GNU Linux-libre 5.15.72-gnu
[releases.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5  */
6
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/highmem.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/srcu.h>
17 #include <linux/anon_inodes.h>
18 #include <linux/file.h>
19 #include <linux/debugfs.h>
20
21 #include <asm/kvm_ppc.h>
22 #include <asm/kvm_book3s.h>
23 #include <asm/book3s/64/mmu-hash.h>
24 #include <asm/hvcall.h>
25 #include <asm/synch.h>
26 #include <asm/ppc-opcode.h>
27 #include <asm/cputable.h>
28 #include <asm/pte-walk.h>
29
30 #include "book3s.h"
31 #include "trace_hv.h"
32
33 //#define DEBUG_RESIZE_HPT      1
34
35 #ifdef DEBUG_RESIZE_HPT
36 #define resize_hpt_debug(resize, ...)                           \
37         do {                                                    \
38                 printk(KERN_DEBUG "RESIZE HPT %p: ", resize);   \
39                 printk(__VA_ARGS__);                            \
40         } while (0)
41 #else
42 #define resize_hpt_debug(resize, ...)                           \
43         do { } while (0)
44 #endif
45
46 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
47                                 long pte_index, unsigned long pteh,
48                                 unsigned long ptel, unsigned long *pte_idx_ret);
49
50 struct kvm_resize_hpt {
51         /* These fields read-only after init */
52         struct kvm *kvm;
53         struct work_struct work;
54         u32 order;
55
56         /* These fields protected by kvm->arch.mmu_setup_lock */
57
58         /* Possible values and their usage:
59          *  <0     an error occurred during allocation,
60          *  -EBUSY allocation is in the progress,
61          *  0      allocation made successfuly.
62          */
63         int error;
64
65         /* Private to the work thread, until error != -EBUSY,
66          * then protected by kvm->arch.mmu_setup_lock.
67          */
68         struct kvm_hpt_info hpt;
69 };
70
71 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
72 {
73         unsigned long hpt = 0;
74         int cma = 0;
75         struct page *page = NULL;
76         struct revmap_entry *rev;
77         unsigned long npte;
78
79         if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
80                 return -EINVAL;
81
82         page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
83         if (page) {
84                 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
85                 memset((void *)hpt, 0, (1ul << order));
86                 cma = 1;
87         }
88
89         if (!hpt)
90                 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
91                                        |__GFP_NOWARN, order - PAGE_SHIFT);
92
93         if (!hpt)
94                 return -ENOMEM;
95
96         /* HPTEs are 2**4 bytes long */
97         npte = 1ul << (order - 4);
98
99         /* Allocate reverse map array */
100         rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
101         if (!rev) {
102                 if (cma)
103                         kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
104                 else
105                         free_pages(hpt, order - PAGE_SHIFT);
106                 return -ENOMEM;
107         }
108
109         info->order = order;
110         info->virt = hpt;
111         info->cma = cma;
112         info->rev = rev;
113
114         return 0;
115 }
116
117 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
118 {
119         atomic64_set(&kvm->arch.mmio_update, 0);
120         kvm->arch.hpt = *info;
121         kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
122
123         pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
124                  info->virt, (long)info->order, kvm->arch.lpid);
125 }
126
127 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
128 {
129         long err = -EBUSY;
130         struct kvm_hpt_info info;
131
132         mutex_lock(&kvm->arch.mmu_setup_lock);
133         if (kvm->arch.mmu_ready) {
134                 kvm->arch.mmu_ready = 0;
135                 /* order mmu_ready vs. vcpus_running */
136                 smp_mb();
137                 if (atomic_read(&kvm->arch.vcpus_running)) {
138                         kvm->arch.mmu_ready = 1;
139                         goto out;
140                 }
141         }
142         if (kvm_is_radix(kvm)) {
143                 err = kvmppc_switch_mmu_to_hpt(kvm);
144                 if (err)
145                         goto out;
146         }
147
148         if (kvm->arch.hpt.order == order) {
149                 /* We already have a suitable HPT */
150
151                 /* Set the entire HPT to 0, i.e. invalid HPTEs */
152                 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
153                 /*
154                  * Reset all the reverse-mapping chains for all memslots
155                  */
156                 kvmppc_rmap_reset(kvm);
157                 err = 0;
158                 goto out;
159         }
160
161         if (kvm->arch.hpt.virt) {
162                 kvmppc_free_hpt(&kvm->arch.hpt);
163                 kvmppc_rmap_reset(kvm);
164         }
165
166         err = kvmppc_allocate_hpt(&info, order);
167         if (err < 0)
168                 goto out;
169         kvmppc_set_hpt(kvm, &info);
170
171 out:
172         if (err == 0)
173                 /* Ensure that each vcpu will flush its TLB on next entry. */
174                 cpumask_setall(&kvm->arch.need_tlb_flush);
175
176         mutex_unlock(&kvm->arch.mmu_setup_lock);
177         return err;
178 }
179
180 void kvmppc_free_hpt(struct kvm_hpt_info *info)
181 {
182         vfree(info->rev);
183         info->rev = NULL;
184         if (info->cma)
185                 kvm_free_hpt_cma(virt_to_page(info->virt),
186                                  1 << (info->order - PAGE_SHIFT));
187         else if (info->virt)
188                 free_pages(info->virt, info->order - PAGE_SHIFT);
189         info->virt = 0;
190         info->order = 0;
191 }
192
193 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
194 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
195 {
196         return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
197 }
198
199 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
200 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
201 {
202         return (pgsize == 0x10000) ? 0x1000 : 0;
203 }
204
205 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
206                      unsigned long porder)
207 {
208         unsigned long i;
209         unsigned long npages;
210         unsigned long hp_v, hp_r;
211         unsigned long addr, hash;
212         unsigned long psize;
213         unsigned long hp0, hp1;
214         unsigned long idx_ret;
215         long ret;
216         struct kvm *kvm = vcpu->kvm;
217
218         psize = 1ul << porder;
219         npages = memslot->npages >> (porder - PAGE_SHIFT);
220
221         /* VRMA can't be > 1TB */
222         if (npages > 1ul << (40 - porder))
223                 npages = 1ul << (40 - porder);
224         /* Can't use more than 1 HPTE per HPTEG */
225         if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
226                 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
227
228         hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
229                 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
230         hp1 = hpte1_pgsize_encoding(psize) |
231                 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
232
233         for (i = 0; i < npages; ++i) {
234                 addr = i << porder;
235                 /* can't use hpt_hash since va > 64 bits */
236                 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
237                         & kvmppc_hpt_mask(&kvm->arch.hpt);
238                 /*
239                  * We assume that the hash table is empty and no
240                  * vcpus are using it at this stage.  Since we create
241                  * at most one HPTE per HPTEG, we just assume entry 7
242                  * is available and use it.
243                  */
244                 hash = (hash << 3) + 7;
245                 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
246                 hp_r = hp1 | addr;
247                 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
248                                                  &idx_ret);
249                 if (ret != H_SUCCESS) {
250                         pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
251                                addr, ret);
252                         break;
253                 }
254         }
255 }
256
257 int kvmppc_mmu_hv_init(void)
258 {
259         unsigned long host_lpid, rsvd_lpid;
260
261         if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
262                 return -EINVAL;
263
264         host_lpid = 0;
265         if (cpu_has_feature(CPU_FTR_HVMODE))
266                 host_lpid = mfspr(SPRN_LPID);
267
268         /* POWER8 and above have 12-bit LPIDs (10-bit in POWER7) */
269         if (cpu_has_feature(CPU_FTR_ARCH_207S))
270                 rsvd_lpid = LPID_RSVD;
271         else
272                 rsvd_lpid = LPID_RSVD_POWER7;
273
274         kvmppc_init_lpid(rsvd_lpid + 1);
275
276         kvmppc_claim_lpid(host_lpid);
277         /* rsvd_lpid is reserved for use in partition switching */
278         kvmppc_claim_lpid(rsvd_lpid);
279
280         return 0;
281 }
282
283 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
284                                 long pte_index, unsigned long pteh,
285                                 unsigned long ptel, unsigned long *pte_idx_ret)
286 {
287         long ret;
288
289         preempt_disable();
290         ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
291                                 kvm->mm->pgd, false, pte_idx_ret);
292         preempt_enable();
293         if (ret == H_TOO_HARD) {
294                 /* this can't happen */
295                 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
296                 ret = H_RESOURCE;       /* or something */
297         }
298         return ret;
299
300 }
301
302 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
303                                                          gva_t eaddr)
304 {
305         u64 mask;
306         int i;
307
308         for (i = 0; i < vcpu->arch.slb_nr; i++) {
309                 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
310                         continue;
311
312                 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
313                         mask = ESID_MASK_1T;
314                 else
315                         mask = ESID_MASK;
316
317                 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
318                         return &vcpu->arch.slb[i];
319         }
320         return NULL;
321 }
322
323 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
324                         unsigned long ea)
325 {
326         unsigned long ra_mask;
327
328         ra_mask = kvmppc_actual_pgsz(v, r) - 1;
329         return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
330 }
331
332 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
333                         struct kvmppc_pte *gpte, bool data, bool iswrite)
334 {
335         struct kvm *kvm = vcpu->kvm;
336         struct kvmppc_slb *slbe;
337         unsigned long slb_v;
338         unsigned long pp, key;
339         unsigned long v, orig_v, gr;
340         __be64 *hptep;
341         long int index;
342         int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
343
344         if (kvm_is_radix(vcpu->kvm))
345                 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
346
347         /* Get SLB entry */
348         if (virtmode) {
349                 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
350                 if (!slbe)
351                         return -EINVAL;
352                 slb_v = slbe->origv;
353         } else {
354                 /* real mode access */
355                 slb_v = vcpu->kvm->arch.vrma_slb_v;
356         }
357
358         preempt_disable();
359         /* Find the HPTE in the hash table */
360         index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
361                                          HPTE_V_VALID | HPTE_V_ABSENT);
362         if (index < 0) {
363                 preempt_enable();
364                 return -ENOENT;
365         }
366         hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
367         v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
368         if (cpu_has_feature(CPU_FTR_ARCH_300))
369                 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
370         gr = kvm->arch.hpt.rev[index].guest_rpte;
371
372         unlock_hpte(hptep, orig_v);
373         preempt_enable();
374
375         gpte->eaddr = eaddr;
376         gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
377
378         /* Get PP bits and key for permission check */
379         pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
380         key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
381         key &= slb_v;
382
383         /* Calculate permissions */
384         gpte->may_read = hpte_read_permission(pp, key);
385         gpte->may_write = hpte_write_permission(pp, key);
386         gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
387
388         /* Storage key permission check for POWER7 */
389         if (data && virtmode) {
390                 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
391                 if (amrfield & 1)
392                         gpte->may_read = 0;
393                 if (amrfield & 2)
394                         gpte->may_write = 0;
395         }
396
397         /* Get the guest physical address */
398         gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
399         return 0;
400 }
401
402 /*
403  * Quick test for whether an instruction is a load or a store.
404  * If the instruction is a load or a store, then this will indicate
405  * which it is, at least on server processors.  (Embedded processors
406  * have some external PID instructions that don't follow the rule
407  * embodied here.)  If the instruction isn't a load or store, then
408  * this doesn't return anything useful.
409  */
410 static int instruction_is_store(unsigned int instr)
411 {
412         unsigned int mask;
413
414         mask = 0x10000000;
415         if ((instr & 0xfc000000) == 0x7c000000)
416                 mask = 0x100;           /* major opcode 31 */
417         return (instr & mask) != 0;
418 }
419
420 int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu,
421                            unsigned long gpa, gva_t ea, int is_store)
422 {
423         u32 last_inst;
424
425         /*
426          * Fast path - check if the guest physical address corresponds to a
427          * device on the FAST_MMIO_BUS, if so we can avoid loading the
428          * instruction all together, then we can just handle it and return.
429          */
430         if (is_store) {
431                 int idx, ret;
432
433                 idx = srcu_read_lock(&vcpu->kvm->srcu);
434                 ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
435                                        NULL);
436                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
437                 if (!ret) {
438                         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
439                         return RESUME_GUEST;
440                 }
441         }
442
443         /*
444          * If we fail, we just return to the guest and try executing it again.
445          */
446         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
447                 EMULATE_DONE)
448                 return RESUME_GUEST;
449
450         /*
451          * WARNING: We do not know for sure whether the instruction we just
452          * read from memory is the same that caused the fault in the first
453          * place.  If the instruction we read is neither an load or a store,
454          * then it can't access memory, so we don't need to worry about
455          * enforcing access permissions.  So, assuming it is a load or
456          * store, we just check that its direction (load or store) is
457          * consistent with the original fault, since that's what we
458          * checked the access permissions against.  If there is a mismatch
459          * we just return and retry the instruction.
460          */
461
462         if (instruction_is_store(last_inst) != !!is_store)
463                 return RESUME_GUEST;
464
465         /*
466          * Emulated accesses are emulated by looking at the hash for
467          * translation once, then performing the access later. The
468          * translation could be invalidated in the meantime in which
469          * point performing the subsequent memory access on the old
470          * physical address could possibly be a security hole for the
471          * guest (but not the host).
472          *
473          * This is less of an issue for MMIO stores since they aren't
474          * globally visible. It could be an issue for MMIO loads to
475          * a certain extent but we'll ignore it for now.
476          */
477
478         vcpu->arch.paddr_accessed = gpa;
479         vcpu->arch.vaddr_accessed = ea;
480         return kvmppc_emulate_mmio(vcpu);
481 }
482
483 int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu,
484                                 unsigned long ea, unsigned long dsisr)
485 {
486         struct kvm *kvm = vcpu->kvm;
487         unsigned long hpte[3], r;
488         unsigned long hnow_v, hnow_r;
489         __be64 *hptep;
490         unsigned long mmu_seq, psize, pte_size;
491         unsigned long gpa_base, gfn_base;
492         unsigned long gpa, gfn, hva, pfn, hpa;
493         struct kvm_memory_slot *memslot;
494         unsigned long *rmap;
495         struct revmap_entry *rev;
496         struct page *page;
497         long index, ret;
498         bool is_ci;
499         bool writing, write_ok;
500         unsigned int shift;
501         unsigned long rcbits;
502         long mmio_update;
503         pte_t pte, *ptep;
504
505         if (kvm_is_radix(kvm))
506                 return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr);
507
508         /*
509          * Real-mode code has already searched the HPT and found the
510          * entry we're interested in.  Lock the entry and check that
511          * it hasn't changed.  If it has, just return and re-execute the
512          * instruction.
513          */
514         if (ea != vcpu->arch.pgfault_addr)
515                 return RESUME_GUEST;
516
517         if (vcpu->arch.pgfault_cache) {
518                 mmio_update = atomic64_read(&kvm->arch.mmio_update);
519                 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
520                         r = vcpu->arch.pgfault_cache->rpte;
521                         psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
522                                                    r);
523                         gpa_base = r & HPTE_R_RPN & ~(psize - 1);
524                         gfn_base = gpa_base >> PAGE_SHIFT;
525                         gpa = gpa_base | (ea & (psize - 1));
526                         return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
527                                                 dsisr & DSISR_ISSTORE);
528                 }
529         }
530         index = vcpu->arch.pgfault_index;
531         hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
532         rev = &kvm->arch.hpt.rev[index];
533         preempt_disable();
534         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
535                 cpu_relax();
536         hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
537         hpte[1] = be64_to_cpu(hptep[1]);
538         hpte[2] = r = rev->guest_rpte;
539         unlock_hpte(hptep, hpte[0]);
540         preempt_enable();
541
542         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
543                 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
544                 hpte[1] = hpte_new_to_old_r(hpte[1]);
545         }
546         if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
547             hpte[1] != vcpu->arch.pgfault_hpte[1])
548                 return RESUME_GUEST;
549
550         /* Translate the logical address and get the page */
551         psize = kvmppc_actual_pgsz(hpte[0], r);
552         gpa_base = r & HPTE_R_RPN & ~(psize - 1);
553         gfn_base = gpa_base >> PAGE_SHIFT;
554         gpa = gpa_base | (ea & (psize - 1));
555         gfn = gpa >> PAGE_SHIFT;
556         memslot = gfn_to_memslot(kvm, gfn);
557
558         trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
559
560         /* No memslot means it's an emulated MMIO region */
561         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
562                 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
563                                               dsisr & DSISR_ISSTORE);
564
565         /*
566          * This should never happen, because of the slot_is_aligned()
567          * check in kvmppc_do_h_enter().
568          */
569         if (gfn_base < memslot->base_gfn)
570                 return -EFAULT;
571
572         /* used to check for invalidations in progress */
573         mmu_seq = kvm->mmu_notifier_seq;
574         smp_rmb();
575
576         ret = -EFAULT;
577         page = NULL;
578         writing = (dsisr & DSISR_ISSTORE) != 0;
579         /* If writing != 0, then the HPTE must allow writing, if we get here */
580         write_ok = writing;
581         hva = gfn_to_hva_memslot(memslot, gfn);
582
583         /*
584          * Do a fast check first, since __gfn_to_pfn_memslot doesn't
585          * do it with !atomic && !async, which is how we call it.
586          * We always ask for write permission since the common case
587          * is that the page is writable.
588          */
589         if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
590                 write_ok = true;
591         } else {
592                 /* Call KVM generic code to do the slow-path check */
593                 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
594                                            writing, &write_ok, NULL);
595                 if (is_error_noslot_pfn(pfn))
596                         return -EFAULT;
597                 page = NULL;
598                 if (pfn_valid(pfn)) {
599                         page = pfn_to_page(pfn);
600                         if (PageReserved(page))
601                                 page = NULL;
602                 }
603         }
604
605         /*
606          * Read the PTE from the process' radix tree and use that
607          * so we get the shift and attribute bits.
608          */
609         spin_lock(&kvm->mmu_lock);
610         ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
611         pte = __pte(0);
612         if (ptep)
613                 pte = READ_ONCE(*ptep);
614         spin_unlock(&kvm->mmu_lock);
615         /*
616          * If the PTE disappeared temporarily due to a THP
617          * collapse, just return and let the guest try again.
618          */
619         if (!pte_present(pte)) {
620                 if (page)
621                         put_page(page);
622                 return RESUME_GUEST;
623         }
624         hpa = pte_pfn(pte) << PAGE_SHIFT;
625         pte_size = PAGE_SIZE;
626         if (shift)
627                 pte_size = 1ul << shift;
628         is_ci = pte_ci(pte);
629
630         if (psize > pte_size)
631                 goto out_put;
632         if (pte_size > psize)
633                 hpa |= hva & (pte_size - psize);
634
635         /* Check WIMG vs. the actual page we're accessing */
636         if (!hpte_cache_flags_ok(r, is_ci)) {
637                 if (is_ci)
638                         goto out_put;
639                 /*
640                  * Allow guest to map emulated device memory as
641                  * uncacheable, but actually make it cacheable.
642                  */
643                 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
644         }
645
646         /*
647          * Set the HPTE to point to hpa.
648          * Since the hpa is at PAGE_SIZE granularity, make sure we
649          * don't mask out lower-order bits if psize < PAGE_SIZE.
650          */
651         if (psize < PAGE_SIZE)
652                 psize = PAGE_SIZE;
653         r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
654         if (hpte_is_writable(r) && !write_ok)
655                 r = hpte_make_readonly(r);
656         ret = RESUME_GUEST;
657         preempt_disable();
658         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
659                 cpu_relax();
660         hnow_v = be64_to_cpu(hptep[0]);
661         hnow_r = be64_to_cpu(hptep[1]);
662         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
663                 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
664                 hnow_r = hpte_new_to_old_r(hnow_r);
665         }
666
667         /*
668          * If the HPT is being resized, don't update the HPTE,
669          * instead let the guest retry after the resize operation is complete.
670          * The synchronization for mmu_ready test vs. set is provided
671          * by the HPTE lock.
672          */
673         if (!kvm->arch.mmu_ready)
674                 goto out_unlock;
675
676         if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
677             rev->guest_rpte != hpte[2])
678                 /* HPTE has been changed under us; let the guest retry */
679                 goto out_unlock;
680         hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
681
682         /* Always put the HPTE in the rmap chain for the page base address */
683         rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
684         lock_rmap(rmap);
685
686         /* Check if we might have been invalidated; let the guest retry if so */
687         ret = RESUME_GUEST;
688         if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
689                 unlock_rmap(rmap);
690                 goto out_unlock;
691         }
692
693         /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
694         rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
695         r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
696
697         if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
698                 /* HPTE was previously valid, so we need to invalidate it */
699                 unlock_rmap(rmap);
700                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
701                 kvmppc_invalidate_hpte(kvm, hptep, index);
702                 /* don't lose previous R and C bits */
703                 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
704         } else {
705                 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
706         }
707
708         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
709                 r = hpte_old_to_new_r(hpte[0], r);
710                 hpte[0] = hpte_old_to_new_v(hpte[0]);
711         }
712         hptep[1] = cpu_to_be64(r);
713         eieio();
714         __unlock_hpte(hptep, hpte[0]);
715         asm volatile("ptesync" : : : "memory");
716         preempt_enable();
717         if (page && hpte_is_writable(r))
718                 set_page_dirty_lock(page);
719
720  out_put:
721         trace_kvm_page_fault_exit(vcpu, hpte, ret);
722
723         if (page)
724                 put_page(page);
725         return ret;
726
727  out_unlock:
728         __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
729         preempt_enable();
730         goto out_put;
731 }
732
733 void kvmppc_rmap_reset(struct kvm *kvm)
734 {
735         struct kvm_memslots *slots;
736         struct kvm_memory_slot *memslot;
737         int srcu_idx;
738
739         srcu_idx = srcu_read_lock(&kvm->srcu);
740         slots = kvm_memslots(kvm);
741         kvm_for_each_memslot(memslot, slots) {
742                 /* Mutual exclusion with kvm_unmap_hva_range etc. */
743                 spin_lock(&kvm->mmu_lock);
744                 /*
745                  * This assumes it is acceptable to lose reference and
746                  * change bits across a reset.
747                  */
748                 memset(memslot->arch.rmap, 0,
749                        memslot->npages * sizeof(*memslot->arch.rmap));
750                 spin_unlock(&kvm->mmu_lock);
751         }
752         srcu_read_unlock(&kvm->srcu, srcu_idx);
753 }
754
755 /* Must be called with both HPTE and rmap locked */
756 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
757                               struct kvm_memory_slot *memslot,
758                               unsigned long *rmapp, unsigned long gfn)
759 {
760         __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
761         struct revmap_entry *rev = kvm->arch.hpt.rev;
762         unsigned long j, h;
763         unsigned long ptel, psize, rcbits;
764
765         j = rev[i].forw;
766         if (j == i) {
767                 /* chain is now empty */
768                 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
769         } else {
770                 /* remove i from chain */
771                 h = rev[i].back;
772                 rev[h].forw = j;
773                 rev[j].back = h;
774                 rev[i].forw = rev[i].back = i;
775                 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
776         }
777
778         /* Now check and modify the HPTE */
779         ptel = rev[i].guest_rpte;
780         psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
781         if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
782             hpte_rpn(ptel, psize) == gfn) {
783                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
784                 kvmppc_invalidate_hpte(kvm, hptep, i);
785                 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
786                 /* Harvest R and C */
787                 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
788                 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
789                 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
790                         kvmppc_update_dirty_map(memslot, gfn, psize);
791                 if (rcbits & ~rev[i].guest_rpte) {
792                         rev[i].guest_rpte = ptel | rcbits;
793                         note_hpte_modification(kvm, &rev[i]);
794                 }
795         }
796 }
797
798 static void kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
799                             unsigned long gfn)
800 {
801         unsigned long i;
802         __be64 *hptep;
803         unsigned long *rmapp;
804
805         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
806         for (;;) {
807                 lock_rmap(rmapp);
808                 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
809                         unlock_rmap(rmapp);
810                         break;
811                 }
812
813                 /*
814                  * To avoid an ABBA deadlock with the HPTE lock bit,
815                  * we can't spin on the HPTE lock while holding the
816                  * rmap chain lock.
817                  */
818                 i = *rmapp & KVMPPC_RMAP_INDEX;
819                 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
820                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
821                         /* unlock rmap before spinning on the HPTE lock */
822                         unlock_rmap(rmapp);
823                         while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
824                                 cpu_relax();
825                         continue;
826                 }
827
828                 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
829                 unlock_rmap(rmapp);
830                 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
831         }
832 }
833
834 bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range)
835 {
836         gfn_t gfn;
837
838         if (kvm_is_radix(kvm)) {
839                 for (gfn = range->start; gfn < range->end; gfn++)
840                         kvm_unmap_radix(kvm, range->slot, gfn);
841         } else {
842                 for (gfn = range->start; gfn < range->end; gfn++)
843                         kvm_unmap_rmapp(kvm, range->slot, gfn);
844         }
845
846         return false;
847 }
848
849 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
850                                   struct kvm_memory_slot *memslot)
851 {
852         unsigned long gfn;
853         unsigned long n;
854         unsigned long *rmapp;
855
856         gfn = memslot->base_gfn;
857         rmapp = memslot->arch.rmap;
858         if (kvm_is_radix(kvm)) {
859                 kvmppc_radix_flush_memslot(kvm, memslot);
860                 return;
861         }
862
863         for (n = memslot->npages; n; --n, ++gfn) {
864                 /*
865                  * Testing the present bit without locking is OK because
866                  * the memslot has been marked invalid already, and hence
867                  * no new HPTEs referencing this page can be created,
868                  * thus the present bit can't go from 0 to 1.
869                  */
870                 if (*rmapp & KVMPPC_RMAP_PRESENT)
871                         kvm_unmap_rmapp(kvm, memslot, gfn);
872                 ++rmapp;
873         }
874 }
875
876 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
877                           unsigned long gfn)
878 {
879         struct revmap_entry *rev = kvm->arch.hpt.rev;
880         unsigned long head, i, j;
881         __be64 *hptep;
882         int ret = 0;
883         unsigned long *rmapp;
884
885         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
886  retry:
887         lock_rmap(rmapp);
888         if (*rmapp & KVMPPC_RMAP_REFERENCED) {
889                 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
890                 ret = 1;
891         }
892         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
893                 unlock_rmap(rmapp);
894                 return ret;
895         }
896
897         i = head = *rmapp & KVMPPC_RMAP_INDEX;
898         do {
899                 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
900                 j = rev[i].forw;
901
902                 /* If this HPTE isn't referenced, ignore it */
903                 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
904                         continue;
905
906                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
907                         /* unlock rmap before spinning on the HPTE lock */
908                         unlock_rmap(rmapp);
909                         while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
910                                 cpu_relax();
911                         goto retry;
912                 }
913
914                 /* Now check and modify the HPTE */
915                 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
916                     (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
917                         kvmppc_clear_ref_hpte(kvm, hptep, i);
918                         if (!(rev[i].guest_rpte & HPTE_R_R)) {
919                                 rev[i].guest_rpte |= HPTE_R_R;
920                                 note_hpte_modification(kvm, &rev[i]);
921                         }
922                         ret = 1;
923                 }
924                 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
925         } while ((i = j) != head);
926
927         unlock_rmap(rmapp);
928         return ret;
929 }
930
931 bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
932 {
933         gfn_t gfn;
934         bool ret = false;
935
936         if (kvm_is_radix(kvm)) {
937                 for (gfn = range->start; gfn < range->end; gfn++)
938                         ret |= kvm_age_radix(kvm, range->slot, gfn);
939         } else {
940                 for (gfn = range->start; gfn < range->end; gfn++)
941                         ret |= kvm_age_rmapp(kvm, range->slot, gfn);
942         }
943
944         return ret;
945 }
946
947 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
948                                unsigned long gfn)
949 {
950         struct revmap_entry *rev = kvm->arch.hpt.rev;
951         unsigned long head, i, j;
952         unsigned long *hp;
953         bool ret = true;
954         unsigned long *rmapp;
955
956         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
957         if (*rmapp & KVMPPC_RMAP_REFERENCED)
958                 return true;
959
960         lock_rmap(rmapp);
961         if (*rmapp & KVMPPC_RMAP_REFERENCED)
962                 goto out;
963
964         if (*rmapp & KVMPPC_RMAP_PRESENT) {
965                 i = head = *rmapp & KVMPPC_RMAP_INDEX;
966                 do {
967                         hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
968                         j = rev[i].forw;
969                         if (be64_to_cpu(hp[1]) & HPTE_R_R)
970                                 goto out;
971                 } while ((i = j) != head);
972         }
973         ret = false;
974
975  out:
976         unlock_rmap(rmapp);
977         return ret;
978 }
979
980 bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
981 {
982         WARN_ON(range->start + 1 != range->end);
983
984         if (kvm_is_radix(kvm))
985                 return kvm_test_age_radix(kvm, range->slot, range->start);
986         else
987                 return kvm_test_age_rmapp(kvm, range->slot, range->start);
988 }
989
990 bool kvm_set_spte_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
991 {
992         WARN_ON(range->start + 1 != range->end);
993
994         if (kvm_is_radix(kvm))
995                 kvm_unmap_radix(kvm, range->slot, range->start);
996         else
997                 kvm_unmap_rmapp(kvm, range->slot, range->start);
998
999         return false;
1000 }
1001
1002 static int vcpus_running(struct kvm *kvm)
1003 {
1004         return atomic_read(&kvm->arch.vcpus_running) != 0;
1005 }
1006
1007 /*
1008  * Returns the number of system pages that are dirty.
1009  * This can be more than 1 if we find a huge-page HPTE.
1010  */
1011 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1012 {
1013         struct revmap_entry *rev = kvm->arch.hpt.rev;
1014         unsigned long head, i, j;
1015         unsigned long n;
1016         unsigned long v, r;
1017         __be64 *hptep;
1018         int npages_dirty = 0;
1019
1020  retry:
1021         lock_rmap(rmapp);
1022         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1023                 unlock_rmap(rmapp);
1024                 return npages_dirty;
1025         }
1026
1027         i = head = *rmapp & KVMPPC_RMAP_INDEX;
1028         do {
1029                 unsigned long hptep1;
1030                 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1031                 j = rev[i].forw;
1032
1033                 /*
1034                  * Checking the C (changed) bit here is racy since there
1035                  * is no guarantee about when the hardware writes it back.
1036                  * If the HPTE is not writable then it is stable since the
1037                  * page can't be written to, and we would have done a tlbie
1038                  * (which forces the hardware to complete any writeback)
1039                  * when making the HPTE read-only.
1040                  * If vcpus are running then this call is racy anyway
1041                  * since the page could get dirtied subsequently, so we
1042                  * expect there to be a further call which would pick up
1043                  * any delayed C bit writeback.
1044                  * Otherwise we need to do the tlbie even if C==0 in
1045                  * order to pick up any delayed writeback of C.
1046                  */
1047                 hptep1 = be64_to_cpu(hptep[1]);
1048                 if (!(hptep1 & HPTE_R_C) &&
1049                     (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1050                         continue;
1051
1052                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1053                         /* unlock rmap before spinning on the HPTE lock */
1054                         unlock_rmap(rmapp);
1055                         while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1056                                 cpu_relax();
1057                         goto retry;
1058                 }
1059
1060                 /* Now check and modify the HPTE */
1061                 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1062                         __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1063                         continue;
1064                 }
1065
1066                 /* need to make it temporarily absent so C is stable */
1067                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1068                 kvmppc_invalidate_hpte(kvm, hptep, i);
1069                 v = be64_to_cpu(hptep[0]);
1070                 r = be64_to_cpu(hptep[1]);
1071                 if (r & HPTE_R_C) {
1072                         hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1073                         if (!(rev[i].guest_rpte & HPTE_R_C)) {
1074                                 rev[i].guest_rpte |= HPTE_R_C;
1075                                 note_hpte_modification(kvm, &rev[i]);
1076                         }
1077                         n = kvmppc_actual_pgsz(v, r);
1078                         n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1079                         if (n > npages_dirty)
1080                                 npages_dirty = n;
1081                         eieio();
1082                 }
1083                 v &= ~HPTE_V_ABSENT;
1084                 v |= HPTE_V_VALID;
1085                 __unlock_hpte(hptep, v);
1086         } while ((i = j) != head);
1087
1088         unlock_rmap(rmapp);
1089         return npages_dirty;
1090 }
1091
1092 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1093                               struct kvm_memory_slot *memslot,
1094                               unsigned long *map)
1095 {
1096         unsigned long gfn;
1097
1098         if (!vpa->dirty || !vpa->pinned_addr)
1099                 return;
1100         gfn = vpa->gpa >> PAGE_SHIFT;
1101         if (gfn < memslot->base_gfn ||
1102             gfn >= memslot->base_gfn + memslot->npages)
1103                 return;
1104
1105         vpa->dirty = false;
1106         if (map)
1107                 __set_bit_le(gfn - memslot->base_gfn, map);
1108 }
1109
1110 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1111                         struct kvm_memory_slot *memslot, unsigned long *map)
1112 {
1113         unsigned long i;
1114         unsigned long *rmapp;
1115
1116         preempt_disable();
1117         rmapp = memslot->arch.rmap;
1118         for (i = 0; i < memslot->npages; ++i) {
1119                 int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1120                 /*
1121                  * Note that if npages > 0 then i must be a multiple of npages,
1122                  * since we always put huge-page HPTEs in the rmap chain
1123                  * corresponding to their page base address.
1124                  */
1125                 if (npages)
1126                         set_dirty_bits(map, i, npages);
1127                 ++rmapp;
1128         }
1129         preempt_enable();
1130         return 0;
1131 }
1132
1133 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1134                             unsigned long *nb_ret)
1135 {
1136         struct kvm_memory_slot *memslot;
1137         unsigned long gfn = gpa >> PAGE_SHIFT;
1138         struct page *page, *pages[1];
1139         int npages;
1140         unsigned long hva, offset;
1141         int srcu_idx;
1142
1143         srcu_idx = srcu_read_lock(&kvm->srcu);
1144         memslot = gfn_to_memslot(kvm, gfn);
1145         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1146                 goto err;
1147         hva = gfn_to_hva_memslot(memslot, gfn);
1148         npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1149         if (npages < 1)
1150                 goto err;
1151         page = pages[0];
1152         srcu_read_unlock(&kvm->srcu, srcu_idx);
1153
1154         offset = gpa & (PAGE_SIZE - 1);
1155         if (nb_ret)
1156                 *nb_ret = PAGE_SIZE - offset;
1157         return page_address(page) + offset;
1158
1159  err:
1160         srcu_read_unlock(&kvm->srcu, srcu_idx);
1161         return NULL;
1162 }
1163
1164 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1165                              bool dirty)
1166 {
1167         struct page *page = virt_to_page(va);
1168         struct kvm_memory_slot *memslot;
1169         unsigned long gfn;
1170         int srcu_idx;
1171
1172         put_page(page);
1173
1174         if (!dirty)
1175                 return;
1176
1177         /* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1178         gfn = gpa >> PAGE_SHIFT;
1179         srcu_idx = srcu_read_lock(&kvm->srcu);
1180         memslot = gfn_to_memslot(kvm, gfn);
1181         if (memslot && memslot->dirty_bitmap)
1182                 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1183         srcu_read_unlock(&kvm->srcu, srcu_idx);
1184 }
1185
1186 /*
1187  * HPT resizing
1188  */
1189 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1190 {
1191         int rc;
1192
1193         rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1194         if (rc < 0)
1195                 return rc;
1196
1197         resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1198                          resize->hpt.virt);
1199
1200         return 0;
1201 }
1202
1203 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1204                                             unsigned long idx)
1205 {
1206         struct kvm *kvm = resize->kvm;
1207         struct kvm_hpt_info *old = &kvm->arch.hpt;
1208         struct kvm_hpt_info *new = &resize->hpt;
1209         unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1210         unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1211         __be64 *hptep, *new_hptep;
1212         unsigned long vpte, rpte, guest_rpte;
1213         int ret;
1214         struct revmap_entry *rev;
1215         unsigned long apsize, avpn, pteg, hash;
1216         unsigned long new_idx, new_pteg, replace_vpte;
1217         int pshift;
1218
1219         hptep = (__be64 *)(old->virt + (idx << 4));
1220
1221         /* Guest is stopped, so new HPTEs can't be added or faulted
1222          * in, only unmapped or altered by host actions.  So, it's
1223          * safe to check this before we take the HPTE lock */
1224         vpte = be64_to_cpu(hptep[0]);
1225         if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1226                 return 0; /* nothing to do */
1227
1228         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1229                 cpu_relax();
1230
1231         vpte = be64_to_cpu(hptep[0]);
1232
1233         ret = 0;
1234         if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1235                 /* Nothing to do */
1236                 goto out;
1237
1238         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1239                 rpte = be64_to_cpu(hptep[1]);
1240                 vpte = hpte_new_to_old_v(vpte, rpte);
1241         }
1242
1243         /* Unmap */
1244         rev = &old->rev[idx];
1245         guest_rpte = rev->guest_rpte;
1246
1247         ret = -EIO;
1248         apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1249         if (!apsize)
1250                 goto out;
1251
1252         if (vpte & HPTE_V_VALID) {
1253                 unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1254                 int srcu_idx = srcu_read_lock(&kvm->srcu);
1255                 struct kvm_memory_slot *memslot =
1256                         __gfn_to_memslot(kvm_memslots(kvm), gfn);
1257
1258                 if (memslot) {
1259                         unsigned long *rmapp;
1260                         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1261
1262                         lock_rmap(rmapp);
1263                         kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1264                         unlock_rmap(rmapp);
1265                 }
1266
1267                 srcu_read_unlock(&kvm->srcu, srcu_idx);
1268         }
1269
1270         /* Reload PTE after unmap */
1271         vpte = be64_to_cpu(hptep[0]);
1272         BUG_ON(vpte & HPTE_V_VALID);
1273         BUG_ON(!(vpte & HPTE_V_ABSENT));
1274
1275         ret = 0;
1276         if (!(vpte & HPTE_V_BOLTED))
1277                 goto out;
1278
1279         rpte = be64_to_cpu(hptep[1]);
1280
1281         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1282                 vpte = hpte_new_to_old_v(vpte, rpte);
1283                 rpte = hpte_new_to_old_r(rpte);
1284         }
1285
1286         pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1287         avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1288         pteg = idx / HPTES_PER_GROUP;
1289         if (vpte & HPTE_V_SECONDARY)
1290                 pteg = ~pteg;
1291
1292         if (!(vpte & HPTE_V_1TB_SEG)) {
1293                 unsigned long offset, vsid;
1294
1295                 /* We only have 28 - 23 bits of offset in avpn */
1296                 offset = (avpn & 0x1f) << 23;
1297                 vsid = avpn >> 5;
1298                 /* We can find more bits from the pteg value */
1299                 if (pshift < 23)
1300                         offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1301
1302                 hash = vsid ^ (offset >> pshift);
1303         } else {
1304                 unsigned long offset, vsid;
1305
1306                 /* We only have 40 - 23 bits of seg_off in avpn */
1307                 offset = (avpn & 0x1ffff) << 23;
1308                 vsid = avpn >> 17;
1309                 if (pshift < 23)
1310                         offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1311
1312                 hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1313         }
1314
1315         new_pteg = hash & new_hash_mask;
1316         if (vpte & HPTE_V_SECONDARY)
1317                 new_pteg = ~hash & new_hash_mask;
1318
1319         new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1320         new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1321
1322         replace_vpte = be64_to_cpu(new_hptep[0]);
1323         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1324                 unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1325                 replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1326         }
1327
1328         if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1329                 BUG_ON(new->order >= old->order);
1330
1331                 if (replace_vpte & HPTE_V_BOLTED) {
1332                         if (vpte & HPTE_V_BOLTED)
1333                                 /* Bolted collision, nothing we can do */
1334                                 ret = -ENOSPC;
1335                         /* Discard the new HPTE */
1336                         goto out;
1337                 }
1338
1339                 /* Discard the previous HPTE */
1340         }
1341
1342         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1343                 rpte = hpte_old_to_new_r(vpte, rpte);
1344                 vpte = hpte_old_to_new_v(vpte);
1345         }
1346
1347         new_hptep[1] = cpu_to_be64(rpte);
1348         new->rev[new_idx].guest_rpte = guest_rpte;
1349         /* No need for a barrier, since new HPT isn't active */
1350         new_hptep[0] = cpu_to_be64(vpte);
1351         unlock_hpte(new_hptep, vpte);
1352
1353 out:
1354         unlock_hpte(hptep, vpte);
1355         return ret;
1356 }
1357
1358 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1359 {
1360         struct kvm *kvm = resize->kvm;
1361         unsigned  long i;
1362         int rc;
1363
1364         for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1365                 rc = resize_hpt_rehash_hpte(resize, i);
1366                 if (rc != 0)
1367                         return rc;
1368         }
1369
1370         return 0;
1371 }
1372
1373 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1374 {
1375         struct kvm *kvm = resize->kvm;
1376         struct kvm_hpt_info hpt_tmp;
1377
1378         /* Exchange the pending tables in the resize structure with
1379          * the active tables */
1380
1381         resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1382
1383         spin_lock(&kvm->mmu_lock);
1384         asm volatile("ptesync" : : : "memory");
1385
1386         hpt_tmp = kvm->arch.hpt;
1387         kvmppc_set_hpt(kvm, &resize->hpt);
1388         resize->hpt = hpt_tmp;
1389
1390         spin_unlock(&kvm->mmu_lock);
1391
1392         synchronize_srcu_expedited(&kvm->srcu);
1393
1394         if (cpu_has_feature(CPU_FTR_ARCH_300))
1395                 kvmppc_setup_partition_table(kvm);
1396
1397         resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1398 }
1399
1400 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1401 {
1402         if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1403                 return;
1404
1405         if (!resize)
1406                 return;
1407
1408         if (resize->error != -EBUSY) {
1409                 if (resize->hpt.virt)
1410                         kvmppc_free_hpt(&resize->hpt);
1411                 kfree(resize);
1412         }
1413
1414         if (kvm->arch.resize_hpt == resize)
1415                 kvm->arch.resize_hpt = NULL;
1416 }
1417
1418 static void resize_hpt_prepare_work(struct work_struct *work)
1419 {
1420         struct kvm_resize_hpt *resize = container_of(work,
1421                                                      struct kvm_resize_hpt,
1422                                                      work);
1423         struct kvm *kvm = resize->kvm;
1424         int err = 0;
1425
1426         if (WARN_ON(resize->error != -EBUSY))
1427                 return;
1428
1429         mutex_lock(&kvm->arch.mmu_setup_lock);
1430
1431         /* Request is still current? */
1432         if (kvm->arch.resize_hpt == resize) {
1433                 /* We may request large allocations here:
1434                  * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1435                  */
1436                 mutex_unlock(&kvm->arch.mmu_setup_lock);
1437
1438                 resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1439                                  resize->order);
1440
1441                 err = resize_hpt_allocate(resize);
1442
1443                 /* We have strict assumption about -EBUSY
1444                  * when preparing for HPT resize.
1445                  */
1446                 if (WARN_ON(err == -EBUSY))
1447                         err = -EINPROGRESS;
1448
1449                 mutex_lock(&kvm->arch.mmu_setup_lock);
1450                 /* It is possible that kvm->arch.resize_hpt != resize
1451                  * after we grab kvm->arch.mmu_setup_lock again.
1452                  */
1453         }
1454
1455         resize->error = err;
1456
1457         if (kvm->arch.resize_hpt != resize)
1458                 resize_hpt_release(kvm, resize);
1459
1460         mutex_unlock(&kvm->arch.mmu_setup_lock);
1461 }
1462
1463 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1464                                      struct kvm_ppc_resize_hpt *rhpt)
1465 {
1466         unsigned long flags = rhpt->flags;
1467         unsigned long shift = rhpt->shift;
1468         struct kvm_resize_hpt *resize;
1469         int ret;
1470
1471         if (flags != 0 || kvm_is_radix(kvm))
1472                 return -EINVAL;
1473
1474         if (shift && ((shift < 18) || (shift > 46)))
1475                 return -EINVAL;
1476
1477         mutex_lock(&kvm->arch.mmu_setup_lock);
1478
1479         resize = kvm->arch.resize_hpt;
1480
1481         if (resize) {
1482                 if (resize->order == shift) {
1483                         /* Suitable resize in progress? */
1484                         ret = resize->error;
1485                         if (ret == -EBUSY)
1486                                 ret = 100; /* estimated time in ms */
1487                         else if (ret)
1488                                 resize_hpt_release(kvm, resize);
1489
1490                         goto out;
1491                 }
1492
1493                 /* not suitable, cancel it */
1494                 resize_hpt_release(kvm, resize);
1495         }
1496
1497         ret = 0;
1498         if (!shift)
1499                 goto out; /* nothing to do */
1500
1501         /* start new resize */
1502
1503         resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1504         if (!resize) {
1505                 ret = -ENOMEM;
1506                 goto out;
1507         }
1508
1509         resize->error = -EBUSY;
1510         resize->order = shift;
1511         resize->kvm = kvm;
1512         INIT_WORK(&resize->work, resize_hpt_prepare_work);
1513         kvm->arch.resize_hpt = resize;
1514
1515         schedule_work(&resize->work);
1516
1517         ret = 100; /* estimated time in ms */
1518
1519 out:
1520         mutex_unlock(&kvm->arch.mmu_setup_lock);
1521         return ret;
1522 }
1523
1524 static void resize_hpt_boot_vcpu(void *opaque)
1525 {
1526         /* Nothing to do, just force a KVM exit */
1527 }
1528
1529 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1530                                     struct kvm_ppc_resize_hpt *rhpt)
1531 {
1532         unsigned long flags = rhpt->flags;
1533         unsigned long shift = rhpt->shift;
1534         struct kvm_resize_hpt *resize;
1535         long ret;
1536
1537         if (flags != 0 || kvm_is_radix(kvm))
1538                 return -EINVAL;
1539
1540         if (shift && ((shift < 18) || (shift > 46)))
1541                 return -EINVAL;
1542
1543         mutex_lock(&kvm->arch.mmu_setup_lock);
1544
1545         resize = kvm->arch.resize_hpt;
1546
1547         /* This shouldn't be possible */
1548         ret = -EIO;
1549         if (WARN_ON(!kvm->arch.mmu_ready))
1550                 goto out_no_hpt;
1551
1552         /* Stop VCPUs from running while we mess with the HPT */
1553         kvm->arch.mmu_ready = 0;
1554         smp_mb();
1555
1556         /* Boot all CPUs out of the guest so they re-read
1557          * mmu_ready */
1558         on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1559
1560         ret = -ENXIO;
1561         if (!resize || (resize->order != shift))
1562                 goto out;
1563
1564         ret = resize->error;
1565         if (ret)
1566                 goto out;
1567
1568         ret = resize_hpt_rehash(resize);
1569         if (ret)
1570                 goto out;
1571
1572         resize_hpt_pivot(resize);
1573
1574 out:
1575         /* Let VCPUs run again */
1576         kvm->arch.mmu_ready = 1;
1577         smp_mb();
1578 out_no_hpt:
1579         resize_hpt_release(kvm, resize);
1580         mutex_unlock(&kvm->arch.mmu_setup_lock);
1581         return ret;
1582 }
1583
1584 /*
1585  * Functions for reading and writing the hash table via reads and
1586  * writes on a file descriptor.
1587  *
1588  * Reads return the guest view of the hash table, which has to be
1589  * pieced together from the real hash table and the guest_rpte
1590  * values in the revmap array.
1591  *
1592  * On writes, each HPTE written is considered in turn, and if it
1593  * is valid, it is written to the HPT as if an H_ENTER with the
1594  * exact flag set was done.  When the invalid count is non-zero
1595  * in the header written to the stream, the kernel will make
1596  * sure that that many HPTEs are invalid, and invalidate them
1597  * if not.
1598  */
1599
1600 struct kvm_htab_ctx {
1601         unsigned long   index;
1602         unsigned long   flags;
1603         struct kvm      *kvm;
1604         int             first_pass;
1605 };
1606
1607 #define HPTE_SIZE       (2 * sizeof(unsigned long))
1608
1609 /*
1610  * Returns 1 if this HPT entry has been modified or has pending
1611  * R/C bit changes.
1612  */
1613 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1614 {
1615         unsigned long rcbits_unset;
1616
1617         if (revp->guest_rpte & HPTE_GR_MODIFIED)
1618                 return 1;
1619
1620         /* Also need to consider changes in reference and changed bits */
1621         rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1622         if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1623             (be64_to_cpu(hptp[1]) & rcbits_unset))
1624                 return 1;
1625
1626         return 0;
1627 }
1628
1629 static long record_hpte(unsigned long flags, __be64 *hptp,
1630                         unsigned long *hpte, struct revmap_entry *revp,
1631                         int want_valid, int first_pass)
1632 {
1633         unsigned long v, r, hr;
1634         unsigned long rcbits_unset;
1635         int ok = 1;
1636         int valid, dirty;
1637
1638         /* Unmodified entries are uninteresting except on the first pass */
1639         dirty = hpte_dirty(revp, hptp);
1640         if (!first_pass && !dirty)
1641                 return 0;
1642
1643         valid = 0;
1644         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1645                 valid = 1;
1646                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1647                     !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1648                         valid = 0;
1649         }
1650         if (valid != want_valid)
1651                 return 0;
1652
1653         v = r = 0;
1654         if (valid || dirty) {
1655                 /* lock the HPTE so it's stable and read it */
1656                 preempt_disable();
1657                 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1658                         cpu_relax();
1659                 v = be64_to_cpu(hptp[0]);
1660                 hr = be64_to_cpu(hptp[1]);
1661                 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1662                         v = hpte_new_to_old_v(v, hr);
1663                         hr = hpte_new_to_old_r(hr);
1664                 }
1665
1666                 /* re-evaluate valid and dirty from synchronized HPTE value */
1667                 valid = !!(v & HPTE_V_VALID);
1668                 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1669
1670                 /* Harvest R and C into guest view if necessary */
1671                 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1672                 if (valid && (rcbits_unset & hr)) {
1673                         revp->guest_rpte |= (hr &
1674                                 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1675                         dirty = 1;
1676                 }
1677
1678                 if (v & HPTE_V_ABSENT) {
1679                         v &= ~HPTE_V_ABSENT;
1680                         v |= HPTE_V_VALID;
1681                         valid = 1;
1682                 }
1683                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1684                         valid = 0;
1685
1686                 r = revp->guest_rpte;
1687                 /* only clear modified if this is the right sort of entry */
1688                 if (valid == want_valid && dirty) {
1689                         r &= ~HPTE_GR_MODIFIED;
1690                         revp->guest_rpte = r;
1691                 }
1692                 unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1693                 preempt_enable();
1694                 if (!(valid == want_valid && (first_pass || dirty)))
1695                         ok = 0;
1696         }
1697         hpte[0] = cpu_to_be64(v);
1698         hpte[1] = cpu_to_be64(r);
1699         return ok;
1700 }
1701
1702 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1703                              size_t count, loff_t *ppos)
1704 {
1705         struct kvm_htab_ctx *ctx = file->private_data;
1706         struct kvm *kvm = ctx->kvm;
1707         struct kvm_get_htab_header hdr;
1708         __be64 *hptp;
1709         struct revmap_entry *revp;
1710         unsigned long i, nb, nw;
1711         unsigned long __user *lbuf;
1712         struct kvm_get_htab_header __user *hptr;
1713         unsigned long flags;
1714         int first_pass;
1715         unsigned long hpte[2];
1716
1717         if (!access_ok(buf, count))
1718                 return -EFAULT;
1719         if (kvm_is_radix(kvm))
1720                 return 0;
1721
1722         first_pass = ctx->first_pass;
1723         flags = ctx->flags;
1724
1725         i = ctx->index;
1726         hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1727         revp = kvm->arch.hpt.rev + i;
1728         lbuf = (unsigned long __user *)buf;
1729
1730         nb = 0;
1731         while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1732                 /* Initialize header */
1733                 hptr = (struct kvm_get_htab_header __user *)buf;
1734                 hdr.n_valid = 0;
1735                 hdr.n_invalid = 0;
1736                 nw = nb;
1737                 nb += sizeof(hdr);
1738                 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1739
1740                 /* Skip uninteresting entries, i.e. clean on not-first pass */
1741                 if (!first_pass) {
1742                         while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1743                                !hpte_dirty(revp, hptp)) {
1744                                 ++i;
1745                                 hptp += 2;
1746                                 ++revp;
1747                         }
1748                 }
1749                 hdr.index = i;
1750
1751                 /* Grab a series of valid entries */
1752                 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1753                        hdr.n_valid < 0xffff &&
1754                        nb + HPTE_SIZE < count &&
1755                        record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1756                         /* valid entry, write it out */
1757                         ++hdr.n_valid;
1758                         if (__put_user(hpte[0], lbuf) ||
1759                             __put_user(hpte[1], lbuf + 1))
1760                                 return -EFAULT;
1761                         nb += HPTE_SIZE;
1762                         lbuf += 2;
1763                         ++i;
1764                         hptp += 2;
1765                         ++revp;
1766                 }
1767                 /* Now skip invalid entries while we can */
1768                 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1769                        hdr.n_invalid < 0xffff &&
1770                        record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1771                         /* found an invalid entry */
1772                         ++hdr.n_invalid;
1773                         ++i;
1774                         hptp += 2;
1775                         ++revp;
1776                 }
1777
1778                 if (hdr.n_valid || hdr.n_invalid) {
1779                         /* write back the header */
1780                         if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1781                                 return -EFAULT;
1782                         nw = nb;
1783                         buf = (char __user *)lbuf;
1784                 } else {
1785                         nb = nw;
1786                 }
1787
1788                 /* Check if we've wrapped around the hash table */
1789                 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1790                         i = 0;
1791                         ctx->first_pass = 0;
1792                         break;
1793                 }
1794         }
1795
1796         ctx->index = i;
1797
1798         return nb;
1799 }
1800
1801 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1802                               size_t count, loff_t *ppos)
1803 {
1804         struct kvm_htab_ctx *ctx = file->private_data;
1805         struct kvm *kvm = ctx->kvm;
1806         struct kvm_get_htab_header hdr;
1807         unsigned long i, j;
1808         unsigned long v, r;
1809         unsigned long __user *lbuf;
1810         __be64 *hptp;
1811         unsigned long tmp[2];
1812         ssize_t nb;
1813         long int err, ret;
1814         int mmu_ready;
1815         int pshift;
1816
1817         if (!access_ok(buf, count))
1818                 return -EFAULT;
1819         if (kvm_is_radix(kvm))
1820                 return -EINVAL;
1821
1822         /* lock out vcpus from running while we're doing this */
1823         mutex_lock(&kvm->arch.mmu_setup_lock);
1824         mmu_ready = kvm->arch.mmu_ready;
1825         if (mmu_ready) {
1826                 kvm->arch.mmu_ready = 0;        /* temporarily */
1827                 /* order mmu_ready vs. vcpus_running */
1828                 smp_mb();
1829                 if (atomic_read(&kvm->arch.vcpus_running)) {
1830                         kvm->arch.mmu_ready = 1;
1831                         mutex_unlock(&kvm->arch.mmu_setup_lock);
1832                         return -EBUSY;
1833                 }
1834         }
1835
1836         err = 0;
1837         for (nb = 0; nb + sizeof(hdr) <= count; ) {
1838                 err = -EFAULT;
1839                 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1840                         break;
1841
1842                 err = 0;
1843                 if (nb + hdr.n_valid * HPTE_SIZE > count)
1844                         break;
1845
1846                 nb += sizeof(hdr);
1847                 buf += sizeof(hdr);
1848
1849                 err = -EINVAL;
1850                 i = hdr.index;
1851                 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1852                     i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1853                         break;
1854
1855                 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1856                 lbuf = (unsigned long __user *)buf;
1857                 for (j = 0; j < hdr.n_valid; ++j) {
1858                         __be64 hpte_v;
1859                         __be64 hpte_r;
1860
1861                         err = -EFAULT;
1862                         if (__get_user(hpte_v, lbuf) ||
1863                             __get_user(hpte_r, lbuf + 1))
1864                                 goto out;
1865                         v = be64_to_cpu(hpte_v);
1866                         r = be64_to_cpu(hpte_r);
1867                         err = -EINVAL;
1868                         if (!(v & HPTE_V_VALID))
1869                                 goto out;
1870                         pshift = kvmppc_hpte_base_page_shift(v, r);
1871                         if (pshift <= 0)
1872                                 goto out;
1873                         lbuf += 2;
1874                         nb += HPTE_SIZE;
1875
1876                         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1877                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1878                         err = -EIO;
1879                         ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1880                                                          tmp);
1881                         if (ret != H_SUCCESS) {
1882                                 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1883                                        "r=%lx\n", ret, i, v, r);
1884                                 goto out;
1885                         }
1886                         if (!mmu_ready && is_vrma_hpte(v)) {
1887                                 unsigned long senc, lpcr;
1888
1889                                 senc = slb_pgsize_encoding(1ul << pshift);
1890                                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1891                                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1892                                 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1893                                         lpcr = senc << (LPCR_VRMASD_SH - 4);
1894                                         kvmppc_update_lpcr(kvm, lpcr,
1895                                                            LPCR_VRMASD);
1896                                 } else {
1897                                         kvmppc_setup_partition_table(kvm);
1898                                 }
1899                                 mmu_ready = 1;
1900                         }
1901                         ++i;
1902                         hptp += 2;
1903                 }
1904
1905                 for (j = 0; j < hdr.n_invalid; ++j) {
1906                         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1907                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1908                         ++i;
1909                         hptp += 2;
1910                 }
1911                 err = 0;
1912         }
1913
1914  out:
1915         /* Order HPTE updates vs. mmu_ready */
1916         smp_wmb();
1917         kvm->arch.mmu_ready = mmu_ready;
1918         mutex_unlock(&kvm->arch.mmu_setup_lock);
1919
1920         if (err)
1921                 return err;
1922         return nb;
1923 }
1924
1925 static int kvm_htab_release(struct inode *inode, struct file *filp)
1926 {
1927         struct kvm_htab_ctx *ctx = filp->private_data;
1928
1929         filp->private_data = NULL;
1930         if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1931                 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1932         kvm_put_kvm(ctx->kvm);
1933         kfree(ctx);
1934         return 0;
1935 }
1936
1937 static const struct file_operations kvm_htab_fops = {
1938         .read           = kvm_htab_read,
1939         .write          = kvm_htab_write,
1940         .llseek         = default_llseek,
1941         .release        = kvm_htab_release,
1942 };
1943
1944 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1945 {
1946         int ret;
1947         struct kvm_htab_ctx *ctx;
1948         int rwflag;
1949
1950         /* reject flags we don't recognize */
1951         if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1952                 return -EINVAL;
1953         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1954         if (!ctx)
1955                 return -ENOMEM;
1956         kvm_get_kvm(kvm);
1957         ctx->kvm = kvm;
1958         ctx->index = ghf->start_index;
1959         ctx->flags = ghf->flags;
1960         ctx->first_pass = 1;
1961
1962         rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1963         ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1964         if (ret < 0) {
1965                 kfree(ctx);
1966                 kvm_put_kvm_no_destroy(kvm);
1967                 return ret;
1968         }
1969
1970         if (rwflag == O_RDONLY) {
1971                 mutex_lock(&kvm->slots_lock);
1972                 atomic_inc(&kvm->arch.hpte_mod_interest);
1973                 /* make sure kvmppc_do_h_enter etc. see the increment */
1974                 synchronize_srcu_expedited(&kvm->srcu);
1975                 mutex_unlock(&kvm->slots_lock);
1976         }
1977
1978         return ret;
1979 }
1980
1981 struct debugfs_htab_state {
1982         struct kvm      *kvm;
1983         struct mutex    mutex;
1984         unsigned long   hpt_index;
1985         int             chars_left;
1986         int             buf_index;
1987         char            buf[64];
1988 };
1989
1990 static int debugfs_htab_open(struct inode *inode, struct file *file)
1991 {
1992         struct kvm *kvm = inode->i_private;
1993         struct debugfs_htab_state *p;
1994
1995         p = kzalloc(sizeof(*p), GFP_KERNEL);
1996         if (!p)
1997                 return -ENOMEM;
1998
1999         kvm_get_kvm(kvm);
2000         p->kvm = kvm;
2001         mutex_init(&p->mutex);
2002         file->private_data = p;
2003
2004         return nonseekable_open(inode, file);
2005 }
2006
2007 static int debugfs_htab_release(struct inode *inode, struct file *file)
2008 {
2009         struct debugfs_htab_state *p = file->private_data;
2010
2011         kvm_put_kvm(p->kvm);
2012         kfree(p);
2013         return 0;
2014 }
2015
2016 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2017                                  size_t len, loff_t *ppos)
2018 {
2019         struct debugfs_htab_state *p = file->private_data;
2020         ssize_t ret, r;
2021         unsigned long i, n;
2022         unsigned long v, hr, gr;
2023         struct kvm *kvm;
2024         __be64 *hptp;
2025
2026         kvm = p->kvm;
2027         if (kvm_is_radix(kvm))
2028                 return 0;
2029
2030         ret = mutex_lock_interruptible(&p->mutex);
2031         if (ret)
2032                 return ret;
2033
2034         if (p->chars_left) {
2035                 n = p->chars_left;
2036                 if (n > len)
2037                         n = len;
2038                 r = copy_to_user(buf, p->buf + p->buf_index, n);
2039                 n -= r;
2040                 p->chars_left -= n;
2041                 p->buf_index += n;
2042                 buf += n;
2043                 len -= n;
2044                 ret = n;
2045                 if (r) {
2046                         if (!n)
2047                                 ret = -EFAULT;
2048                         goto out;
2049                 }
2050         }
2051
2052         i = p->hpt_index;
2053         hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2054         for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2055              ++i, hptp += 2) {
2056                 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2057                         continue;
2058
2059                 /* lock the HPTE so it's stable and read it */
2060                 preempt_disable();
2061                 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2062                         cpu_relax();
2063                 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2064                 hr = be64_to_cpu(hptp[1]);
2065                 gr = kvm->arch.hpt.rev[i].guest_rpte;
2066                 unlock_hpte(hptp, v);
2067                 preempt_enable();
2068
2069                 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2070                         continue;
2071
2072                 n = scnprintf(p->buf, sizeof(p->buf),
2073                               "%6lx %.16lx %.16lx %.16lx\n",
2074                               i, v, hr, gr);
2075                 p->chars_left = n;
2076                 if (n > len)
2077                         n = len;
2078                 r = copy_to_user(buf, p->buf, n);
2079                 n -= r;
2080                 p->chars_left -= n;
2081                 p->buf_index = n;
2082                 buf += n;
2083                 len -= n;
2084                 ret += n;
2085                 if (r) {
2086                         if (!ret)
2087                                 ret = -EFAULT;
2088                         goto out;
2089                 }
2090         }
2091         p->hpt_index = i;
2092
2093  out:
2094         mutex_unlock(&p->mutex);
2095         return ret;
2096 }
2097
2098 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2099                            size_t len, loff_t *ppos)
2100 {
2101         return -EACCES;
2102 }
2103
2104 static const struct file_operations debugfs_htab_fops = {
2105         .owner   = THIS_MODULE,
2106         .open    = debugfs_htab_open,
2107         .release = debugfs_htab_release,
2108         .read    = debugfs_htab_read,
2109         .write   = debugfs_htab_write,
2110         .llseek  = generic_file_llseek,
2111 };
2112
2113 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2114 {
2115         debugfs_create_file("htab", 0400, kvm->arch.debugfs_dir, kvm,
2116                             &debugfs_htab_fops);
2117 }
2118
2119 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2120 {
2121         struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2122
2123         vcpu->arch.slb_nr = 32;         /* POWER7/POWER8 */
2124
2125         mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2126
2127         vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2128 }