */
6208                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
6209                         continue;
6210
6211                 sibling_subcore_state =
6212                         kzalloc_node(sizeof(struct sibling_subcore_state),
6213                                                         GFP_KERNEL, node);
6214                 if (!sibling_subcore_state)
6215                         return -ENOMEM;
6216
6217
6218                 for (j = 0; j < threads_per_core; j++) {
6219                         int cpu = first_cpu + j;
6220
6221                         paca_ptrs[cpu]->sibling_subcore_state =
6222                                                 sibling_subcore_state;
6223                 }
6224         }
6225         return 0;
6226 }
6227
6228 static int kvmppc_radix_possible(void)
6229 {
6230         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6231 }
6232
6233 static int kvmppc_book3s_init_hv(void)
6234 {
6235         int r;
6236
6237         if (!tlbie_capable) {
6238                 pr_err("KVM-HV: Host does not support TLBIE\n");
6239                 return -ENODEV;
6240         }
6241
6242         /*
6243          * FIXME!! Do we need to check on all cpus ?
6244          */
6245         r = kvmppc_core_check_processor_compat_hv();
6246         if (r < 0)
6247                 return -ENODEV;
6248
6249         r = kvmhv_nested_init();
6250         if (r)
6251                 return r;
6252
6253         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
6254                 r = kvm_init_subcore_bitmap();
6255                 if (r)
6256                         goto err;
6257         }
6258
6259         /*
6260          * We need a way of accessing the XICS interrupt controller,
6261          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6262          * indirectly, via OPAL.
6263          */
6264 #ifdef CONFIG_SMP
6265         if (!xics_on_xive() && !kvmhv_on_pseries() &&
6266             !local_paca->kvm_hstate.xics_phys) {
6267                 struct device_node *np;
6268
6269                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6270                 if (!np) {
6271                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6272                         r = -ENODEV;
6273                         goto err;
6274                 }
6275                 /* presence of intc confirmed - node can be dropped again */
6276                 of_node_put(np);
6277         }
6278 #endif
6279
6280         init_default_hcalls();
6281
6282         init_vcore_lists();
6283
6284         r = kvmppc_mmu_hv_init();
6285         if (r)
6286                 goto err;
6287
6288         if (kvmppc_radix_possible()) {
6289                 r = kvmppc_radix_init();
6290                 if (r)
6291                         goto err;
6292         }
6293
6294         r = kvmppc_uvmem_init();
6295         if (r < 0) {
6296                 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6297                 return r;
6298         }
6299
6300         kvm_ops_hv.owner = THIS_MODULE;
6301         kvmppc_hv_ops = &kvm_ops_hv;
6302
6303         return 0;
6304
6305 err:
6306         kvmhv_nested_exit();
6307         kvmppc_radix_exit();
6308
6309         return r;
6310 }
6311
6312 static void kvmppc_book3s_exit_hv(void)
6313 {
6314         kvmppc_uvmem_free();
6315         kvmppc_free_host_rm_ops();
6316         if (kvmppc_radix_possible())
6317                 kvmppc_radix_exit();
6318         kvmppc_hv_ops = NULL;
6319         kvmhv_nested_exit();
6320 }
6321
6322 module_init(kvmppc_book3s_init_hv);
6323 module_exit(kvmppc_book3s_exit_hv);
6324 MODULE_LICENSE("GPL");
6325 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6326 MODULE_ALIAS("devname:kvm");