arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5  */
6
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/highmem.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/srcu.h>
17 #include <linux/anon_inodes.h>
18 #include <linux/file.h>
19 #include <linux/debugfs.h>
20
21 #include <asm/kvm_ppc.h>
22 #include <asm/kvm_book3s.h>
23 #include <asm/book3s/64/mmu-hash.h>
24 #include <asm/hvcall.h>
25 #include <asm/synch.h>
26 #include <asm/ppc-opcode.h>
27 #include <asm/cputable.h>
28 #include <asm/pte-walk.h>
29
30 #include "book3s.h"
31 #include "book3s_hv.h"
32 #include "trace_hv.h"
33
34 //#define DEBUG_RESIZE_HPT      1
35
36 #ifdef DEBUG_RESIZE_HPT
37 #define resize_hpt_debug(resize, ...)                           \
38         do {                                                    \
39                 printk(KERN_DEBUG "RESIZE HPT %p: ", resize);   \
40                 printk(__VA_ARGS__);                            \
41         } while (0)
42 #else
43 #define resize_hpt_debug(resize, ...)                           \
44         do { } while (0)
45 #endif
46
47 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
48                                 long pte_index, unsigned long pteh,
49                                 unsigned long ptel, unsigned long *pte_idx_ret);
50
51 struct kvm_resize_hpt {
52         /* These fields read-only after init */
53         struct kvm *kvm;
54         struct work_struct work;
55         u32 order;
56
57         /* These fields protected by kvm->arch.mmu_setup_lock */
58
59         /* Possible values and their usage:
60          *  <0     an error occurred during allocation,
61          *  -EBUSY allocation is in the progress,
62          *  0      allocation made successfully.
63          */
64         int error;
65
66         /* Private to the work thread, until error != -EBUSY,
67          * then protected by kvm->arch.mmu_setup_lock.
68          */
69         struct kvm_hpt_info hpt;
70 };
71
72 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
73 {
74         unsigned long hpt = 0;
75         int cma = 0;
76         struct page *page = NULL;
77         struct revmap_entry *rev;
78         unsigned long npte;
79
80         if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
81                 return -EINVAL;
82
83         page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
84         if (page) {
85                 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
86                 memset((void *)hpt, 0, (1ul << order));
87                 cma = 1;
88         }
89
90         if (!hpt)
91                 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
92                                        |__GFP_NOWARN, order - PAGE_SHIFT);
93
94         if (!hpt)
95                 return -ENOMEM;
96
97         /* HPTEs are 2**4 bytes long */
98         npte = 1ul << (order - 4);
99
100         /* Allocate reverse map array */
101         rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
102         if (!rev) {
103                 if (cma)
104                         kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
105                 else
106                         free_pages(hpt, order - PAGE_SHIFT);
107                 return -ENOMEM;
108         }
109
110         info->order = order;
111         info->virt = hpt;
112         info->cma = cma;
113         info->rev = rev;
114
115         return 0;
116 }
117
118 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
119 {
120         atomic64_set(&kvm->arch.mmio_update, 0);
121         kvm->arch.hpt = *info;
122         kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
123
124         pr_debug("KVM guest htab at %lx (order %ld), LPID %llx\n",
125                  info->virt, (long)info->order, kvm->arch.lpid);
126 }
127
128 int kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
129 {
130         int err = -EBUSY;
131         struct kvm_hpt_info info;
132
133         mutex_lock(&kvm->arch.mmu_setup_lock);
134         if (kvm->arch.mmu_ready) {
135                 kvm->arch.mmu_ready = 0;
136                 /* order mmu_ready vs. vcpus_running */
137                 smp_mb();
138                 if (atomic_read(&kvm->arch.vcpus_running)) {
139                         kvm->arch.mmu_ready = 1;
140                         goto out;
141                 }
142         }
143         if (kvm_is_radix(kvm)) {
144                 err = kvmppc_switch_mmu_to_hpt(kvm);
145                 if (err)
146                         goto out;
147         }
148
149         if (kvm->arch.hpt.order == order) {
150                 /* We already have a suitable HPT */
151
152                 /* Set the entire HPT to 0, i.e. invalid HPTEs */
153                 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
154                 /*
155                  * Reset all the reverse-mapping chains for all memslots
156                  */
157                 kvmppc_rmap_reset(kvm);
158                 err = 0;
159                 goto out;
160         }
161
162         if (kvm->arch.hpt.virt) {
163                 kvmppc_free_hpt(&kvm->arch.hpt);
164                 kvmppc_rmap_reset(kvm);
165         }
166
167         err = kvmppc_allocate_hpt(&info, order);
168         if (err < 0)
169                 goto out;
170         kvmppc_set_hpt(kvm, &info);
171
172 out:
173         if (err == 0)
174                 /* Ensure that each vcpu will flush its TLB on next entry. */
175                 cpumask_setall(&kvm->arch.need_tlb_flush);
176
177         mutex_unlock(&kvm->arch.mmu_setup_lock);
178         return err;
179 }
180
181 void kvmppc_free_hpt(struct kvm_hpt_info *info)
182 {
183         vfree(info->rev);
184         info->rev = NULL;
185         if (info->cma)
186                 kvm_free_hpt_cma(virt_to_page((void *)info->virt),
187                                  1 << (info->order - PAGE_SHIFT));
188         else if (info->virt)
189                 free_pages(info->virt, info->order - PAGE_SHIFT);
190         info->virt = 0;
191         info->order = 0;
192 }
193
194 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
195 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
196 {
197         return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
198 }
199
200 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
201 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
202 {
203         return (pgsize == 0x10000) ? 0x1000 : 0;
204 }
205
206 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
207                      unsigned long porder)
208 {
209         unsigned long i;
210         unsigned long npages;
211         unsigned long hp_v, hp_r;
212         unsigned long addr, hash;
213         unsigned long psize;
214         unsigned long hp0, hp1;
215         unsigned long idx_ret;
216         long ret;
217         struct kvm *kvm = vcpu->kvm;
218
219         psize = 1ul << porder;
220         npages = memslot->npages >> (porder - PAGE_SHIFT);
221
222         /* VRMA can't be > 1TB */
223         if (npages > 1ul << (40 - porder))
224                 npages = 1ul << (40 - porder);
225         /* Can't use more than 1 HPTE per HPTEG */
226         if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
227                 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
228
229         hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
230                 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
231         hp1 = hpte1_pgsize_encoding(psize) |
232                 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
233
234         for (i = 0; i < npages; ++i) {
235                 addr = i << porder;
236                 /* can't use hpt_hash since va > 64 bits */
237                 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
238                         & kvmppc_hpt_mask(&kvm->arch.hpt);
239                 /*
240                  * We assume that the hash table is empty and no
241                  * vcpus are using it at this stage.  Since we create
242                  * at most one HPTE per HPTEG, we just assume entry 7
243                  * is available and use it.
244                  */
245                 hash = (hash << 3) + 7;
246                 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
247                 hp_r = hp1 | addr;
248                 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
249                                                  &idx_ret);
250                 if (ret != H_SUCCESS) {
251                         pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
252                                addr, ret);
253                         break;
254                 }
255         }
256 }
257
258 int kvmppc_mmu_hv_init(void)
259 {
260         unsigned long nr_lpids;
261
262         if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
263                 return -EINVAL;
264
265         if (cpu_has_feature(CPU_FTR_HVMODE)) {
266                 if (WARN_ON(mfspr(SPRN_LPID) != 0))
267                         return -EINVAL;
268                 nr_lpids = 1UL << mmu_lpid_bits;
269         } else {
270                 nr_lpids = 1UL << KVM_MAX_NESTED_GUESTS_SHIFT;
271         }
272
273         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
274                 /* POWER7 has 10-bit LPIDs, POWER8 has 12-bit LPIDs */
275                 if (cpu_has_feature(CPU_FTR_ARCH_207S))
276                         WARN_ON(nr_lpids != 1UL << 12);
277                 else
278                         WARN_ON(nr_lpids != 1UL << 10);
279
280                 /*
281                  * Reserve the last implemented LPID use in partition
282                  * switching for POWER7 and POWER8.
283                  */
284                 nr_lpids -= 1;
285         }
286
287         kvmppc_init_lpid(nr_lpids);
288
289         return 0;
290 }
291
292 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
293                                 long pte_index, unsigned long pteh,
294                                 unsigned long ptel, unsigned long *pte_idx_ret)
295 {
296         long ret;
297
298         preempt_disable();
299         ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
300                                 kvm->mm->pgd, false, pte_idx_ret);
301         preempt_enable();
302         if (ret == H_TOO_HARD) {
303                 /* this can't happen */
304                 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
305                 ret = H_RESOURCE;       /* or something */
306         }
307         return ret;
308
309 }
310
311 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
312                                                          gva_t eaddr)
313 {
314         u64 mask;
315         int i;
316
317         for (i = 0; i < vcpu->arch.slb_nr; i++) {
318                 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
319                         continue;
320
321                 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
322                         mask = ESID_MASK_1T;
323                 else
324                         mask = ESID_MASK;
325
326                 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
327                         return &vcpu->arch.slb[i];
328         }
329         return NULL;
330 }
331
332 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
333                         unsigned long ea)
334 {
335         unsigned long ra_mask;
336
337         ra_mask = kvmppc_actual_pgsz(v, r) - 1;
338         return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
339 }
340
341 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
342                         struct kvmppc_pte *gpte, bool data, bool iswrite)
343 {
344         struct kvm *kvm = vcpu->kvm;
345         struct kvmppc_slb *slbe;
346         unsigned long slb_v;
347         unsigned long pp, key;
348         unsigned long v, orig_v, gr;
349         __be64 *hptep;
350         long int index;
351         int virtmode = __kvmppc_get_msr_hv(vcpu) & (data ? MSR_DR : MSR_IR);
352
353         if (kvm_is_radix(vcpu->kvm))
354                 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
355
356         /* Get SLB entry */
357         if (virtmode) {
358                 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
359                 if (!slbe)
360                         return -EINVAL;
361                 slb_v = slbe->origv;
362         } else {
363                 /* real mode access */
364                 slb_v = vcpu->kvm->arch.vrma_slb_v;
365         }
366
367         preempt_disable();
368         /* Find the HPTE in the hash table */
369         index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
370                                          HPTE_V_VALID | HPTE_V_ABSENT);
371         if (index < 0) {
372                 preempt_enable();
373                 return -ENOENT;
374         }
375         hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
376         v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
377         if (cpu_has_feature(CPU_FTR_ARCH_300))
378                 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
379         gr = kvm->arch.hpt.rev[index].guest_rpte;
380
381         unlock_hpte(hptep, orig_v);
382         preempt_enable();
383
384         gpte->eaddr = eaddr;
385         gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
386
387         /* Get PP bits and key for permission check */
388         pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
389         key = (__kvmppc_get_msr_hv(vcpu) & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
390         key &= slb_v;
391
392         /* Calculate permissions */
393         gpte->may_read = hpte_read_permission(pp, key);
394         gpte->may_write = hpte_write_permission(pp, key);
395         gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
396
397         /* Storage key permission check for POWER7 */
398         if (data && virtmode) {
399                 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
400                 if (amrfield & 1)
401                         gpte->may_read = 0;
402                 if (amrfield & 2)
403                         gpte->may_write = 0;
404         }
405
406         /* Get the guest physical address */
407         gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
408         return 0;
409 }
410
411 /*
412  * Quick test for whether an instruction is a load or a store.
413  * If the instruction is a load or a store, then this will indicate
414  * which it is, at least on server processors.  (Embedded processors
415  * have some external PID instructions that don't follow the rule
416  * embodied here.)  If the instruction isn't a load or store, then
417  * this doesn't return anything useful.
418  */
419 static int instruction_is_store(ppc_inst_t instr)
420 {
421         unsigned int mask;
422         unsigned int suffix;
423
424         mask = 0x10000000;
425         suffix = ppc_inst_val(instr);
426         if (ppc_inst_prefixed(instr))
427                 suffix = ppc_inst_suffix(instr);
428         else if ((suffix & 0xfc000000) == 0x7c000000)
429                 mask = 0x100;           /* major opcode 31 */
430         return (suffix & mask) != 0;
431 }
432
433 int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu,
434                            unsigned long gpa, gva_t ea, int is_store)
435 {
436         ppc_inst_t last_inst;
437         bool is_prefixed = !!(kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
438
439         /*
440          * Fast path - check if the guest physical address corresponds to a
441          * device on the FAST_MMIO_BUS, if so we can avoid loading the
442          * instruction all together, then we can just handle it and return.
443          */
444         if (is_store) {
445                 int idx, ret;
446
447                 idx = srcu_read_lock(&vcpu->kvm->srcu);
448                 ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
449                                        NULL);
450                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
451                 if (!ret) {
452                         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + (is_prefixed ? 8 : 4));
453                         return RESUME_GUEST;
454                 }
455         }
456
457         /*
458          * If we fail, we just return to the guest and try executing it again.
459          */
460         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
461                 EMULATE_DONE)
462                 return RESUME_GUEST;
463
464         /*
465          * WARNING: We do not know for sure whether the instruction we just
466          * read from memory is the same that caused the fault in the first
467          * place.
468          *
469          * If the fault is prefixed but the instruction is not or vice
470          * versa, try again so that we don't advance pc the wrong amount.
471          */
472         if (ppc_inst_prefixed(last_inst) != is_prefixed)
473                 return RESUME_GUEST;
474
475         /*
476          * If the instruction we read is neither an load or a store,
477          * then it can't access memory, so we don't need to worry about
478          * enforcing access permissions.  So, assuming it is a load or
479          * store, we just check that its direction (load or store) is
480          * consistent with the original fault, since that's what we
481          * checked the access permissions against.  If there is a mismatch
482          * we just return and retry the instruction.
483          */
484
485         if (instruction_is_store(last_inst) != !!is_store)
486                 return RESUME_GUEST;
487
488         /*
489          * Emulated accesses are emulated by looking at the hash for
490          * translation once, then performing the access later. The
491          * translation could be invalidated in the meantime in which
492          * point performing the subsequent memory access on the old
493          * physical address could possibly be a security hole for the
494          * guest (but not the host).
495          *
496          * This is less of an issue for MMIO stores since they aren't
497          * globally visible. It could be an issue for MMIO loads to
498          * a certain extent but we'll ignore it for now.
499          */
500
501         vcpu->arch.paddr_accessed = gpa;
502         vcpu->arch.vaddr_accessed = ea;
503         return kvmppc_emulate_mmio(vcpu);
504 }
505
506 int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu,
507                                 unsigned long ea, unsigned long dsisr)
508 {
509         struct kvm *kvm = vcpu->kvm;
510         unsigned long hpte[3], r;
511         unsigned long hnow_v, hnow_r;
512         __be64 *hptep;
513         unsigned long mmu_seq, psize, pte_size;
514         unsigned long gpa_base, gfn_base;
515         unsigned long gpa, gfn, hva, pfn, hpa;
516         struct kvm_memory_slot *memslot;
517         unsigned long *rmap;
518         struct revmap_entry *rev;
519         struct page *page;
520         long index, ret;
521         bool is_ci;
522         bool writing, write_ok;
523         unsigned int shift;
524         unsigned long rcbits;
525         long mmio_update;
526         pte_t pte, *ptep;
527
528         if (kvm_is_radix(kvm))
529                 return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr);
530
531         /*
532          * Real-mode code has already searched the HPT and found the
533          * entry we're interested in.  Lock the entry and check that
534          * it hasn't changed.  If it has, just return and re-execute the
535          * instruction.
536          */
537         if (ea != vcpu->arch.pgfault_addr)
538                 return RESUME_GUEST;
539
540         if (vcpu->arch.pgfault_cache) {
541                 mmio_update = atomic64_read(&kvm->arch.mmio_update);
542                 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
543                         r = vcpu->arch.pgfault_cache->rpte;
544                         psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
545                                                    r);
546                         gpa_base = r & HPTE_R_RPN & ~(psize - 1);
547                         gfn_base = gpa_base >> PAGE_SHIFT;
548                         gpa = gpa_base | (ea & (psize - 1));
549                         return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
550                                                 dsisr & DSISR_ISSTORE);
551                 }
552         }
553         index = vcpu->arch.pgfault_index;
554         hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
555         rev = &kvm->arch.hpt.rev[index];
556         preempt_disable();
557         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
558                 cpu_relax();
559         hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
560         hpte[1] = be64_to_cpu(hptep[1]);
561         hpte[2] = r = rev->guest_rpte;
562         unlock_hpte(hptep, hpte[0]);
563         preempt_enable();
564
565         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
566                 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
567                 hpte[1] = hpte_new_to_old_r(hpte[1]);
568         }
569         if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
570             hpte[1] != vcpu->arch.pgfault_hpte[1])
571                 return RESUME_GUEST;
572
573         /* Translate the logical address and get the page */
574         psize = kvmppc_actual_pgsz(hpte[0], r);
575         gpa_base = r & HPTE_R_RPN & ~(psize - 1);
576         gfn_base = gpa_base >> PAGE_SHIFT;
577         gpa = gpa_base | (ea & (psize - 1));
578         gfn = gpa >> PAGE_SHIFT;
579         memslot = gfn_to_memslot(kvm, gfn);
580
581         trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
582
583         /* No memslot means it's an emulated MMIO region */
584         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
585                 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
586                                               dsisr & DSISR_ISSTORE);
587
588         /*
589          * This should never happen, because of the slot_is_aligned()
590          * check in kvmppc_do_h_enter().
591          */
592         if (gfn_base < memslot->base_gfn)
593                 return -EFAULT;
594
595         /* used to check for invalidations in progress */
596         mmu_seq = kvm->mmu_invalidate_seq;
597         smp_rmb();
598
599         ret = -EFAULT;
600         page = NULL;
601         writing = (dsisr & DSISR_ISSTORE) != 0;
602         /* If writing != 0, then the HPTE must allow writing, if we get here */
603         write_ok = writing;
604         hva = gfn_to_hva_memslot(memslot, gfn);
605
606         /*
607          * Do a fast check first, since __gfn_to_pfn_memslot doesn't
608          * do it with !atomic && !async, which is how we call it.
609          * We always ask for write permission since the common case
610          * is that the page is writable.
611          */
612         if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
613                 write_ok = true;
614         } else {
615                 /* Call KVM generic code to do the slow-path check */
616                 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
617                                            writing, &write_ok, NULL);
618                 if (is_error_noslot_pfn(pfn))
619                         return -EFAULT;
620                 page = NULL;
621                 if (pfn_valid(pfn)) {
622                         page = pfn_to_page(pfn);
623                         if (PageReserved(page))
624                                 page = NULL;
625                 }
626         }
627
628         /*
629          * Read the PTE from the process' radix tree and use that
630          * so we get the shift and attribute bits.
631          */
632         spin_lock(&kvm->mmu_lock);
633         ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
634         pte = __pte(0);
635         if (ptep)
636                 pte = READ_ONCE(*ptep);
637         spin_unlock(&kvm->mmu_lock);
638         /*
639          * If the PTE disappeared temporarily due to a THP
640          * collapse, just return and let the guest try again.
641          */
642         if (!pte_present(pte)) {
643                 if (page)
644                         put_page(page);
645                 return RESUME_GUEST;
646         }
647         hpa = pte_pfn(pte) << PAGE_SHIFT;
648         pte_size = PAGE_SIZE;
649         if (shift)
650                 pte_size = 1ul << shift;
651         is_ci = pte_ci(pte);
652
653         if (psize > pte_size)
654                 goto out_put;
655         if (pte_size > psize)
656                 hpa |= hva & (pte_size - psize);
657
658         /* Check WIMG vs. the actual page we're accessing */
659         if (!hpte_cache_flags_ok(r, is_ci)) {
660                 if (is_ci)
661                         goto out_put;
662                 /*
663                  * Allow guest to map emulated device memory as
664                  * uncacheable, but actually make it cacheable.
665                  */
666                 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
667         }
668
669         /*
670          * Set the HPTE to point to hpa.
671          * Since the hpa is at PAGE_SIZE granularity, make sure we
672          * don't mask out lower-order bits if psize < PAGE_SIZE.
673          */
674         if (psize < PAGE_SIZE)
675                 psize = PAGE_SIZE;
676         r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
677         if (hpte_is_writable(r) && !write_ok)
678                 r = hpte_make_readonly(r);
679         ret = RESUME_GUEST;
680         preempt_disable();
681         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
682                 cpu_relax();
683         hnow_v = be64_to_cpu(hptep[0]);
684         hnow_r = be64_to_cpu(hptep[1]);
685         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
686                 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
687                 hnow_r = hpte_new_to_old_r(hnow_r);
688         }
689
690         /*
691          * If the HPT is being resized, don't update the HPTE,
692          * instead let the guest retry after the resize operation is complete.
693          * The synchronization for mmu_ready test vs. set is provided
694          * by the HPTE lock.
695          */
696         if (!kvm->arch.mmu_ready)
697                 goto out_unlock;
698
699         if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
700             rev->guest_rpte != hpte[2])
701                 /* HPTE has been changed under us; let the guest retry */
702                 goto out_unlock;
703         hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
704
705         /* Always put the HPTE in the rmap chain for the page base address */
706         rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
707         lock_rmap(rmap);
708
709         /* Check if we might have been invalidated; let the guest retry if so */
710         ret = RESUME_GUEST;
711         if (mmu_invalidate_retry(vcpu->kvm, mmu_seq)) {
712                 unlock_rmap(rmap);
713                 goto out_unlock;
714         }
715
716         /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
717         rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
718         r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
719
720         if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
721                 /* HPTE was previously valid, so we need to invalidate it */
722                 unlock_rmap(rmap);
723                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
724                 kvmppc_invalidate_hpte(kvm, hptep, index);
725                 /* don't lose previous R and C bits */
726                 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
727         } else {
728                 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
729         }
730
731         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
732                 r = hpte_old_to_new_r(hpte[0], r);
733                 hpte[0] = hpte_old_to_new_v(hpte[0]);
734         }
735         hptep[1] = cpu_to_be64(r);
736         eieio();
737         __unlock_hpte(hptep, hpte[0]);
738         asm volatile("ptesync" : : : "memory");
739         preempt_enable();
740         if (page && hpte_is_writable(r))
741                 set_page_dirty_lock(page);
742
743  out_put:
744         trace_kvm_page_fault_exit(vcpu, hpte, ret);
745
746         if (page)
747                 put_page(page);
748         return ret;
749
750  out_unlock:
751         __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
752         preempt_enable();
753         goto out_put;
754 }
755
756 void kvmppc_rmap_reset(struct kvm *kvm)
757 {
758         struct kvm_memslots *slots;
759         struct kvm_memory_slot *memslot;
760         int srcu_idx, bkt;
761
762         srcu_idx = srcu_read_lock(&kvm->srcu);
763         slots = kvm_memslots(kvm);
764         kvm_for_each_memslot(memslot, bkt, slots) {
765                 /* Mutual exclusion with kvm_unmap_hva_range etc. */
766                 spin_lock(&kvm->mmu_lock);
767                 /*
768                  * This assumes it is acceptable to lose reference and
769                  * change bits across a reset.
770                  */
771                 memset(memslot->arch.rmap, 0,
772                        memslot->npages * sizeof(*memslot->arch.rmap));
773                 spin_unlock(&kvm->mmu_lock);
774         }
775         srcu_read_unlock(&kvm->srcu, srcu_idx);
776 }
777
778 /* Must be called with both HPTE and rmap locked */
779 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
780                               struct kvm_memory_slot *memslot,
781                               unsigned long *rmapp, unsigned long gfn)
782 {
783         __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
784         struct revmap_entry *rev = kvm->arch.hpt.rev;
785         unsigned long j, h;
786         unsigned long ptel, psize, rcbits;
787
788         j = rev[i].forw;
789         if (j == i) {
790                 /* chain is now empty */
791                 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
792         } else {
793                 /* remove i from chain */
794                 h = rev[i].back;
795                 rev[h].forw = j;
796                 rev[j].back = h;
797                 rev[i].forw = rev[i].back = i;
798                 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
799         }
800
801         /* Now check and modify the HPTE */
802         ptel = rev[i].guest_rpte;
803         psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
804         if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
805             hpte_rpn(ptel, psize) == gfn) {
806                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
807                 kvmppc_invalidate_hpte(kvm, hptep, i);
808                 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
809                 /* Harvest R and C */
810                 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
811                 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
812                 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
813                         kvmppc_update_dirty_map(memslot, gfn, psize);
814                 if (rcbits & ~rev[i].guest_rpte) {
815                         rev[i].guest_rpte = ptel | rcbits;
816                         note_hpte_modification(kvm, &rev[i]);
817                 }
818         }
819 }
820
821 static void kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
822                             unsigned long gfn)
823 {
824         unsigned long i;
825         __be64 *hptep;
826         unsigned long *rmapp;
827
828         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
829         for (;;) {
830                 lock_rmap(rmapp);
831                 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
832                         unlock_rmap(rmapp);
833                         break;
834                 }
835
836                 /*
837                  * To avoid an ABBA deadlock with the HPTE lock bit,
838                  * we can't spin on the HPTE lock while holding the
839                  * rmap chain lock.
840                  */
841                 i = *rmapp & KVMPPC_RMAP_INDEX;
842                 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
843                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
844                         /* unlock rmap before spinning on the HPTE lock */
845                         unlock_rmap(rmapp);
846                         while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
847                                 cpu_relax();
848                         continue;
849                 }
850
851                 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
852                 unlock_rmap(rmapp);
853                 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
854         }
855 }
856
857 bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range)
858 {
859         gfn_t gfn;
860
861         if (kvm_is_radix(kvm)) {
862                 for (gfn = range->start; gfn < range->end; gfn++)
863                         kvm_unmap_radix(kvm, range->slot, gfn);
864         } else {
865                 for (gfn = range->start; gfn < range->end; gfn++)
866                         kvm_unmap_rmapp(kvm, range->slot, gfn);
867         }
868
869         return false;
870 }
871
872 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
873                                   struct kvm_memory_slot *memslot)
874 {
875         unsigned long gfn;
876         unsigned long n;
877         unsigned long *rmapp;
878
879         gfn = memslot->base_gfn;
880         rmapp = memslot->arch.rmap;
881         if (kvm_is_radix(kvm)) {
882                 kvmppc_radix_flush_memslot(kvm, memslot);
883                 return;
884         }
885
886         for (n = memslot->npages; n; --n, ++gfn) {
887                 /*
888                  * Testing the present bit without locking is OK because
889                  * the memslot has been marked invalid already, and hence
890                  * no new HPTEs referencing this page can be created,
891                  * thus the present bit can't go from 0 to 1.
892                  */
893                 if (*rmapp & KVMPPC_RMAP_PRESENT)
894                         kvm_unmap_rmapp(kvm, memslot, gfn);
895                 ++rmapp;
896         }
897 }
898
899 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
900                           unsigned long gfn)
901 {
902         struct revmap_entry *rev = kvm->arch.hpt.rev;
903         unsigned long head, i, j;
904         __be64 *hptep;
905         bool ret = false;
906         unsigned long *rmapp;
907
908         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
909  retry:
910         lock_rmap(rmapp);
911         if (*rmapp & KVMPPC_RMAP_REFERENCED) {
912                 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
913                 ret = true;
914         }
915         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
916                 unlock_rmap(rmapp);
917                 return ret;
918         }
919
920         i = head = *rmapp & KVMPPC_RMAP_INDEX;
921         do {
922                 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
923                 j = rev[i].forw;
924
925                 /* If this HPTE isn't referenced, ignore it */
926                 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
927                         continue;
928
929                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
930                         /* unlock rmap before spinning on the HPTE lock */
931                         unlock_rmap(rmapp);
932                         while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
933                                 cpu_relax();
934                         goto retry;
935                 }
936
937                 /* Now check and modify the HPTE */
938                 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
939                     (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
940                         kvmppc_clear_ref_hpte(kvm, hptep, i);
941                         if (!(rev[i].guest_rpte & HPTE_R_R)) {
942                                 rev[i].guest_rpte |= HPTE_R_R;
943                                 note_hpte_modification(kvm, &rev[i]);
944                         }
945                         ret = true;
946                 }
947                 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
948         } while ((i = j) != head);
949
950         unlock_rmap(rmapp);
951         return ret;
952 }
953
954 bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
955 {
956         gfn_t gfn;
957         bool ret = false;
958
959         if (kvm_is_radix(kvm)) {
960                 for (gfn = range->start; gfn < range->end; gfn++)
961                         ret |= kvm_age_radix(kvm, range->slot, gfn);
962         } else {
963                 for (gfn = range->start; gfn < range->end; gfn++)
964                         ret |= kvm_age_rmapp(kvm, range->slot, gfn);
965         }
966
967         return ret;
968 }
969
970 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
971                                unsigned long gfn)
972 {
973         struct revmap_entry *rev = kvm->arch.hpt.rev;
974         unsigned long head, i, j;
975         unsigned long *hp;
976         bool ret = true;
977         unsigned long *rmapp;
978
979         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
980         if (*rmapp & KVMPPC_RMAP_REFERENCED)
981                 return true;
982
983         lock_rmap(rmapp);
984         if (*rmapp & KVMPPC_RMAP_REFERENCED)
985                 goto out;
986
987         if (*rmapp & KVMPPC_RMAP_PRESENT) {
988                 i = head = *rmapp & KVMPPC_RMAP_INDEX;
989                 do {
990                         hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
991                         j = rev[i].forw;
992                         if (be64_to_cpu(hp[1]) & HPTE_R_R)
993                                 goto out;
994                 } while ((i = j) != head);
995         }
996         ret = false;
997
998  out:
999         unlock_rmap(rmapp);
1000         return ret;
1001 }
1002
1003 bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
1004 {
1005         WARN_ON(range->start + 1 != range->end);
1006
1007         if (kvm_is_radix(kvm))
1008                 return kvm_test_age_radix(kvm, range->slot, range->start);
1009         else
1010                 return kvm_test_age_rmapp(kvm, range->slot, range->start);
1011 }
1012
1013 bool kvm_set_spte_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
1014 {
1015         WARN_ON(range->start + 1 != range->end);
1016
1017         if (kvm_is_radix(kvm))
1018                 kvm_unmap_radix(kvm, range->slot, range->start);
1019         else
1020                 kvm_unmap_rmapp(kvm, range->slot, range->start);
1021
1022         return false;
1023 }
1024
1025 static int vcpus_running(struct kvm *kvm)
1026 {
1027         return atomic_read(&kvm->arch.vcpus_running) != 0;
1028 }
1029
1030 /*
1031  * Returns the number of system pages that are dirty.
1032  * This can be more than 1 if we find a huge-page HPTE.
1033  */
1034 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1035 {
1036         struct revmap_entry *rev = kvm->arch.hpt.rev;
1037         unsigned long head, i, j;
1038         unsigned long n;
1039         unsigned long v, r;
1040         __be64 *hptep;
1041         int npages_dirty = 0;
1042
1043  retry:
1044         lock_rmap(rmapp);
1045         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1046                 unlock_rmap(rmapp);
1047                 return npages_dirty;
1048         }
1049
1050         i = head = *rmapp & KVMPPC_RMAP_INDEX;
1051         do {
1052                 unsigned long hptep1;
1053                 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1054                 j = rev[i].forw;
1055
1056                 /*
1057                  * Checking the C (changed) bit here is racy since there
1058                  * is no guarantee about when the hardware writes it back.
1059                  * If the HPTE is not writable then it is stable since the
1060                  * page can't be written to, and we would have done a tlbie
1061                  * (which forces the hardware to complete any writeback)
1062                  * when making the HPTE read-only.
1063                  * If vcpus are running then this call is racy anyway
1064                  * since the page could get dirtied subsequently, so we
1065                  * expect there to be a further call which would pick up
1066                  * any delayed C bit writeback.
1067                  * Otherwise we need to do the tlbie even if C==0 in
1068                  * order to pick up any delayed writeback of C.
1069                  */
1070                 hptep1 = be64_to_cpu(hptep[1]);
1071                 if (!(hptep1 & HPTE_R_C) &&
1072                     (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1073                         continue;
1074
1075                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1076                         /* unlock rmap before spinning on the HPTE lock */
1077                         unlock_rmap(rmapp);
1078                         while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1079                                 cpu_relax();
1080                         goto retry;
1081                 }
1082
1083                 /* Now check and modify the HPTE */
1084                 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1085                         __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1086                         continue;
1087                 }
1088
1089                 /* need to make it temporarily absent so C is stable */
1090                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1091                 kvmppc_invalidate_hpte(kvm, hptep, i);
1092                 v = be64_to_cpu(hptep[0]);
1093                 r = be64_to_cpu(hptep[1]);
1094                 if (r & HPTE_R_C) {
1095                         hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1096                         if (!(rev[i].guest_rpte & HPTE_R_C)) {
1097                                 rev[i].guest_rpte |= HPTE_R_C;
1098                                 note_hpte_modification(kvm, &rev[i]);
1099                         }
1100                         n = kvmppc_actual_pgsz(v, r);
1101                         n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1102                         if (n > npages_dirty)
1103                                 npages_dirty = n;
1104                         eieio();
1105                 }
1106                 v &= ~HPTE_V_ABSENT;
1107                 v |= HPTE_V_VALID;
1108                 __unlock_hpte(hptep, v);
1109         } while ((i = j) != head);
1110
1111         unlock_rmap(rmapp);
1112         return npages_dirty;
1113 }
1114
1115 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1116                               struct kvm_memory_slot *memslot,
1117                               unsigned long *map)
1118 {
1119         unsigned long gfn;
1120
1121         if (!vpa->dirty || !vpa->pinned_addr)
1122                 return;
1123         gfn = vpa->gpa >> PAGE_SHIFT;
1124         if (gfn < memslot->base_gfn ||
1125             gfn >= memslot->base_gfn + memslot->npages)
1126                 return;
1127
1128         vpa->dirty = false;
1129         if (map)
1130                 __set_bit_le(gfn - memslot->base_gfn, map);
1131 }
1132
1133 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1134                         struct kvm_memory_slot *memslot, unsigned long *map)
1135 {
1136         unsigned long i;
1137         unsigned long *rmapp;
1138
1139         preempt_disable();
1140         rmapp = memslot->arch.rmap;
1141         for (i = 0; i < memslot->npages; ++i) {
1142                 int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1143                 /*
1144                  * Note that if npages > 0 then i must be a multiple of npages,
1145                  * since we always put huge-page HPTEs in the rmap chain
1146                  * corresponding to their page base address.
1147                  */
1148                 if (npages)
1149                         set_dirty_bits(map, i, npages);
1150                 ++rmapp;
1151         }
1152         preempt_enable();
1153         return 0;
1154 }
1155
1156 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1157                             unsigned long *nb_ret)
1158 {
1159         struct kvm_memory_slot *memslot;
1160         unsigned long gfn = gpa >> PAGE_SHIFT;
1161         struct page *page, *pages[1];
1162         int npages;
1163         unsigned long hva, offset;
1164         int srcu_idx;
1165
1166         srcu_idx = srcu_read_lock(&kvm->srcu);
1167         memslot = gfn_to_memslot(kvm, gfn);
1168         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1169                 goto err;
1170         hva = gfn_to_hva_memslot(memslot, gfn);
1171         npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1172         if (npages < 1)
1173                 goto err;
1174         page = pages[0];
1175         srcu_read_unlock(&kvm->srcu, srcu_idx);
1176
1177         offset = gpa & (PAGE_SIZE - 1);
1178         if (nb_ret)
1179                 *nb_ret = PAGE_SIZE - offset;
1180         return page_address(page) + offset;
1181
1182  err:
1183         srcu_read_unlock(&kvm->srcu, srcu_idx);
1184         return NULL;
1185 }
1186
1187 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1188                              bool dirty)
1189 {
1190         struct page *page = virt_to_page(va);
1191         struct kvm_memory_slot *memslot;
1192         unsigned long gfn;
1193         int srcu_idx;
1194
1195         put_page(page);
1196
1197         if (!dirty)
1198                 return;
1199
1200         /* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1201         gfn = gpa >> PAGE_SHIFT;
1202         srcu_idx = srcu_read_lock(&kvm->srcu);
1203         memslot = gfn_to_memslot(kvm, gfn);
1204         if (memslot && memslot->dirty_bitmap)
1205                 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1206         srcu_read_unlock(&kvm->srcu, srcu_idx);
1207 }
1208
1209 /*
1210  * HPT resizing
1211  */
1212 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1213 {
1214         int rc;
1215
1216         rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1217         if (rc < 0)
1218                 return rc;
1219
1220         resize_hpt_debug(resize, "%s(): HPT @ 0x%lx\n", __func__,
1221                          resize->hpt.virt);
1222
1223         return 0;
1224 }
1225
1226 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1227                                             unsigned long idx)
1228 {
1229         struct kvm *kvm = resize->kvm;
1230         struct kvm_hpt_info *old = &kvm->arch.hpt;
1231         struct kvm_hpt_info *new = &resize->hpt;
1232         unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1233         unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1234         __be64 *hptep, *new_hptep;
1235         unsigned long vpte, rpte, guest_rpte;
1236         int ret;
1237         struct revmap_entry *rev;
1238         unsigned long apsize, avpn, pteg, hash;
1239         unsigned long new_idx, new_pteg, replace_vpte;
1240         int pshift;
1241
1242         hptep = (__be64 *)(old->virt + (idx << 4));
1243
1244         /* Guest is stopped, so new HPTEs can't be added or faulted
1245          * in, only unmapped or altered by host actions.  So, it's
1246          * safe to check this before we take the HPTE lock */
1247         vpte = be64_to_cpu(hptep[0]);
1248         if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1249                 return 0; /* nothing to do */
1250
1251         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1252                 cpu_relax();
1253
1254         vpte = be64_to_cpu(hptep[0]);
1255
1256         ret = 0;
1257         if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1258                 /* Nothing to do */
1259                 goto out;
1260
1261         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1262                 rpte = be64_to_cpu(hptep[1]);
1263                 vpte = hpte_new_to_old_v(vpte, rpte);
1264         }
1265
1266         /* Unmap */
1267         rev = &old->rev[idx];
1268         guest_rpte = rev->guest_rpte;
1269
1270         ret = -EIO;
1271         apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1272         if (!apsize)
1273                 goto out;
1274
1275         if (vpte & HPTE_V_VALID) {
1276                 unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1277                 int srcu_idx = srcu_read_lock(&kvm->srcu);
1278                 struct kvm_memory_slot *memslot =
1279                         __gfn_to_memslot(kvm_memslots(kvm), gfn);
1280
1281                 if (memslot) {
1282                         unsigned long *rmapp;
1283                         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1284
1285                         lock_rmap(rmapp);
1286                         kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1287                         unlock_rmap(rmapp);
1288                 }
1289
1290                 srcu_read_unlock(&kvm->srcu, srcu_idx);
1291         }
1292
1293         /* Reload PTE after unmap */
1294         vpte = be64_to_cpu(hptep[0]);
1295         BUG_ON(vpte & HPTE_V_VALID);
1296         BUG_ON(!(vpte & HPTE_V_ABSENT));
1297
1298         ret = 0;
1299         if (!(vpte & HPTE_V_BOLTED))
1300                 goto out;
1301
1302         rpte = be64_to_cpu(hptep[1]);
1303
1304         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1305                 vpte = hpte_new_to_old_v(vpte, rpte);
1306                 rpte = hpte_new_to_old_r(rpte);
1307         }
1308
1309         pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1310         avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1311         pteg = idx / HPTES_PER_GROUP;
1312         if (vpte & HPTE_V_SECONDARY)
1313                 pteg = ~pteg;
1314
1315         if (!(vpte & HPTE_V_1TB_SEG)) {
1316                 unsigned long offset, vsid;
1317
1318                 /* We only have 28 - 23 bits of offset in avpn */
1319                 offset = (avpn & 0x1f) << 23;
1320                 vsid = avpn >> 5;
1321                 /* We can find more bits from the pteg value */
1322                 if (pshift < 23)
1323                         offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1324
1325                 hash = vsid ^ (offset >> pshift);
1326         } else {
1327                 unsigned long offset, vsid;
1328
1329                 /* We only have 40 - 23 bits of seg_off in avpn */
1330                 offset = (avpn & 0x1ffff) << 23;
1331                 vsid = avpn >> 17;
1332                 if (pshift < 23)
1333                         offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1334
1335                 hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1336         }
1337
1338         new_pteg = hash & new_hash_mask;
1339         if (vpte & HPTE_V_SECONDARY)
1340                 new_pteg = ~hash & new_hash_mask;
1341
1342         new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1343         new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1344
1345         replace_vpte = be64_to_cpu(new_hptep[0]);
1346         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1347                 unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1348                 replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1349         }
1350
1351         if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1352                 BUG_ON(new->order >= old->order);
1353
1354                 if (replace_vpte & HPTE_V_BOLTED) {
1355                         if (vpte & HPTE_V_BOLTED)
1356                                 /* Bolted collision, nothing we can do */
1357                                 ret = -ENOSPC;
1358                         /* Discard the new HPTE */
1359                         goto out;
1360                 }
1361
1362                 /* Discard the previous HPTE */
1363         }
1364
1365         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1366                 rpte = hpte_old_to_new_r(vpte, rpte);
1367                 vpte = hpte_old_to_new_v(vpte);
1368         }
1369
1370         new_hptep[1] = cpu_to_be64(rpte);
1371         new->rev[new_idx].guest_rpte = guest_rpte;
1372         /* No need for a barrier, since new HPT isn't active */
1373         new_hptep[0] = cpu_to_be64(vpte);
1374         unlock_hpte(new_hptep, vpte);
1375
1376 out:
1377         unlock_hpte(hptep, vpte);
1378         return ret;
1379 }
1380
1381 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1382 {
1383         struct kvm *kvm = resize->kvm;
1384         unsigned  long i;
1385         int rc;
1386
1387         for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1388                 rc = resize_hpt_rehash_hpte(resize, i);
1389                 if (rc != 0)
1390                         return rc;
1391         }
1392
1393         return 0;
1394 }
1395
1396 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1397 {
1398         struct kvm *kvm = resize->kvm;
1399         struct kvm_hpt_info hpt_tmp;
1400
1401         /* Exchange the pending tables in the resize structure with
1402          * the active tables */
1403
1404         resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1405
1406         spin_lock(&kvm->mmu_lock);
1407         asm volatile("ptesync" : : : "memory");
1408
1409         hpt_tmp = kvm->arch.hpt;
1410         kvmppc_set_hpt(kvm, &resize->hpt);
1411         resize->hpt = hpt_tmp;
1412
1413         spin_unlock(&kvm->mmu_lock);
1414
1415         synchronize_srcu_expedited(&kvm->srcu);
1416
1417         if (cpu_has_feature(CPU_FTR_ARCH_300))
1418                 kvmppc_setup_partition_table(kvm);
1419
1420         resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1421 }
1422
1423 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1424 {
1425         if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1426                 return;
1427
1428         if (!resize)
1429                 return;
1430
1431         if (resize->error != -EBUSY) {
1432                 if (resize->hpt.virt)
1433                         kvmppc_free_hpt(&resize->hpt);
1434                 kfree(resize);
1435         }
1436
1437         if (kvm->arch.resize_hpt == resize)
1438                 kvm->arch.resize_hpt = NULL;
1439 }
1440
1441 static void resize_hpt_prepare_work(struct work_struct *work)
1442 {
1443         struct kvm_resize_hpt *resize = container_of(work,
1444                                                      struct kvm_resize_hpt,
1445                                                      work);
1446         struct kvm *kvm = resize->kvm;
1447         int err = 0;
1448
1449         if (WARN_ON(resize->error != -EBUSY))
1450                 return;
1451
1452         mutex_lock(&kvm->arch.mmu_setup_lock);
1453
1454         /* Request is still current? */
1455         if (kvm->arch.resize_hpt == resize) {
1456                 /* We may request large allocations here:
1457                  * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1458                  */
1459                 mutex_unlock(&kvm->arch.mmu_setup_lock);
1460
1461                 resize_hpt_debug(resize, "%s(): order = %d\n", __func__,
1462                                  resize->order);
1463
1464                 err = resize_hpt_allocate(resize);
1465
1466                 /* We have strict assumption about -EBUSY
1467                  * when preparing for HPT resize.
1468                  */
1469                 if (WARN_ON(err == -EBUSY))
1470                         err = -EINPROGRESS;
1471
1472                 mutex_lock(&kvm->arch.mmu_setup_lock);
1473                 /* It is possible that kvm->arch.resize_hpt != resize
1474                  * after we grab kvm->arch.mmu_setup_lock again.
1475                  */
1476         }
1477
1478         resize->error = err;
1479
1480         if (kvm->arch.resize_hpt != resize)
1481                 resize_hpt_release(kvm, resize);
1482
1483         mutex_unlock(&kvm->arch.mmu_setup_lock);
1484 }
1485
1486 int kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1487                                     struct kvm_ppc_resize_hpt *rhpt)
1488 {
1489         unsigned long flags = rhpt->flags;
1490         unsigned long shift = rhpt->shift;
1491         struct kvm_resize_hpt *resize;
1492         int ret;
1493
1494         if (flags != 0 || kvm_is_radix(kvm))
1495                 return -EINVAL;
1496
1497         if (shift && ((shift < 18) || (shift > 46)))
1498                 return -EINVAL;
1499
1500         mutex_lock(&kvm->arch.mmu_setup_lock);
1501
1502         resize = kvm->arch.resize_hpt;
1503
1504         if (resize) {
1505                 if (resize->order == shift) {
1506                         /* Suitable resize in progress? */
1507                         ret = resize->error;
1508                         if (ret == -EBUSY)
1509                                 ret = 100; /* estimated time in ms */
1510                         else if (ret)
1511                                 resize_hpt_release(kvm, resize);
1512
1513                         goto out;
1514                 }
1515
1516                 /* not suitable, cancel it */
1517                 resize_hpt_release(kvm, resize);
1518         }
1519
1520         ret = 0;
1521         if (!shift)
1522                 goto out; /* nothing to do */
1523
1524         /* start new resize */
1525
1526         resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1527         if (!resize) {
1528                 ret = -ENOMEM;
1529                 goto out;
1530         }
1531
1532         resize->error = -EBUSY;
1533         resize->order = shift;
1534         resize->kvm = kvm;
1535         INIT_WORK(&resize->work, resize_hpt_prepare_work);
1536         kvm->arch.resize_hpt = resize;
1537
1538         schedule_work(&resize->work);
1539
1540         ret = 100; /* estimated time in ms */
1541
1542 out:
1543         mutex_unlock(&kvm->arch.mmu_setup_lock);
1544         return ret;
1545 }
1546
1547 static void resize_hpt_boot_vcpu(void *opaque)
1548 {
1549         /* Nothing to do, just force a KVM exit */
1550 }
1551
1552 int kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1553                                    struct kvm_ppc_resize_hpt *rhpt)
1554 {
1555         unsigned long flags = rhpt->flags;
1556         unsigned long shift = rhpt->shift;
1557         struct kvm_resize_hpt *resize;
1558         int ret;
1559
1560         if (flags != 0 || kvm_is_radix(kvm))
1561                 return -EINVAL;
1562
1563         if (shift && ((shift < 18) || (shift > 46)))
1564                 return -EINVAL;
1565
1566         mutex_lock(&kvm->arch.mmu_setup_lock);
1567
1568         resize = kvm->arch.resize_hpt;
1569
1570         /* This shouldn't be possible */
1571         ret = -EIO;
1572         if (WARN_ON(!kvm->arch.mmu_ready))
1573                 goto out_no_hpt;
1574
1575         /* Stop VCPUs from running while we mess with the HPT */
1576         kvm->arch.mmu_ready = 0;
1577         smp_mb();
1578
1579         /* Boot all CPUs out of the guest so they re-read
1580          * mmu_ready */
1581         on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1582
1583         ret = -ENXIO;
1584         if (!resize || (resize->order != shift))
1585                 goto out;
1586
1587         ret = resize->error;
1588         if (ret)
1589                 goto out;
1590
1591         ret = resize_hpt_rehash(resize);
1592         if (ret)
1593                 goto out;
1594
1595         resize_hpt_pivot(resize);
1596
1597 out:
1598         /* Let VCPUs run again */
1599         kvm->arch.mmu_ready = 1;
1600         smp_mb();
1601 out_no_hpt:
1602         resize_hpt_release(kvm, resize);
1603         mutex_unlock(&kvm->arch.mmu_setup_lock);
1604         return ret;
1605 }
1606
1607 /*
1608  * Functions for reading and writing the hash table via reads and
1609  * writes on a file descriptor.
1610  *
1611  * Reads return the guest view of the hash table, which has to be
1612  * pieced together from the real hash table and the guest_rpte
1613  * values in the revmap array.
1614  *
1615  * On writes, each HPTE written is considered in turn, and if it
1616  * is valid, it is written to the HPT as if an H_ENTER with the
1617  * exact flag set was done.  When the invalid count is non-zero
1618  * in the header written to the stream, the kernel will make
1619  * sure that that many HPTEs are invalid, and invalidate them
1620  * if not.
1621  */
1622
1623 struct kvm_htab_ctx {
1624         unsigned long   index;
1625         unsigned long   flags;
1626         struct kvm      *kvm;
1627         int             first_pass;
1628 };
1629
1630 #define HPTE_SIZE       (2 * sizeof(unsigned long))
1631
1632 /*
1633  * Returns 1 if this HPT entry has been modified or has pending
1634  * R/C bit changes.
1635  */
1636 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1637 {
1638         unsigned long rcbits_unset;
1639
1640         if (revp->guest_rpte & HPTE_GR_MODIFIED)
1641                 return 1;
1642
1643         /* Also need to consider changes in reference and changed bits */
1644         rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1645         if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1646             (be64_to_cpu(hptp[1]) & rcbits_unset))
1647                 return 1;
1648
1649         return 0;
1650 }
1651
1652 static long record_hpte(unsigned long flags, __be64 *hptp,
1653                         unsigned long *hpte, struct revmap_entry *revp,
1654                         int want_valid, int first_pass)
1655 {
1656         unsigned long v, r, hr;
1657         unsigned long rcbits_unset;
1658         int ok = 1;
1659         int valid, dirty;
1660
1661         /* Unmodified entries are uninteresting except on the first pass */
1662         dirty = hpte_dirty(revp, hptp);
1663         if (!first_pass && !dirty)
1664                 return 0;
1665
1666         valid = 0;
1667         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1668                 valid = 1;
1669                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1670                     !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1671                         valid = 0;
1672         }
1673         if (valid != want_valid)
1674                 return 0;
1675
1676         v = r = 0;
1677         if (valid || dirty) {
1678                 /* lock the HPTE so it's stable and read it */
1679                 preempt_disable();
1680                 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1681                         cpu_relax();
1682                 v = be64_to_cpu(hptp[0]);
1683                 hr = be64_to_cpu(hptp[1]);
1684                 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1685                         v = hpte_new_to_old_v(v, hr);
1686                         hr = hpte_new_to_old_r(hr);
1687                 }
1688
1689                 /* re-evaluate valid and dirty from synchronized HPTE value */
1690                 valid = !!(v & HPTE_V_VALID);
1691                 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1692
1693                 /* Harvest R and C into guest view if necessary */
1694                 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1695                 if (valid && (rcbits_unset & hr)) {
1696                         revp->guest_rpte |= (hr &
1697                                 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1698                         dirty = 1;
1699                 }
1700
1701                 if (v & HPTE_V_ABSENT) {
1702                         v &= ~HPTE_V_ABSENT;
1703                         v |= HPTE_V_VALID;
1704                         valid = 1;
1705                 }
1706                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1707                         valid = 0;
1708
1709                 r = revp->guest_rpte;
1710                 /* only clear modified if this is the right sort of entry */
1711                 if (valid == want_valid && dirty) {
1712                         r &= ~HPTE_GR_MODIFIED;
1713                         revp->guest_rpte = r;
1714                 }
1715                 unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1716                 preempt_enable();
1717                 if (!(valid == want_valid && (first_pass || dirty)))
1718                         ok = 0;
1719         }
1720         hpte[0] = cpu_to_be64(v);
1721         hpte[1] = cpu_to_be64(r);
1722         return ok;
1723 }
1724
1725 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1726                              size_t count, loff_t *ppos)
1727 {
1728         struct kvm_htab_ctx *ctx = file->private_data;
1729         struct kvm *kvm = ctx->kvm;
1730         struct kvm_get_htab_header hdr;
1731         __be64 *hptp;
1732         struct revmap_entry *revp;
1733         unsigned long i, nb, nw;
1734         unsigned long __user *lbuf;
1735         struct kvm_get_htab_header __user *hptr;
1736         unsigned long flags;
1737         int first_pass;
1738         unsigned long hpte[2];
1739
1740         if (!access_ok(buf, count))
1741                 return -EFAULT;
1742         if (kvm_is_radix(kvm))
1743                 return 0;
1744
1745         first_pass = ctx->first_pass;
1746         flags = ctx->flags;
1747
1748         i = ctx->index;
1749         hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1750         revp = kvm->arch.hpt.rev + i;
1751         lbuf = (unsigned long __user *)buf;
1752
1753         nb = 0;
1754         while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1755                 /* Initialize header */
1756                 hptr = (struct kvm_get_htab_header __user *)buf;
1757                 hdr.n_valid = 0;
1758                 hdr.n_invalid = 0;
1759                 nw = nb;
1760                 nb += sizeof(hdr);
1761                 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1762
1763                 /* Skip uninteresting entries, i.e. clean on not-first pass */
1764                 if (!first_pass) {
1765                         while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1766                                !hpte_dirty(revp, hptp)) {
1767                                 ++i;
1768                                 hptp += 2;
1769                                 ++revp;
1770                         }
1771                 }
1772                 hdr.index = i;
1773
1774                 /* Grab a series of valid entries */
1775                 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1776                        hdr.n_valid < 0xffff &&
1777                        nb + HPTE_SIZE < count &&
1778                        record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1779                         /* valid entry, write it out */
1780                         ++hdr.n_valid;
1781                         if (__put_user(hpte[0], lbuf) ||
1782                             __put_user(hpte[1], lbuf + 1))
1783                                 return -EFAULT;
1784                         nb += HPTE_SIZE;
1785                         lbuf += 2;
1786                         ++i;
1787                         hptp += 2;
1788                         ++revp;
1789                 }
1790                 /* Now skip invalid entries while we can */
1791                 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1792                        hdr.n_invalid < 0xffff &&
1793                        record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1794                         /* found an invalid entry */
1795                         ++hdr.n_invalid;
1796                         ++i;
1797                         hptp += 2;
1798                         ++revp;
1799                 }
1800
1801                 if (hdr.n_valid || hdr.n_invalid) {
1802                         /* write back the header */
1803                         if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1804                                 return -EFAULT;
1805                         nw = nb;
1806                         buf = (char __user *)lbuf;
1807                 } else {
1808                         nb = nw;
1809                 }
1810
1811                 /* Check if we've wrapped around the hash table */
1812                 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1813                         i = 0;
1814                         ctx->first_pass = 0;
1815                         break;
1816                 }
1817         }
1818
1819         ctx->index = i;
1820
1821         return nb;
1822 }
1823
1824 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1825                               size_t count, loff_t *ppos)
1826 {
1827         struct kvm_htab_ctx *ctx = file->private_data;
1828         struct kvm *kvm = ctx->kvm;
1829         struct kvm_get_htab_header hdr;
1830         unsigned long i, j;
1831         unsigned long v, r;
1832         unsigned long __user *lbuf;
1833         __be64 *hptp;
1834         unsigned long tmp[2];
1835         ssize_t nb;
1836         long int err, ret;
1837         int mmu_ready;
1838         int pshift;
1839
1840         if (!access_ok(buf, count))
1841                 return -EFAULT;
1842         if (kvm_is_radix(kvm))
1843                 return -EINVAL;
1844
1845         /* lock out vcpus from running while we're doing this */
1846         mutex_lock(&kvm->arch.mmu_setup_lock);
1847         mmu_ready = kvm->arch.mmu_ready;
1848         if (mmu_ready) {
1849                 kvm->arch.mmu_ready = 0;        /* temporarily */
1850                 /* order mmu_ready vs. vcpus_running */
1851                 smp_mb();
1852                 if (atomic_read(&kvm->arch.vcpus_running)) {
1853                         kvm->arch.mmu_ready = 1;
1854                         mutex_unlock(&kvm->arch.mmu_setup_lock);
1855                         return -EBUSY;
1856                 }
1857         }
1858
1859         err = 0;
1860         for (nb = 0; nb + sizeof(hdr) <= count; ) {
1861                 err = -EFAULT;
1862                 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1863                         break;
1864
1865                 err = 0;
1866                 if (nb + hdr.n_valid * HPTE_SIZE > count)
1867                         break;
1868
1869                 nb += sizeof(hdr);
1870                 buf += sizeof(hdr);
1871
1872                 err = -EINVAL;
1873                 i = hdr.index;
1874                 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1875                     i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1876                         break;
1877
1878                 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1879                 lbuf = (unsigned long __user *)buf;
1880                 for (j = 0; j < hdr.n_valid; ++j) {
1881                         __be64 hpte_v;
1882                         __be64 hpte_r;
1883
1884                         err = -EFAULT;
1885                         if (__get_user(hpte_v, lbuf) ||
1886                             __get_user(hpte_r, lbuf + 1))
1887                                 goto out;
1888                         v = be64_to_cpu(hpte_v);
1889                         r = be64_to_cpu(hpte_r);
1890                         err = -EINVAL;
1891                         if (!(v & HPTE_V_VALID))
1892                                 goto out;
1893                         pshift = kvmppc_hpte_base_page_shift(v, r);
1894                         if (pshift <= 0)
1895                                 goto out;
1896                         lbuf += 2;
1897                         nb += HPTE_SIZE;
1898
1899                         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1900                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1901                         err = -EIO;
1902                         ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1903                                                          tmp);
1904                         if (ret != H_SUCCESS) {
1905                                 pr_err("%s ret %ld i=%ld v=%lx r=%lx\n", __func__, ret, i, v, r);
1906                                 goto out;
1907                         }
1908                         if (!mmu_ready && is_vrma_hpte(v)) {
1909                                 unsigned long senc, lpcr;
1910
1911                                 senc = slb_pgsize_encoding(1ul << pshift);
1912                                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1913                                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1914                                 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1915                                         lpcr = senc << (LPCR_VRMASD_SH - 4);
1916                                         kvmppc_update_lpcr(kvm, lpcr,
1917                                                            LPCR_VRMASD);
1918                                 } else {
1919                                         kvmppc_setup_partition_table(kvm);
1920                                 }
1921                                 mmu_ready = 1;
1922                         }
1923                         ++i;
1924                         hptp += 2;
1925                 }
1926
1927                 for (j = 0; j < hdr.n_invalid; ++j) {
1928                         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1929                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1930                         ++i;
1931                         hptp += 2;
1932                 }
1933                 err = 0;
1934         }
1935
1936  out:
1937         /* Order HPTE updates vs. mmu_ready */
1938         smp_wmb();
1939         kvm->arch.mmu_ready = mmu_ready;
1940         mutex_unlock(&kvm->arch.mmu_setup_lock);
1941
1942         if (err)
1943                 return err;
1944         return nb;
1945 }
1946
1947 static int kvm_htab_release(struct inode *inode, struct file *filp)
1948 {
1949         struct kvm_htab_ctx *ctx = filp->private_data;
1950
1951         filp->private_data = NULL;
1952         if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1953                 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1954         kvm_put_kvm(ctx->kvm);
1955         kfree(ctx);
1956         return 0;
1957 }
1958
1959 static const struct file_operations kvm_htab_fops = {
1960         .read           = kvm_htab_read,
1961         .write          = kvm_htab_write,
1962         .llseek         = default_llseek,
1963         .release        = kvm_htab_release,
1964 };
1965
1966 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1967 {
1968         int ret;
1969         struct kvm_htab_ctx *ctx;
1970         int rwflag;
1971
1972         /* reject flags we don't recognize */
1973         if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1974                 return -EINVAL;
1975         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1976         if (!ctx)
1977                 return -ENOMEM;
1978         kvm_get_kvm(kvm);
1979         ctx->kvm = kvm;
1980         ctx->index = ghf->start_index;
1981         ctx->flags = ghf->flags;
1982         ctx->first_pass = 1;
1983
1984         rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1985         ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1986         if (ret < 0) {
1987                 kfree(ctx);
1988                 kvm_put_kvm_no_destroy(kvm);
1989                 return ret;
1990         }
1991
1992         if (rwflag == O_RDONLY) {
1993                 mutex_lock(&kvm->slots_lock);
1994                 atomic_inc(&kvm->arch.hpte_mod_interest);
1995                 /* make sure kvmppc_do_h_enter etc. see the increment */
1996                 synchronize_srcu_expedited(&kvm->srcu);
1997                 mutex_unlock(&kvm->slots_lock);
1998         }
1999
2000         return ret;
2001 }
2002
2003 struct debugfs_htab_state {
2004         struct kvm      *kvm;
2005         struct mutex    mutex;
2006         unsigned long   hpt_index;
2007         int             chars_left;
2008         int             buf_index;
2009         char            buf[64];
2010 };
2011
2012 static int debugfs_htab_open(struct inode *inode, struct file *file)
2013 {
2014         struct kvm *kvm = inode->i_private;
2015         struct debugfs_htab_state *p;
2016
2017         p = kzalloc(sizeof(*p), GFP_KERNEL);
2018         if (!p)
2019                 return -ENOMEM;
2020
2021         kvm_get_kvm(kvm);
2022         p->kvm = kvm;
2023         mutex_init(&p->mutex);
2024         file->private_data = p;
2025
2026         return nonseekable_open(inode, file);
2027 }
2028
2029 static int debugfs_htab_release(struct inode *inode, struct file *file)
2030 {
2031         struct debugfs_htab_state *p = file->private_data;
2032
2033         kvm_put_kvm(p->kvm);
2034         kfree(p);
2035         return 0;
2036 }
2037
2038 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2039                                  size_t len, loff_t *ppos)
2040 {
2041         struct debugfs_htab_state *p = file->private_data;
2042         ssize_t ret, r;
2043         unsigned long i, n;
2044         unsigned long v, hr, gr;
2045         struct kvm *kvm;
2046         __be64 *hptp;
2047
2048         kvm = p->kvm;
2049         if (kvm_is_radix(kvm))
2050                 return 0;
2051
2052         ret = mutex_lock_interruptible(&p->mutex);
2053         if (ret)
2054                 return ret;
2055
2056         if (p->chars_left) {
2057                 n = p->chars_left;
2058                 if (n > len)
2059                         n = len;
2060                 r = copy_to_user(buf, p->buf + p->buf_index, n);
2061                 n -= r;
2062                 p->chars_left -= n;
2063                 p->buf_index += n;
2064                 buf += n;
2065                 len -= n;
2066                 ret = n;
2067                 if (r) {
2068                         if (!n)
2069                                 ret = -EFAULT;
2070                         goto out;
2071                 }
2072         }
2073
2074         i = p->hpt_index;
2075         hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2076         for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2077              ++i, hptp += 2) {
2078                 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2079                         continue;
2080
2081                 /* lock the HPTE so it's stable and read it */
2082                 preempt_disable();
2083                 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2084                         cpu_relax();
2085                 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2086                 hr = be64_to_cpu(hptp[1]);
2087                 gr = kvm->arch.hpt.rev[i].guest_rpte;
2088                 unlock_hpte(hptp, v);
2089                 preempt_enable();
2090
2091                 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2092                         continue;
2093
2094                 n = scnprintf(p->buf, sizeof(p->buf),
2095                               "%6lx %.16lx %.16lx %.16lx\n",
2096                               i, v, hr, gr);
2097                 p->chars_left = n;
2098                 if (n > len)
2099                         n = len;
2100                 r = copy_to_user(buf, p->buf, n);
2101                 n -= r;
2102                 p->chars_left -= n;
2103                 p->buf_index = n;
2104                 buf += n;
2105                 len -= n;
2106                 ret += n;
2107                 if (r) {
2108                         if (!ret)
2109                                 ret = -EFAULT;
2110                         goto out;
2111                 }
2112         }
2113         p->hpt_index = i;
2114
2115  out:
2116         mutex_unlock(&p->mutex);
2117         return ret;
2118 }
2119
2120 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2121                            size_t len, loff_t *ppos)
2122 {
2123         return -EACCES;
2124 }
2125
2126 static const struct file_operations debugfs_htab_fops = {
2127         .owner   = THIS_MODULE,
2128         .open    = debugfs_htab_open,
2129         .release = debugfs_htab_release,
2130         .read    = debugfs_htab_read,
2131         .write   = debugfs_htab_write,
2132         .llseek  = generic_file_llseek,
2133 };
2134
2135 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2136 {
2137         debugfs_create_file("htab", 0400, kvm->debugfs_dentry, kvm,
2138                             &debugfs_htab_fops);
2139 }
2140
2141 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2142 {
2143         struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2144
2145         vcpu->arch.slb_nr = 32;         /* POWER7/POWER8 */
2146
2147         mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2148
2149         vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2150 }