GNU Linux-libre 5.15.72-gnu
[releases.git] / arch / powerpc / kernel / watchdog.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Watchdog support on powerpc systems.
4  *
5  * Copyright 2017, IBM Corporation.
6  *
7  * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
8  */
9
10 #define pr_fmt(fmt) "watchdog: " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/param.h>
14 #include <linux/init.h>
15 #include <linux/percpu.h>
16 #include <linux/cpu.h>
17 #include <linux/nmi.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 #include <linux/kprobes.h>
21 #include <linux/hardirq.h>
22 #include <linux/reboot.h>
23 #include <linux/slab.h>
24 #include <linux/kdebug.h>
25 #include <linux/sched/debug.h>
26 #include <linux/delay.h>
27 #include <linux/processor.h>
28 #include <linux/smp.h>
29
30 #include <asm/interrupt.h>
31 #include <asm/paca.h>
32 #include <asm/nmi.h>
33
34 /*
35  * The powerpc watchdog ensures that each CPU is able to service timers.
36  * The watchdog sets up a simple timer on each CPU to run once per timer
37  * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
38  * the heartbeat.
39  *
40  * Then there are two systems to check that the heartbeat is still running.
41  * The local soft-NMI, and the SMP checker.
42  *
43  * The soft-NMI checker can detect lockups on the local CPU. When interrupts
44  * are disabled with local_irq_disable(), platforms that use soft-masking
45  * can leave hardware interrupts enabled and handle them with a masked
46  * interrupt handler. The masked handler can send the timer interrupt to the
47  * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
48  * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
49  *
50  * The soft-NMI checker will compare the heartbeat timestamp for this CPU
51  * with the current time, and take action if the difference exceeds the
52  * watchdog threshold.
53  *
54  * The limitation of the soft-NMI watchdog is that it does not work when
55  * interrupts are hard disabled or otherwise not being serviced. This is
56  * solved by also having a SMP watchdog where all CPUs check all other
57  * CPUs heartbeat.
58  *
59  * The SMP checker can detect lockups on other CPUs. A gobal "pending"
60  * cpumask is kept, containing all CPUs which enable the watchdog. Each
61  * CPU clears their pending bit in their heartbeat timer. When the bitmask
62  * becomes empty, the last CPU to clear its pending bit updates a global
63  * timestamp and refills the pending bitmask.
64  *
65  * In the heartbeat timer, if any CPU notices that the global timestamp has
66  * not been updated for a period exceeding the watchdog threshold, then it
67  * means the CPU(s) with their bit still set in the pending mask have had
68  * their heartbeat stop, and action is taken.
69  *
70  * Some platforms implement true NMI IPIs, which can be used by the SMP
71  * watchdog to detect an unresponsive CPU and pull it out of its stuck
72  * state with the NMI IPI, to get crash/debug data from it. This way the
73  * SMP watchdog can detect hardware interrupts off lockups.
74  */
75
76 static cpumask_t wd_cpus_enabled __read_mostly;
77
78 static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
79 static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
80
81 static u64 wd_timer_period_ms __read_mostly;  /* interval between heartbeat */
82
83 static DEFINE_PER_CPU(struct hrtimer, wd_hrtimer);
84 static DEFINE_PER_CPU(u64, wd_timer_tb);
85
86 /* SMP checker bits */
87 static unsigned long __wd_smp_lock;
88 static cpumask_t wd_smp_cpus_pending;
89 static cpumask_t wd_smp_cpus_stuck;
90 static u64 wd_smp_last_reset_tb;
91
92 static inline void wd_smp_lock(unsigned long *flags)
93 {
94         /*
95          * Avoid locking layers if possible.
96          * This may be called from low level interrupt handlers at some
97          * point in future.
98          */
99         raw_local_irq_save(*flags);
100         hard_irq_disable(); /* Make it soft-NMI safe */
101         while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
102                 raw_local_irq_restore(*flags);
103                 spin_until_cond(!test_bit(0, &__wd_smp_lock));
104                 raw_local_irq_save(*flags);
105                 hard_irq_disable();
106         }
107 }
108
109 static inline void wd_smp_unlock(unsigned long *flags)
110 {
111         clear_bit_unlock(0, &__wd_smp_lock);
112         raw_local_irq_restore(*flags);
113 }
114
115 static void wd_lockup_ipi(struct pt_regs *regs)
116 {
117         int cpu = raw_smp_processor_id();
118         u64 tb = get_tb();
119
120         pr_emerg("CPU %d Hard LOCKUP\n", cpu);
121         pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
122                  cpu, tb, per_cpu(wd_timer_tb, cpu),
123                  tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
124         print_modules();
125         print_irqtrace_events(current);
126         if (regs)
127                 show_regs(regs);
128         else
129                 dump_stack();
130
131         /* Do not panic from here because that can recurse into NMI IPI layer */
132 }
133
134 static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb)
135 {
136         cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask);
137         cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask);
138         /*
139          * See wd_smp_clear_cpu_pending()
140          */
141         smp_mb();
142         if (cpumask_empty(&wd_smp_cpus_pending)) {
143                 wd_smp_last_reset_tb = tb;
144                 cpumask_andnot(&wd_smp_cpus_pending,
145                                 &wd_cpus_enabled,
146                                 &wd_smp_cpus_stuck);
147         }
148 }
149 static void set_cpu_stuck(int cpu, u64 tb)
150 {
151         set_cpumask_stuck(cpumask_of(cpu), tb);
152 }
153
154 static void watchdog_smp_panic(int cpu, u64 tb)
155 {
156         unsigned long flags;
157         int c;
158
159         wd_smp_lock(&flags);
160         /* Double check some things under lock */
161         if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
162                 goto out;
163         if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
164                 goto out;
165         if (cpumask_weight(&wd_smp_cpus_pending) == 0)
166                 goto out;
167
168         pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
169                  cpu, cpumask_pr_args(&wd_smp_cpus_pending));
170         pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
171                  cpu, tb, wd_smp_last_reset_tb,
172                  tb_to_ns(tb - wd_smp_last_reset_tb) / 1000000);
173
174         if (!sysctl_hardlockup_all_cpu_backtrace) {
175                 /*
176                  * Try to trigger the stuck CPUs, unless we are going to
177                  * get a backtrace on all of them anyway.
178                  */
179                 for_each_cpu(c, &wd_smp_cpus_pending) {
180                         if (c == cpu)
181                                 continue;
182                         smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
183                 }
184         }
185
186         /* Take the stuck CPUs out of the watch group */
187         set_cpumask_stuck(&wd_smp_cpus_pending, tb);
188
189         wd_smp_unlock(&flags);
190
191         if (sysctl_hardlockup_all_cpu_backtrace)
192                 trigger_allbutself_cpu_backtrace();
193
194         /*
195          * Force flush any remote buffers that might be stuck in IRQ context
196          * and therefore could not run their irq_work.
197          */
198         printk_trigger_flush();
199
200         if (hardlockup_panic)
201                 nmi_panic(NULL, "Hard LOCKUP");
202
203         return;
204
205 out:
206         wd_smp_unlock(&flags);
207 }
208
209 static void wd_smp_clear_cpu_pending(int cpu, u64 tb)
210 {
211         if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
212                 if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
213                         struct pt_regs *regs = get_irq_regs();
214                         unsigned long flags;
215
216                         wd_smp_lock(&flags);
217
218                         pr_emerg("CPU %d became unstuck TB:%lld\n",
219                                  cpu, tb);
220                         print_irqtrace_events(current);
221                         if (regs)
222                                 show_regs(regs);
223                         else
224                                 dump_stack();
225
226                         cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
227                         wd_smp_unlock(&flags);
228                 } else {
229                         /*
230                          * The last CPU to clear pending should have reset the
231                          * watchdog so we generally should not find it empty
232                          * here if our CPU was clear. However it could happen
233                          * due to a rare race with another CPU taking the
234                          * last CPU out of the mask concurrently.
235                          *
236                          * We can't add a warning for it. But just in case
237                          * there is a problem with the watchdog that is causing
238                          * the mask to not be reset, try to kick it along here.
239                          */
240                         if (unlikely(cpumask_empty(&wd_smp_cpus_pending)))
241                                 goto none_pending;
242                 }
243                 return;
244         }
245
246         cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
247
248         /*
249          * Order the store to clear pending with the load(s) to check all
250          * words in the pending mask to check they are all empty. This orders
251          * with the same barrier on another CPU. This prevents two CPUs
252          * clearing the last 2 pending bits, but neither seeing the other's
253          * store when checking if the mask is empty, and missing an empty
254          * mask, which ends with a false positive.
255          */
256         smp_mb();
257         if (cpumask_empty(&wd_smp_cpus_pending)) {
258                 unsigned long flags;
259
260 none_pending:
261                 /*
262                  * Double check under lock because more than one CPU could see
263                  * a clear mask with the lockless check after clearing their
264                  * pending bits.
265                  */
266                 wd_smp_lock(&flags);
267                 if (cpumask_empty(&wd_smp_cpus_pending)) {
268                         wd_smp_last_reset_tb = tb;
269                         cpumask_andnot(&wd_smp_cpus_pending,
270                                         &wd_cpus_enabled,
271                                         &wd_smp_cpus_stuck);
272                 }
273                 wd_smp_unlock(&flags);
274         }
275 }
276
277 static void watchdog_timer_interrupt(int cpu)
278 {
279         u64 tb = get_tb();
280
281         per_cpu(wd_timer_tb, cpu) = tb;
282
283         wd_smp_clear_cpu_pending(cpu, tb);
284
285         if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
286                 watchdog_smp_panic(cpu, tb);
287 }
288
289 DEFINE_INTERRUPT_HANDLER_NMI(soft_nmi_interrupt)
290 {
291         unsigned long flags;
292         int cpu = raw_smp_processor_id();
293         u64 tb;
294
295         /* should only arrive from kernel, with irqs disabled */
296         WARN_ON_ONCE(!arch_irq_disabled_regs(regs));
297
298         if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
299                 return 0;
300
301         __this_cpu_inc(irq_stat.soft_nmi_irqs);
302
303         tb = get_tb();
304         if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
305                 wd_smp_lock(&flags);
306                 if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
307                         wd_smp_unlock(&flags);
308                         return 0;
309                 }
310                 set_cpu_stuck(cpu, tb);
311
312                 pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
313                          cpu, (void *)regs->nip);
314                 pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
315                          cpu, tb, per_cpu(wd_timer_tb, cpu),
316                          tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
317                 print_modules();
318                 print_irqtrace_events(current);
319                 show_regs(regs);
320
321                 wd_smp_unlock(&flags);
322
323                 if (sysctl_hardlockup_all_cpu_backtrace)
324                         trigger_allbutself_cpu_backtrace();
325
326                 if (hardlockup_panic)
327                         nmi_panic(regs, "Hard LOCKUP");
328         }
329         if (wd_panic_timeout_tb < 0x7fffffff)
330                 mtspr(SPRN_DEC, wd_panic_timeout_tb);
331
332         return 0;
333 }
334
335 static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
336 {
337         int cpu = smp_processor_id();
338
339         if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
340                 return HRTIMER_NORESTART;
341
342         if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
343                 return HRTIMER_NORESTART;
344
345         watchdog_timer_interrupt(cpu);
346
347         hrtimer_forward_now(hrtimer, ms_to_ktime(wd_timer_period_ms));
348
349         return HRTIMER_RESTART;
350 }
351
352 void arch_touch_nmi_watchdog(void)
353 {
354         unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
355         int cpu = smp_processor_id();
356         u64 tb;
357
358         if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
359                 return;
360
361         tb = get_tb();
362         if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
363                 per_cpu(wd_timer_tb, cpu) = tb;
364                 wd_smp_clear_cpu_pending(cpu, tb);
365         }
366 }
367 EXPORT_SYMBOL(arch_touch_nmi_watchdog);
368
369 static void start_watchdog(void *arg)
370 {
371         struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
372         int cpu = smp_processor_id();
373         unsigned long flags;
374
375         if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
376                 WARN_ON(1);
377                 return;
378         }
379
380         if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
381                 return;
382
383         if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
384                 return;
385
386         wd_smp_lock(&flags);
387         cpumask_set_cpu(cpu, &wd_cpus_enabled);
388         if (cpumask_weight(&wd_cpus_enabled) == 1) {
389                 cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
390                 wd_smp_last_reset_tb = get_tb();
391         }
392         wd_smp_unlock(&flags);
393
394         *this_cpu_ptr(&wd_timer_tb) = get_tb();
395
396         hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
397         hrtimer->function = watchdog_timer_fn;
398         hrtimer_start(hrtimer, ms_to_ktime(wd_timer_period_ms),
399                       HRTIMER_MODE_REL_PINNED);
400 }
401
402 static int start_watchdog_on_cpu(unsigned int cpu)
403 {
404         return smp_call_function_single(cpu, start_watchdog, NULL, true);
405 }
406
407 static void stop_watchdog(void *arg)
408 {
409         struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
410         int cpu = smp_processor_id();
411         unsigned long flags;
412
413         if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
414                 return; /* Can happen in CPU unplug case */
415
416         hrtimer_cancel(hrtimer);
417
418         wd_smp_lock(&flags);
419         cpumask_clear_cpu(cpu, &wd_cpus_enabled);
420         wd_smp_unlock(&flags);
421
422         wd_smp_clear_cpu_pending(cpu, get_tb());
423 }
424
425 static int stop_watchdog_on_cpu(unsigned int cpu)
426 {
427         return smp_call_function_single(cpu, stop_watchdog, NULL, true);
428 }
429
430 static void watchdog_calc_timeouts(void)
431 {
432         wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
433
434         /* Have the SMP detector trigger a bit later */
435         wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
436
437         /* 2/5 is the factor that the perf based detector uses */
438         wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
439 }
440
441 void watchdog_nmi_stop(void)
442 {
443         int cpu;
444
445         for_each_cpu(cpu, &wd_cpus_enabled)
446                 stop_watchdog_on_cpu(cpu);
447 }
448
449 void watchdog_nmi_start(void)
450 {
451         int cpu;
452
453         watchdog_calc_timeouts();
454         for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
455                 start_watchdog_on_cpu(cpu);
456 }
457
458 /*
459  * Invoked from core watchdog init.
460  */
461 int __init watchdog_nmi_probe(void)
462 {
463         int err;
464
465         err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
466                                         "powerpc/watchdog:online",
467                                         start_watchdog_on_cpu,
468                                         stop_watchdog_on_cpu);
469         if (err < 0) {
470                 pr_warn("could not be initialized");
471                 return err;
472         }
473         return 0;
474 }