1 // SPDX-License-Identifier: GPL-2.0-only
4 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7 #include <linux/types.h>
8 #include <linux/string.h>
10 #include <linux/kvm_host.h>
11 #include <linux/highmem.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/srcu.h>
17 #include <linux/anon_inodes.h>
18 #include <linux/file.h>
19 #include <linux/debugfs.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/kvm_book3s.h>
23 #include <asm/book3s/64/mmu-hash.h>
24 #include <asm/hvcall.h>
25 #include <asm/synch.h>
26 #include <asm/ppc-opcode.h>
27 #include <asm/cputable.h>
28 #include <asm/pte-walk.h>
33 //#define DEBUG_RESIZE_HPT 1
35 #ifdef DEBUG_RESIZE_HPT
36 #define resize_hpt_debug(resize, ...) \
38 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \
39 printk(__VA_ARGS__); \
42 #define resize_hpt_debug(resize, ...) \
46 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
47 long pte_index, unsigned long pteh,
48 unsigned long ptel, unsigned long *pte_idx_ret);
50 struct kvm_resize_hpt {
51 /* These fields read-only after init */
53 struct work_struct work;
56 /* These fields protected by kvm->arch.mmu_setup_lock */
58 /* Possible values and their usage:
59 * <0 an error occurred during allocation,
60 * -EBUSY allocation is in the progress,
61 * 0 allocation made successfuly.
65 /* Private to the work thread, until error != -EBUSY,
66 * then protected by kvm->arch.mmu_setup_lock.
68 struct kvm_hpt_info hpt;
71 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
73 unsigned long hpt = 0;
75 struct page *page = NULL;
76 struct revmap_entry *rev;
79 if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
82 page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
84 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
85 memset((void *)hpt, 0, (1ul << order));
90 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
91 |__GFP_NOWARN, order - PAGE_SHIFT);
96 /* HPTEs are 2**4 bytes long */
97 npte = 1ul << (order - 4);
99 /* Allocate reverse map array */
100 rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
103 kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
105 free_pages(hpt, order - PAGE_SHIFT);
117 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
119 atomic64_set(&kvm->arch.mmio_update, 0);
120 kvm->arch.hpt = *info;
121 kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
123 pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
124 info->virt, (long)info->order, kvm->arch.lpid);
127 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
130 struct kvm_hpt_info info;
132 mutex_lock(&kvm->arch.mmu_setup_lock);
133 if (kvm->arch.mmu_ready) {
134 kvm->arch.mmu_ready = 0;
135 /* order mmu_ready vs. vcpus_running */
137 if (atomic_read(&kvm->arch.vcpus_running)) {
138 kvm->arch.mmu_ready = 1;
142 if (kvm_is_radix(kvm)) {
143 err = kvmppc_switch_mmu_to_hpt(kvm);
148 if (kvm->arch.hpt.order == order) {
149 /* We already have a suitable HPT */
151 /* Set the entire HPT to 0, i.e. invalid HPTEs */
152 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
154 * Reset all the reverse-mapping chains for all memslots
156 kvmppc_rmap_reset(kvm);
161 if (kvm->arch.hpt.virt) {
162 kvmppc_free_hpt(&kvm->arch.hpt);
163 kvmppc_rmap_reset(kvm);
166 err = kvmppc_allocate_hpt(&info, order);
169 kvmppc_set_hpt(kvm, &info);
173 /* Ensure that each vcpu will flush its TLB on next entry. */
174 cpumask_setall(&kvm->arch.need_tlb_flush);
176 mutex_unlock(&kvm->arch.mmu_setup_lock);
180 void kvmppc_free_hpt(struct kvm_hpt_info *info)
185 kvm_free_hpt_cma(virt_to_page(info->virt),
186 1 << (info->order - PAGE_SHIFT));
188 free_pages(info->virt, info->order - PAGE_SHIFT);
193 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
194 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
196 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
199 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
200 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
202 return (pgsize == 0x10000) ? 0x1000 : 0;
205 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
206 unsigned long porder)
209 unsigned long npages;
210 unsigned long hp_v, hp_r;
211 unsigned long addr, hash;
213 unsigned long hp0, hp1;
214 unsigned long idx_ret;
216 struct kvm *kvm = vcpu->kvm;
218 psize = 1ul << porder;
219 npages = memslot->npages >> (porder - PAGE_SHIFT);
221 /* VRMA can't be > 1TB */
222 if (npages > 1ul << (40 - porder))
223 npages = 1ul << (40 - porder);
224 /* Can't use more than 1 HPTE per HPTEG */
225 if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
226 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
228 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
229 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
230 hp1 = hpte1_pgsize_encoding(psize) |
231 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
233 for (i = 0; i < npages; ++i) {
235 /* can't use hpt_hash since va > 64 bits */
236 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
237 & kvmppc_hpt_mask(&kvm->arch.hpt);
239 * We assume that the hash table is empty and no
240 * vcpus are using it at this stage. Since we create
241 * at most one HPTE per HPTEG, we just assume entry 7
242 * is available and use it.
244 hash = (hash << 3) + 7;
245 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
247 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
249 if (ret != H_SUCCESS) {
250 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
257 int kvmppc_mmu_hv_init(void)
259 unsigned long host_lpid, rsvd_lpid;
261 if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
265 if (cpu_has_feature(CPU_FTR_HVMODE))
266 host_lpid = mfspr(SPRN_LPID);
268 /* POWER8 and above have 12-bit LPIDs (10-bit in POWER7) */
269 if (cpu_has_feature(CPU_FTR_ARCH_207S))
270 rsvd_lpid = LPID_RSVD;
272 rsvd_lpid = LPID_RSVD_POWER7;
274 kvmppc_init_lpid(rsvd_lpid + 1);
276 kvmppc_claim_lpid(host_lpid);
277 /* rsvd_lpid is reserved for use in partition switching */
278 kvmppc_claim_lpid(rsvd_lpid);
283 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
284 long pte_index, unsigned long pteh,
285 unsigned long ptel, unsigned long *pte_idx_ret)
290 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
291 kvm->mm->pgd, false, pte_idx_ret);
293 if (ret == H_TOO_HARD) {
294 /* this can't happen */
295 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
296 ret = H_RESOURCE; /* or something */
302 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
308 for (i = 0; i < vcpu->arch.slb_nr; i++) {
309 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
312 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
317 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
318 return &vcpu->arch.slb[i];
323 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
326 unsigned long ra_mask;
328 ra_mask = kvmppc_actual_pgsz(v, r) - 1;
329 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
332 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
333 struct kvmppc_pte *gpte, bool data, bool iswrite)
335 struct kvm *kvm = vcpu->kvm;
336 struct kvmppc_slb *slbe;
338 unsigned long pp, key;
339 unsigned long v, orig_v, gr;
342 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
344 if (kvm_is_radix(vcpu->kvm))
345 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
349 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
354 /* real mode access */
355 slb_v = vcpu->kvm->arch.vrma_slb_v;
359 /* Find the HPTE in the hash table */
360 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
361 HPTE_V_VALID | HPTE_V_ABSENT);
366 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
367 v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
368 if (cpu_has_feature(CPU_FTR_ARCH_300))
369 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
370 gr = kvm->arch.hpt.rev[index].guest_rpte;
372 unlock_hpte(hptep, orig_v);
376 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
378 /* Get PP bits and key for permission check */
379 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
380 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
383 /* Calculate permissions */
384 gpte->may_read = hpte_read_permission(pp, key);
385 gpte->may_write = hpte_write_permission(pp, key);
386 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
388 /* Storage key permission check for POWER7 */
389 if (data && virtmode) {
390 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
397 /* Get the guest physical address */
398 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
403 * Quick test for whether an instruction is a load or a store.
404 * If the instruction is a load or a store, then this will indicate
405 * which it is, at least on server processors. (Embedded processors
406 * have some external PID instructions that don't follow the rule
407 * embodied here.) If the instruction isn't a load or store, then
408 * this doesn't return anything useful.
410 static int instruction_is_store(unsigned int instr)
415 if ((instr & 0xfc000000) == 0x7c000000)
416 mask = 0x100; /* major opcode 31 */
417 return (instr & mask) != 0;
420 int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu,
421 unsigned long gpa, gva_t ea, int is_store)
426 * Fast path - check if the guest physical address corresponds to a
427 * device on the FAST_MMIO_BUS, if so we can avoid loading the
428 * instruction all together, then we can just handle it and return.
433 idx = srcu_read_lock(&vcpu->kvm->srcu);
434 ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
436 srcu_read_unlock(&vcpu->kvm->srcu, idx);
438 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
444 * If we fail, we just return to the guest and try executing it again.
446 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
451 * WARNING: We do not know for sure whether the instruction we just
452 * read from memory is the same that caused the fault in the first
453 * place. If the instruction we read is neither an load or a store,
454 * then it can't access memory, so we don't need to worry about
455 * enforcing access permissions. So, assuming it is a load or
456 * store, we just check that its direction (load or store) is
457 * consistent with the original fault, since that's what we
458 * checked the access permissions against. If there is a mismatch
459 * we just return and retry the instruction.
462 if (instruction_is_store(last_inst) != !!is_store)
466 * Emulated accesses are emulated by looking at the hash for
467 * translation once, then performing the access later. The
468 * translation could be invalidated in the meantime in which
469 * point performing the subsequent memory access on the old
470 * physical address could possibly be a security hole for the
471 * guest (but not the host).
473 * This is less of an issue for MMIO stores since they aren't
474 * globally visible. It could be an issue for MMIO loads to
475 * a certain extent but we'll ignore it for now.
478 vcpu->arch.paddr_accessed = gpa;
479 vcpu->arch.vaddr_accessed = ea;
480 return kvmppc_emulate_mmio(vcpu);
483 int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu,
484 unsigned long ea, unsigned long dsisr)
486 struct kvm *kvm = vcpu->kvm;
487 unsigned long hpte[3], r;
488 unsigned long hnow_v, hnow_r;
490 unsigned long mmu_seq, psize, pte_size;
491 unsigned long gpa_base, gfn_base;
492 unsigned long gpa, gfn, hva, pfn, hpa;
493 struct kvm_memory_slot *memslot;
495 struct revmap_entry *rev;
499 bool writing, write_ok;
501 unsigned long rcbits;
505 if (kvm_is_radix(kvm))
506 return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr);
509 * Real-mode code has already searched the HPT and found the
510 * entry we're interested in. Lock the entry and check that
511 * it hasn't changed. If it has, just return and re-execute the
514 if (ea != vcpu->arch.pgfault_addr)
517 if (vcpu->arch.pgfault_cache) {
518 mmio_update = atomic64_read(&kvm->arch.mmio_update);
519 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
520 r = vcpu->arch.pgfault_cache->rpte;
521 psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
523 gpa_base = r & HPTE_R_RPN & ~(psize - 1);
524 gfn_base = gpa_base >> PAGE_SHIFT;
525 gpa = gpa_base | (ea & (psize - 1));
526 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
527 dsisr & DSISR_ISSTORE);
530 index = vcpu->arch.pgfault_index;
531 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
532 rev = &kvm->arch.hpt.rev[index];
534 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
536 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
537 hpte[1] = be64_to_cpu(hptep[1]);
538 hpte[2] = r = rev->guest_rpte;
539 unlock_hpte(hptep, hpte[0]);
542 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
543 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
544 hpte[1] = hpte_new_to_old_r(hpte[1]);
546 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
547 hpte[1] != vcpu->arch.pgfault_hpte[1])
550 /* Translate the logical address and get the page */
551 psize = kvmppc_actual_pgsz(hpte[0], r);
552 gpa_base = r & HPTE_R_RPN & ~(psize - 1);
553 gfn_base = gpa_base >> PAGE_SHIFT;
554 gpa = gpa_base | (ea & (psize - 1));
555 gfn = gpa >> PAGE_SHIFT;
556 memslot = gfn_to_memslot(kvm, gfn);
558 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
560 /* No memslot means it's an emulated MMIO region */
561 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
562 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
563 dsisr & DSISR_ISSTORE);
566 * This should never happen, because of the slot_is_aligned()
567 * check in kvmppc_do_h_enter().
569 if (gfn_base < memslot->base_gfn)
572 /* used to check for invalidations in progress */
573 mmu_seq = kvm->mmu_notifier_seq;
578 writing = (dsisr & DSISR_ISSTORE) != 0;
579 /* If writing != 0, then the HPTE must allow writing, if we get here */
581 hva = gfn_to_hva_memslot(memslot, gfn);
584 * Do a fast check first, since __gfn_to_pfn_memslot doesn't
585 * do it with !atomic && !async, which is how we call it.
586 * We always ask for write permission since the common case
587 * is that the page is writable.
589 if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
592 /* Call KVM generic code to do the slow-path check */
593 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
594 writing, &write_ok, NULL);
595 if (is_error_noslot_pfn(pfn))
598 if (pfn_valid(pfn)) {
599 page = pfn_to_page(pfn);
600 if (PageReserved(page))
606 * Read the PTE from the process' radix tree and use that
607 * so we get the shift and attribute bits.
609 spin_lock(&kvm->mmu_lock);
610 ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
613 pte = READ_ONCE(*ptep);
614 spin_unlock(&kvm->mmu_lock);
616 * If the PTE disappeared temporarily due to a THP
617 * collapse, just return and let the guest try again.
619 if (!pte_present(pte)) {
624 hpa = pte_pfn(pte) << PAGE_SHIFT;
625 pte_size = PAGE_SIZE;
627 pte_size = 1ul << shift;
630 if (psize > pte_size)
632 if (pte_size > psize)
633 hpa |= hva & (pte_size - psize);
635 /* Check WIMG vs. the actual page we're accessing */
636 if (!hpte_cache_flags_ok(r, is_ci)) {
640 * Allow guest to map emulated device memory as
641 * uncacheable, but actually make it cacheable.
643 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
647 * Set the HPTE to point to hpa.
648 * Since the hpa is at PAGE_SIZE granularity, make sure we
649 * don't mask out lower-order bits if psize < PAGE_SIZE.
651 if (psize < PAGE_SIZE)
653 r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
654 if (hpte_is_writable(r) && !write_ok)
655 r = hpte_make_readonly(r);
658 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
660 hnow_v = be64_to_cpu(hptep[0]);
661 hnow_r = be64_to_cpu(hptep[1]);
662 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
663 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
664 hnow_r = hpte_new_to_old_r(hnow_r);
668 * If the HPT is being resized, don't update the HPTE,
669 * instead let the guest retry after the resize operation is complete.
670 * The synchronization for mmu_ready test vs. set is provided
673 if (!kvm->arch.mmu_ready)
676 if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
677 rev->guest_rpte != hpte[2])
678 /* HPTE has been changed under us; let the guest retry */
680 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
682 /* Always put the HPTE in the rmap chain for the page base address */
683 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
686 /* Check if we might have been invalidated; let the guest retry if so */
688 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
693 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
694 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
695 r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
697 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
698 /* HPTE was previously valid, so we need to invalidate it */
700 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
701 kvmppc_invalidate_hpte(kvm, hptep, index);
702 /* don't lose previous R and C bits */
703 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
705 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
708 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
709 r = hpte_old_to_new_r(hpte[0], r);
710 hpte[0] = hpte_old_to_new_v(hpte[0]);
712 hptep[1] = cpu_to_be64(r);
714 __unlock_hpte(hptep, hpte[0]);
715 asm volatile("ptesync" : : : "memory");
717 if (page && hpte_is_writable(r))
718 set_page_dirty_lock(page);
721 trace_kvm_page_fault_exit(vcpu, hpte, ret);
728 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
733 void kvmppc_rmap_reset(struct kvm *kvm)
735 struct kvm_memslots *slots;
736 struct kvm_memory_slot *memslot;
739 srcu_idx = srcu_read_lock(&kvm->srcu);
740 slots = kvm_memslots(kvm);
741 kvm_for_each_memslot(memslot, slots) {
742 /* Mutual exclusion with kvm_unmap_hva_range etc. */
743 spin_lock(&kvm->mmu_lock);
745 * This assumes it is acceptable to lose reference and
746 * change bits across a reset.
748 memset(memslot->arch.rmap, 0,
749 memslot->npages * sizeof(*memslot->arch.rmap));
750 spin_unlock(&kvm->mmu_lock);
752 srcu_read_unlock(&kvm->srcu, srcu_idx);
755 /* Must be called with both HPTE and rmap locked */
756 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
757 struct kvm_memory_slot *memslot,
758 unsigned long *rmapp, unsigned long gfn)
760 __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
761 struct revmap_entry *rev = kvm->arch.hpt.rev;
763 unsigned long ptel, psize, rcbits;
767 /* chain is now empty */
768 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
770 /* remove i from chain */
774 rev[i].forw = rev[i].back = i;
775 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
778 /* Now check and modify the HPTE */
779 ptel = rev[i].guest_rpte;
780 psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
781 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
782 hpte_rpn(ptel, psize) == gfn) {
783 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
784 kvmppc_invalidate_hpte(kvm, hptep, i);
785 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
786 /* Harvest R and C */
787 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
788 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
789 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
790 kvmppc_update_dirty_map(memslot, gfn, psize);
791 if (rcbits & ~rev[i].guest_rpte) {
792 rev[i].guest_rpte = ptel | rcbits;
793 note_hpte_modification(kvm, &rev[i]);
798 static void kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
803 unsigned long *rmapp;
805 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
808 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
814 * To avoid an ABBA deadlock with the HPTE lock bit,
815 * we can't spin on the HPTE lock while holding the
818 i = *rmapp & KVMPPC_RMAP_INDEX;
819 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
820 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
821 /* unlock rmap before spinning on the HPTE lock */
823 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
828 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
830 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
834 bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range)
838 if (kvm_is_radix(kvm)) {
839 for (gfn = range->start; gfn < range->end; gfn++)
840 kvm_unmap_radix(kvm, range->slot, gfn);
842 for (gfn = range->start; gfn < range->end; gfn++)
843 kvm_unmap_rmapp(kvm, range->slot, gfn);
849 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
850 struct kvm_memory_slot *memslot)
854 unsigned long *rmapp;
856 gfn = memslot->base_gfn;
857 rmapp = memslot->arch.rmap;
858 if (kvm_is_radix(kvm)) {
859 kvmppc_radix_flush_memslot(kvm, memslot);
863 for (n = memslot->npages; n; --n, ++gfn) {
865 * Testing the present bit without locking is OK because
866 * the memslot has been marked invalid already, and hence
867 * no new HPTEs referencing this page can be created,
868 * thus the present bit can't go from 0 to 1.
870 if (*rmapp & KVMPPC_RMAP_PRESENT)
871 kvm_unmap_rmapp(kvm, memslot, gfn);
876 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
879 struct revmap_entry *rev = kvm->arch.hpt.rev;
880 unsigned long head, i, j;
883 unsigned long *rmapp;
885 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
888 if (*rmapp & KVMPPC_RMAP_REFERENCED) {
889 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
892 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
897 i = head = *rmapp & KVMPPC_RMAP_INDEX;
899 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
902 /* If this HPTE isn't referenced, ignore it */
903 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
906 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
907 /* unlock rmap before spinning on the HPTE lock */
909 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
914 /* Now check and modify the HPTE */
915 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
916 (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
917 kvmppc_clear_ref_hpte(kvm, hptep, i);
918 if (!(rev[i].guest_rpte & HPTE_R_R)) {
919 rev[i].guest_rpte |= HPTE_R_R;
920 note_hpte_modification(kvm, &rev[i]);
924 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
925 } while ((i = j) != head);
931 bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
936 if (kvm_is_radix(kvm)) {
937 for (gfn = range->start; gfn < range->end; gfn++)
938 ret |= kvm_age_radix(kvm, range->slot, gfn);
940 for (gfn = range->start; gfn < range->end; gfn++)
941 ret |= kvm_age_rmapp(kvm, range->slot, gfn);
947 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
950 struct revmap_entry *rev = kvm->arch.hpt.rev;
951 unsigned long head, i, j;
954 unsigned long *rmapp;
956 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
957 if (*rmapp & KVMPPC_RMAP_REFERENCED)
961 if (*rmapp & KVMPPC_RMAP_REFERENCED)
964 if (*rmapp & KVMPPC_RMAP_PRESENT) {
965 i = head = *rmapp & KVMPPC_RMAP_INDEX;
967 hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
969 if (be64_to_cpu(hp[1]) & HPTE_R_R)
971 } while ((i = j) != head);
980 bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
982 WARN_ON(range->start + 1 != range->end);
984 if (kvm_is_radix(kvm))
985 return kvm_test_age_radix(kvm, range->slot, range->start);
987 return kvm_test_age_rmapp(kvm, range->slot, range->start);
990 bool kvm_set_spte_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
992 WARN_ON(range->start + 1 != range->end);
994 if (kvm_is_radix(kvm))
995 kvm_unmap_radix(kvm, range->slot, range->start);
997 kvm_unmap_rmapp(kvm, range->slot, range->start);
1002 static int vcpus_running(struct kvm *kvm)
1004 return atomic_read(&kvm->arch.vcpus_running) != 0;
1008 * Returns the number of system pages that are dirty.
1009 * This can be more than 1 if we find a huge-page HPTE.
1011 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1013 struct revmap_entry *rev = kvm->arch.hpt.rev;
1014 unsigned long head, i, j;
1018 int npages_dirty = 0;
1022 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1024 return npages_dirty;
1027 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1029 unsigned long hptep1;
1030 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1034 * Checking the C (changed) bit here is racy since there
1035 * is no guarantee about when the hardware writes it back.
1036 * If the HPTE is not writable then it is stable since the
1037 * page can't be written to, and we would have done a tlbie
1038 * (which forces the hardware to complete any writeback)
1039 * when making the HPTE read-only.
1040 * If vcpus are running then this call is racy anyway
1041 * since the page could get dirtied subsequently, so we
1042 * expect there to be a further call which would pick up
1043 * any delayed C bit writeback.
1044 * Otherwise we need to do the tlbie even if C==0 in
1045 * order to pick up any delayed writeback of C.
1047 hptep1 = be64_to_cpu(hptep[1]);
1048 if (!(hptep1 & HPTE_R_C) &&
1049 (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1052 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1053 /* unlock rmap before spinning on the HPTE lock */
1055 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1060 /* Now check and modify the HPTE */
1061 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1062 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1066 /* need to make it temporarily absent so C is stable */
1067 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1068 kvmppc_invalidate_hpte(kvm, hptep, i);
1069 v = be64_to_cpu(hptep[0]);
1070 r = be64_to_cpu(hptep[1]);
1072 hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1073 if (!(rev[i].guest_rpte & HPTE_R_C)) {
1074 rev[i].guest_rpte |= HPTE_R_C;
1075 note_hpte_modification(kvm, &rev[i]);
1077 n = kvmppc_actual_pgsz(v, r);
1078 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1079 if (n > npages_dirty)
1083 v &= ~HPTE_V_ABSENT;
1085 __unlock_hpte(hptep, v);
1086 } while ((i = j) != head);
1089 return npages_dirty;
1092 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1093 struct kvm_memory_slot *memslot,
1098 if (!vpa->dirty || !vpa->pinned_addr)
1100 gfn = vpa->gpa >> PAGE_SHIFT;
1101 if (gfn < memslot->base_gfn ||
1102 gfn >= memslot->base_gfn + memslot->npages)
1107 __set_bit_le(gfn - memslot->base_gfn, map);
1110 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1111 struct kvm_memory_slot *memslot, unsigned long *map)
1114 unsigned long *rmapp;
1117 rmapp = memslot->arch.rmap;
1118 for (i = 0; i < memslot->npages; ++i) {
1119 int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1121 * Note that if npages > 0 then i must be a multiple of npages,
1122 * since we always put huge-page HPTEs in the rmap chain
1123 * corresponding to their page base address.
1126 set_dirty_bits(map, i, npages);
1133 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1134 unsigned long *nb_ret)
1136 struct kvm_memory_slot *memslot;
1137 unsigned long gfn = gpa >> PAGE_SHIFT;
1138 struct page *page, *pages[1];
1140 unsigned long hva, offset;
1143 srcu_idx = srcu_read_lock(&kvm->srcu);
1144 memslot = gfn_to_memslot(kvm, gfn);
1145 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1147 hva = gfn_to_hva_memslot(memslot, gfn);
1148 npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1152 srcu_read_unlock(&kvm->srcu, srcu_idx);
1154 offset = gpa & (PAGE_SIZE - 1);
1156 *nb_ret = PAGE_SIZE - offset;
1157 return page_address(page) + offset;
1160 srcu_read_unlock(&kvm->srcu, srcu_idx);
1164 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1167 struct page *page = virt_to_page(va);
1168 struct kvm_memory_slot *memslot;
1177 /* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1178 gfn = gpa >> PAGE_SHIFT;
1179 srcu_idx = srcu_read_lock(&kvm->srcu);
1180 memslot = gfn_to_memslot(kvm, gfn);
1181 if (memslot && memslot->dirty_bitmap)
1182 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1183 srcu_read_unlock(&kvm->srcu, srcu_idx);
1189 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1193 rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1197 resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1203 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1206 struct kvm *kvm = resize->kvm;
1207 struct kvm_hpt_info *old = &kvm->arch.hpt;
1208 struct kvm_hpt_info *new = &resize->hpt;
1209 unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1210 unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1211 __be64 *hptep, *new_hptep;
1212 unsigned long vpte, rpte, guest_rpte;
1214 struct revmap_entry *rev;
1215 unsigned long apsize, avpn, pteg, hash;
1216 unsigned long new_idx, new_pteg, replace_vpte;
1219 hptep = (__be64 *)(old->virt + (idx << 4));
1221 /* Guest is stopped, so new HPTEs can't be added or faulted
1222 * in, only unmapped or altered by host actions. So, it's
1223 * safe to check this before we take the HPTE lock */
1224 vpte = be64_to_cpu(hptep[0]);
1225 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1226 return 0; /* nothing to do */
1228 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1231 vpte = be64_to_cpu(hptep[0]);
1234 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1238 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1239 rpte = be64_to_cpu(hptep[1]);
1240 vpte = hpte_new_to_old_v(vpte, rpte);
1244 rev = &old->rev[idx];
1245 guest_rpte = rev->guest_rpte;
1248 apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1252 if (vpte & HPTE_V_VALID) {
1253 unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1254 int srcu_idx = srcu_read_lock(&kvm->srcu);
1255 struct kvm_memory_slot *memslot =
1256 __gfn_to_memslot(kvm_memslots(kvm), gfn);
1259 unsigned long *rmapp;
1260 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1263 kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1267 srcu_read_unlock(&kvm->srcu, srcu_idx);
1270 /* Reload PTE after unmap */
1271 vpte = be64_to_cpu(hptep[0]);
1272 BUG_ON(vpte & HPTE_V_VALID);
1273 BUG_ON(!(vpte & HPTE_V_ABSENT));
1276 if (!(vpte & HPTE_V_BOLTED))
1279 rpte = be64_to_cpu(hptep[1]);
1281 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1282 vpte = hpte_new_to_old_v(vpte, rpte);
1283 rpte = hpte_new_to_old_r(rpte);
1286 pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1287 avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1288 pteg = idx / HPTES_PER_GROUP;
1289 if (vpte & HPTE_V_SECONDARY)
1292 if (!(vpte & HPTE_V_1TB_SEG)) {
1293 unsigned long offset, vsid;
1295 /* We only have 28 - 23 bits of offset in avpn */
1296 offset = (avpn & 0x1f) << 23;
1298 /* We can find more bits from the pteg value */
1300 offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1302 hash = vsid ^ (offset >> pshift);
1304 unsigned long offset, vsid;
1306 /* We only have 40 - 23 bits of seg_off in avpn */
1307 offset = (avpn & 0x1ffff) << 23;
1310 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1312 hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1315 new_pteg = hash & new_hash_mask;
1316 if (vpte & HPTE_V_SECONDARY)
1317 new_pteg = ~hash & new_hash_mask;
1319 new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1320 new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1322 replace_vpte = be64_to_cpu(new_hptep[0]);
1323 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1324 unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1325 replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1328 if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1329 BUG_ON(new->order >= old->order);
1331 if (replace_vpte & HPTE_V_BOLTED) {
1332 if (vpte & HPTE_V_BOLTED)
1333 /* Bolted collision, nothing we can do */
1335 /* Discard the new HPTE */
1339 /* Discard the previous HPTE */
1342 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1343 rpte = hpte_old_to_new_r(vpte, rpte);
1344 vpte = hpte_old_to_new_v(vpte);
1347 new_hptep[1] = cpu_to_be64(rpte);
1348 new->rev[new_idx].guest_rpte = guest_rpte;
1349 /* No need for a barrier, since new HPT isn't active */
1350 new_hptep[0] = cpu_to_be64(vpte);
1351 unlock_hpte(new_hptep, vpte);
1354 unlock_hpte(hptep, vpte);
1358 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1360 struct kvm *kvm = resize->kvm;
1364 for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1365 rc = resize_hpt_rehash_hpte(resize, i);
1373 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1375 struct kvm *kvm = resize->kvm;
1376 struct kvm_hpt_info hpt_tmp;
1378 /* Exchange the pending tables in the resize structure with
1379 * the active tables */
1381 resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1383 spin_lock(&kvm->mmu_lock);
1384 asm volatile("ptesync" : : : "memory");
1386 hpt_tmp = kvm->arch.hpt;
1387 kvmppc_set_hpt(kvm, &resize->hpt);
1388 resize->hpt = hpt_tmp;
1390 spin_unlock(&kvm->mmu_lock);
1392 synchronize_srcu_expedited(&kvm->srcu);
1394 if (cpu_has_feature(CPU_FTR_ARCH_300))
1395 kvmppc_setup_partition_table(kvm);
1397 resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1400 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1402 if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1408 if (resize->error != -EBUSY) {
1409 if (resize->hpt.virt)
1410 kvmppc_free_hpt(&resize->hpt);
1414 if (kvm->arch.resize_hpt == resize)
1415 kvm->arch.resize_hpt = NULL;
1418 static void resize_hpt_prepare_work(struct work_struct *work)
1420 struct kvm_resize_hpt *resize = container_of(work,
1421 struct kvm_resize_hpt,
1423 struct kvm *kvm = resize->kvm;
1426 if (WARN_ON(resize->error != -EBUSY))
1429 mutex_lock(&kvm->arch.mmu_setup_lock);
1431 /* Request is still current? */
1432 if (kvm->arch.resize_hpt == resize) {
1433 /* We may request large allocations here:
1434 * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1436 mutex_unlock(&kvm->arch.mmu_setup_lock);
1438 resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1441 err = resize_hpt_allocate(resize);
1443 /* We have strict assumption about -EBUSY
1444 * when preparing for HPT resize.
1446 if (WARN_ON(err == -EBUSY))
1449 mutex_lock(&kvm->arch.mmu_setup_lock);
1450 /* It is possible that kvm->arch.resize_hpt != resize
1451 * after we grab kvm->arch.mmu_setup_lock again.
1455 resize->error = err;
1457 if (kvm->arch.resize_hpt != resize)
1458 resize_hpt_release(kvm, resize);
1460 mutex_unlock(&kvm->arch.mmu_setup_lock);
1463 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1464 struct kvm_ppc_resize_hpt *rhpt)
1466 unsigned long flags = rhpt->flags;
1467 unsigned long shift = rhpt->shift;
1468 struct kvm_resize_hpt *resize;
1471 if (flags != 0 || kvm_is_radix(kvm))
1474 if (shift && ((shift < 18) || (shift > 46)))
1477 mutex_lock(&kvm->arch.mmu_setup_lock);
1479 resize = kvm->arch.resize_hpt;
1482 if (resize->order == shift) {
1483 /* Suitable resize in progress? */
1484 ret = resize->error;
1486 ret = 100; /* estimated time in ms */
1488 resize_hpt_release(kvm, resize);
1493 /* not suitable, cancel it */
1494 resize_hpt_release(kvm, resize);
1499 goto out; /* nothing to do */
1501 /* start new resize */
1503 resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1509 resize->error = -EBUSY;
1510 resize->order = shift;
1512 INIT_WORK(&resize->work, resize_hpt_prepare_work);
1513 kvm->arch.resize_hpt = resize;
1515 schedule_work(&resize->work);
1517 ret = 100; /* estimated time in ms */
1520 mutex_unlock(&kvm->arch.mmu_setup_lock);
1524 static void resize_hpt_boot_vcpu(void *opaque)
1526 /* Nothing to do, just force a KVM exit */
1529 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1530 struct kvm_ppc_resize_hpt *rhpt)
1532 unsigned long flags = rhpt->flags;
1533 unsigned long shift = rhpt->shift;
1534 struct kvm_resize_hpt *resize;
1537 if (flags != 0 || kvm_is_radix(kvm))
1540 if (shift && ((shift < 18) || (shift > 46)))
1543 mutex_lock(&kvm->arch.mmu_setup_lock);
1545 resize = kvm->arch.resize_hpt;
1547 /* This shouldn't be possible */
1549 if (WARN_ON(!kvm->arch.mmu_ready))
1552 /* Stop VCPUs from running while we mess with the HPT */
1553 kvm->arch.mmu_ready = 0;
1556 /* Boot all CPUs out of the guest so they re-read
1558 on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1561 if (!resize || (resize->order != shift))
1564 ret = resize->error;
1568 ret = resize_hpt_rehash(resize);
1572 resize_hpt_pivot(resize);
1575 /* Let VCPUs run again */
1576 kvm->arch.mmu_ready = 1;
1579 resize_hpt_release(kvm, resize);
1580 mutex_unlock(&kvm->arch.mmu_setup_lock);
1585 * Functions for reading and writing the hash table via reads and
1586 * writes on a file descriptor.
1588 * Reads return the guest view of the hash table, which has to be
1589 * pieced together from the real hash table and the guest_rpte
1590 * values in the revmap array.
1592 * On writes, each HPTE written is considered in turn, and if it
1593 * is valid, it is written to the HPT as if an H_ENTER with the
1594 * exact flag set was done. When the invalid count is non-zero
1595 * in the header written to the stream, the kernel will make
1596 * sure that that many HPTEs are invalid, and invalidate them
1600 struct kvm_htab_ctx {
1601 unsigned long index;
1602 unsigned long flags;
1607 #define HPTE_SIZE (2 * sizeof(unsigned long))
1610 * Returns 1 if this HPT entry has been modified or has pending
1613 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1615 unsigned long rcbits_unset;
1617 if (revp->guest_rpte & HPTE_GR_MODIFIED)
1620 /* Also need to consider changes in reference and changed bits */
1621 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1622 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1623 (be64_to_cpu(hptp[1]) & rcbits_unset))
1629 static long record_hpte(unsigned long flags, __be64 *hptp,
1630 unsigned long *hpte, struct revmap_entry *revp,
1631 int want_valid, int first_pass)
1633 unsigned long v, r, hr;
1634 unsigned long rcbits_unset;
1638 /* Unmodified entries are uninteresting except on the first pass */
1639 dirty = hpte_dirty(revp, hptp);
1640 if (!first_pass && !dirty)
1644 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1646 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1647 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1650 if (valid != want_valid)
1654 if (valid || dirty) {
1655 /* lock the HPTE so it's stable and read it */
1657 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1659 v = be64_to_cpu(hptp[0]);
1660 hr = be64_to_cpu(hptp[1]);
1661 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1662 v = hpte_new_to_old_v(v, hr);
1663 hr = hpte_new_to_old_r(hr);
1666 /* re-evaluate valid and dirty from synchronized HPTE value */
1667 valid = !!(v & HPTE_V_VALID);
1668 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1670 /* Harvest R and C into guest view if necessary */
1671 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1672 if (valid && (rcbits_unset & hr)) {
1673 revp->guest_rpte |= (hr &
1674 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1678 if (v & HPTE_V_ABSENT) {
1679 v &= ~HPTE_V_ABSENT;
1683 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1686 r = revp->guest_rpte;
1687 /* only clear modified if this is the right sort of entry */
1688 if (valid == want_valid && dirty) {
1689 r &= ~HPTE_GR_MODIFIED;
1690 revp->guest_rpte = r;
1692 unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1694 if (!(valid == want_valid && (first_pass || dirty)))
1697 hpte[0] = cpu_to_be64(v);
1698 hpte[1] = cpu_to_be64(r);
1702 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1703 size_t count, loff_t *ppos)
1705 struct kvm_htab_ctx *ctx = file->private_data;
1706 struct kvm *kvm = ctx->kvm;
1707 struct kvm_get_htab_header hdr;
1709 struct revmap_entry *revp;
1710 unsigned long i, nb, nw;
1711 unsigned long __user *lbuf;
1712 struct kvm_get_htab_header __user *hptr;
1713 unsigned long flags;
1715 unsigned long hpte[2];
1717 if (!access_ok(buf, count))
1719 if (kvm_is_radix(kvm))
1722 first_pass = ctx->first_pass;
1726 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1727 revp = kvm->arch.hpt.rev + i;
1728 lbuf = (unsigned long __user *)buf;
1731 while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1732 /* Initialize header */
1733 hptr = (struct kvm_get_htab_header __user *)buf;
1738 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1740 /* Skip uninteresting entries, i.e. clean on not-first pass */
1742 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1743 !hpte_dirty(revp, hptp)) {
1751 /* Grab a series of valid entries */
1752 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1753 hdr.n_valid < 0xffff &&
1754 nb + HPTE_SIZE < count &&
1755 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1756 /* valid entry, write it out */
1758 if (__put_user(hpte[0], lbuf) ||
1759 __put_user(hpte[1], lbuf + 1))
1767 /* Now skip invalid entries while we can */
1768 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1769 hdr.n_invalid < 0xffff &&
1770 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1771 /* found an invalid entry */
1778 if (hdr.n_valid || hdr.n_invalid) {
1779 /* write back the header */
1780 if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1783 buf = (char __user *)lbuf;
1788 /* Check if we've wrapped around the hash table */
1789 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1791 ctx->first_pass = 0;
1801 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1802 size_t count, loff_t *ppos)
1804 struct kvm_htab_ctx *ctx = file->private_data;
1805 struct kvm *kvm = ctx->kvm;
1806 struct kvm_get_htab_header hdr;
1809 unsigned long __user *lbuf;
1811 unsigned long tmp[2];
1817 if (!access_ok(buf, count))
1819 if (kvm_is_radix(kvm))
1822 /* lock out vcpus from running while we're doing this */
1823 mutex_lock(&kvm->arch.mmu_setup_lock);
1824 mmu_ready = kvm->arch.mmu_ready;
1826 kvm->arch.mmu_ready = 0; /* temporarily */
1827 /* order mmu_ready vs. vcpus_running */
1829 if (atomic_read(&kvm->arch.vcpus_running)) {
1830 kvm->arch.mmu_ready = 1;
1831 mutex_unlock(&kvm->arch.mmu_setup_lock);
1837 for (nb = 0; nb + sizeof(hdr) <= count; ) {
1839 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1843 if (nb + hdr.n_valid * HPTE_SIZE > count)
1851 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1852 i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1855 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1856 lbuf = (unsigned long __user *)buf;
1857 for (j = 0; j < hdr.n_valid; ++j) {
1862 if (__get_user(hpte_v, lbuf) ||
1863 __get_user(hpte_r, lbuf + 1))
1865 v = be64_to_cpu(hpte_v);
1866 r = be64_to_cpu(hpte_r);
1868 if (!(v & HPTE_V_VALID))
1870 pshift = kvmppc_hpte_base_page_shift(v, r);
1876 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1877 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1879 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1881 if (ret != H_SUCCESS) {
1882 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1883 "r=%lx\n", ret, i, v, r);
1886 if (!mmu_ready && is_vrma_hpte(v)) {
1887 unsigned long senc, lpcr;
1889 senc = slb_pgsize_encoding(1ul << pshift);
1890 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1891 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1892 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1893 lpcr = senc << (LPCR_VRMASD_SH - 4);
1894 kvmppc_update_lpcr(kvm, lpcr,
1897 kvmppc_setup_partition_table(kvm);
1905 for (j = 0; j < hdr.n_invalid; ++j) {
1906 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1907 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1915 /* Order HPTE updates vs. mmu_ready */
1917 kvm->arch.mmu_ready = mmu_ready;
1918 mutex_unlock(&kvm->arch.mmu_setup_lock);
1925 static int kvm_htab_release(struct inode *inode, struct file *filp)
1927 struct kvm_htab_ctx *ctx = filp->private_data;
1929 filp->private_data = NULL;
1930 if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1931 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1932 kvm_put_kvm(ctx->kvm);
1937 static const struct file_operations kvm_htab_fops = {
1938 .read = kvm_htab_read,
1939 .write = kvm_htab_write,
1940 .llseek = default_llseek,
1941 .release = kvm_htab_release,
1944 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1947 struct kvm_htab_ctx *ctx;
1950 /* reject flags we don't recognize */
1951 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1953 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1958 ctx->index = ghf->start_index;
1959 ctx->flags = ghf->flags;
1960 ctx->first_pass = 1;
1962 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1963 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1966 kvm_put_kvm_no_destroy(kvm);
1970 if (rwflag == O_RDONLY) {
1971 mutex_lock(&kvm->slots_lock);
1972 atomic_inc(&kvm->arch.hpte_mod_interest);
1973 /* make sure kvmppc_do_h_enter etc. see the increment */
1974 synchronize_srcu_expedited(&kvm->srcu);
1975 mutex_unlock(&kvm->slots_lock);
1981 struct debugfs_htab_state {
1984 unsigned long hpt_index;
1990 static int debugfs_htab_open(struct inode *inode, struct file *file)
1992 struct kvm *kvm = inode->i_private;
1993 struct debugfs_htab_state *p;
1995 p = kzalloc(sizeof(*p), GFP_KERNEL);
2001 mutex_init(&p->mutex);
2002 file->private_data = p;
2004 return nonseekable_open(inode, file);
2007 static int debugfs_htab_release(struct inode *inode, struct file *file)
2009 struct debugfs_htab_state *p = file->private_data;
2011 kvm_put_kvm(p->kvm);
2016 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2017 size_t len, loff_t *ppos)
2019 struct debugfs_htab_state *p = file->private_data;
2022 unsigned long v, hr, gr;
2027 if (kvm_is_radix(kvm))
2030 ret = mutex_lock_interruptible(&p->mutex);
2034 if (p->chars_left) {
2038 r = copy_to_user(buf, p->buf + p->buf_index, n);
2053 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2054 for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2056 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2059 /* lock the HPTE so it's stable and read it */
2061 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2063 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2064 hr = be64_to_cpu(hptp[1]);
2065 gr = kvm->arch.hpt.rev[i].guest_rpte;
2066 unlock_hpte(hptp, v);
2069 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2072 n = scnprintf(p->buf, sizeof(p->buf),
2073 "%6lx %.16lx %.16lx %.16lx\n",
2078 r = copy_to_user(buf, p->buf, n);
2094 mutex_unlock(&p->mutex);
2098 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2099 size_t len, loff_t *ppos)
2104 static const struct file_operations debugfs_htab_fops = {
2105 .owner = THIS_MODULE,
2106 .open = debugfs_htab_open,
2107 .release = debugfs_htab_release,
2108 .read = debugfs_htab_read,
2109 .write = debugfs_htab_write,
2110 .llseek = generic_file_llseek,
2113 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2115 debugfs_create_file("htab", 0400, kvm->arch.debugfs_dir, kvm,
2116 &debugfs_htab_fops);
2119 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2121 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2123 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */
2125 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2127 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;