GNU Linux-libre 6.5.10-gnu
[releases.git] / arch / powerpc / kernel / traps.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
4  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
5  *
6  *  Modified by Cort Dougan (cort@cs.nmt.edu)
7  *  and Paul Mackerras (paulus@samba.org)
8  */
9
10 /*
11  * This file handles the architecture-dependent parts of hardware exceptions
12  */
13
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/pkeys.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/ptrace.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/extable.h>
27 #include <linux/module.h>       /* print_modules */
28 #include <linux/prctl.h>
29 #include <linux/delay.h>
30 #include <linux/kprobes.h>
31 #include <linux/kexec.h>
32 #include <linux/backlight.h>
33 #include <linux/bug.h>
34 #include <linux/kdebug.h>
35 #include <linux/ratelimit.h>
36 #include <linux/context_tracking.h>
37 #include <linux/smp.h>
38 #include <linux/console.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/debugfs.h>
41
42 #include <asm/emulated_ops.h>
43 #include <linux/uaccess.h>
44 #include <asm/interrupt.h>
45 #include <asm/io.h>
46 #include <asm/machdep.h>
47 #include <asm/rtas.h>
48 #include <asm/pmc.h>
49 #include <asm/reg.h>
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #endif
57 #include <asm/kexec.h>
58 #include <asm/ppc-opcode.h>
59 #include <asm/rio.h>
60 #include <asm/fadump.h>
61 #include <asm/switch_to.h>
62 #include <asm/tm.h>
63 #include <asm/debug.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/hmi.h>
66 #include <sysdev/fsl_pci.h>
67 #include <asm/kprobes.h>
68 #include <asm/stacktrace.h>
69 #include <asm/nmi.h>
70 #include <asm/disassemble.h>
71 #include <asm/udbg.h>
72
73 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
74 int (*__debugger)(struct pt_regs *regs) __read_mostly;
75 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
78 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
79 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
80 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
81
82 EXPORT_SYMBOL(__debugger);
83 EXPORT_SYMBOL(__debugger_ipi);
84 EXPORT_SYMBOL(__debugger_bpt);
85 EXPORT_SYMBOL(__debugger_sstep);
86 EXPORT_SYMBOL(__debugger_iabr_match);
87 EXPORT_SYMBOL(__debugger_break_match);
88 EXPORT_SYMBOL(__debugger_fault_handler);
89 #endif
90
91 /* Transactional Memory trap debug */
92 #ifdef TM_DEBUG_SW
93 #define TM_DEBUG(x...) printk(KERN_INFO x)
94 #else
95 #define TM_DEBUG(x...) do { } while(0)
96 #endif
97
98 static const char *signame(int signr)
99 {
100         switch (signr) {
101         case SIGBUS:    return "bus error";
102         case SIGFPE:    return "floating point exception";
103         case SIGILL:    return "illegal instruction";
104         case SIGSEGV:   return "segfault";
105         case SIGTRAP:   return "unhandled trap";
106         }
107
108         return "unknown signal";
109 }
110
111 /*
112  * Trap & Exception support
113  */
114
115 #ifdef CONFIG_PMAC_BACKLIGHT
116 static void pmac_backlight_unblank(void)
117 {
118         mutex_lock(&pmac_backlight_mutex);
119         if (pmac_backlight) {
120                 struct backlight_properties *props;
121
122                 props = &pmac_backlight->props;
123                 props->brightness = props->max_brightness;
124                 props->power = FB_BLANK_UNBLANK;
125                 backlight_update_status(pmac_backlight);
126         }
127         mutex_unlock(&pmac_backlight_mutex);
128 }
129 #else
130 static inline void pmac_backlight_unblank(void) { }
131 #endif
132
133 /*
134  * If oops/die is expected to crash the machine, return true here.
135  *
136  * This should not be expected to be 100% accurate, there may be
137  * notifiers registered or other unexpected conditions that may bring
138  * down the kernel. Or if the current process in the kernel is holding
139  * locks or has other critical state, the kernel may become effectively
140  * unusable anyway.
141  */
142 bool die_will_crash(void)
143 {
144         if (should_fadump_crash())
145                 return true;
146         if (kexec_should_crash(current))
147                 return true;
148         if (in_interrupt() || panic_on_oops ||
149                         !current->pid || is_global_init(current))
150                 return true;
151
152         return false;
153 }
154
155 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
156 static int die_owner = -1;
157 static unsigned int die_nest_count;
158 static int die_counter;
159
160 extern void panic_flush_kmsg_start(void)
161 {
162         /*
163          * These are mostly taken from kernel/panic.c, but tries to do
164          * relatively minimal work. Don't use delay functions (TB may
165          * be broken), don't crash dump (need to set a firmware log),
166          * don't run notifiers. We do want to get some information to
167          * Linux console.
168          */
169         console_verbose();
170         bust_spinlocks(1);
171 }
172
173 extern void panic_flush_kmsg_end(void)
174 {
175         kmsg_dump(KMSG_DUMP_PANIC);
176         bust_spinlocks(0);
177         debug_locks_off();
178         console_flush_on_panic(CONSOLE_FLUSH_PENDING);
179 }
180
181 static unsigned long oops_begin(struct pt_regs *regs)
182 {
183         int cpu;
184         unsigned long flags;
185
186         oops_enter();
187
188         /* racy, but better than risking deadlock. */
189         raw_local_irq_save(flags);
190         cpu = smp_processor_id();
191         if (!arch_spin_trylock(&die_lock)) {
192                 if (cpu == die_owner)
193                         /* nested oops. should stop eventually */;
194                 else
195                         arch_spin_lock(&die_lock);
196         }
197         die_nest_count++;
198         die_owner = cpu;
199         console_verbose();
200         bust_spinlocks(1);
201         if (machine_is(powermac))
202                 pmac_backlight_unblank();
203         return flags;
204 }
205 NOKPROBE_SYMBOL(oops_begin);
206
207 static void oops_end(unsigned long flags, struct pt_regs *regs,
208                                int signr)
209 {
210         bust_spinlocks(0);
211         add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
212         die_nest_count--;
213         oops_exit();
214         printk("\n");
215         if (!die_nest_count) {
216                 /* Nest count reaches zero, release the lock. */
217                 die_owner = -1;
218                 arch_spin_unlock(&die_lock);
219         }
220         raw_local_irq_restore(flags);
221
222         /*
223          * system_reset_excption handles debugger, crash dump, panic, for 0x100
224          */
225         if (TRAP(regs) == INTERRUPT_SYSTEM_RESET)
226                 return;
227
228         crash_fadump(regs, "die oops");
229
230         if (kexec_should_crash(current))
231                 crash_kexec(regs);
232
233         if (!signr)
234                 return;
235
236         /*
237          * While our oops output is serialised by a spinlock, output
238          * from panic() called below can race and corrupt it. If we
239          * know we are going to panic, delay for 1 second so we have a
240          * chance to get clean backtraces from all CPUs that are oopsing.
241          */
242         if (in_interrupt() || panic_on_oops || !current->pid ||
243             is_global_init(current)) {
244                 mdelay(MSEC_PER_SEC);
245         }
246
247         if (panic_on_oops)
248                 panic("Fatal exception");
249         make_task_dead(signr);
250 }
251 NOKPROBE_SYMBOL(oops_end);
252
253 static char *get_mmu_str(void)
254 {
255         if (early_radix_enabled())
256                 return " MMU=Radix";
257         if (early_mmu_has_feature(MMU_FTR_HPTE_TABLE))
258                 return " MMU=Hash";
259         return "";
260 }
261
262 static int __die(const char *str, struct pt_regs *regs, long err)
263 {
264         printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
265
266         printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s %s\n",
267                IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE",
268                PAGE_SIZE / 1024, get_mmu_str(),
269                IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "",
270                IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
271                IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "",
272                debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
273                IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "",
274                ppc_md.name ? ppc_md.name : "");
275
276         if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
277                 return 1;
278
279         print_modules();
280         show_regs(regs);
281
282         return 0;
283 }
284 NOKPROBE_SYMBOL(__die);
285
286 void die(const char *str, struct pt_regs *regs, long err)
287 {
288         unsigned long flags;
289
290         /*
291          * system_reset_excption handles debugger, crash dump, panic, for 0x100
292          */
293         if (TRAP(regs) != INTERRUPT_SYSTEM_RESET) {
294                 if (debugger(regs))
295                         return;
296         }
297
298         flags = oops_begin(regs);
299         if (__die(str, regs, err))
300                 err = 0;
301         oops_end(flags, regs, err);
302 }
303 NOKPROBE_SYMBOL(die);
304
305 void user_single_step_report(struct pt_regs *regs)
306 {
307         force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip);
308 }
309
310 static void show_signal_msg(int signr, struct pt_regs *regs, int code,
311                             unsigned long addr)
312 {
313         static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
314                                       DEFAULT_RATELIMIT_BURST);
315
316         if (!show_unhandled_signals)
317                 return;
318
319         if (!unhandled_signal(current, signr))
320                 return;
321
322         if (!__ratelimit(&rs))
323                 return;
324
325         pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
326                 current->comm, current->pid, signame(signr), signr,
327                 addr, regs->nip, regs->link, code);
328
329         print_vma_addr(KERN_CONT " in ", regs->nip);
330
331         pr_cont("\n");
332
333         show_user_instructions(regs);
334 }
335
336 static bool exception_common(int signr, struct pt_regs *regs, int code,
337                               unsigned long addr)
338 {
339         if (!user_mode(regs)) {
340                 die("Exception in kernel mode", regs, signr);
341                 return false;
342         }
343
344         /*
345          * Must not enable interrupts even for user-mode exception, because
346          * this can be called from machine check, which may be a NMI or IRQ
347          * which don't like interrupts being enabled. Could check for
348          * in_hardirq || in_nmi perhaps, but there doesn't seem to be a good
349          * reason why _exception() should enable irqs for an exception handler,
350          * the handlers themselves do that directly.
351          */
352
353         show_signal_msg(signr, regs, code, addr);
354
355         current->thread.trap_nr = code;
356
357         return true;
358 }
359
360 void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key)
361 {
362         if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr))
363                 return;
364
365         force_sig_pkuerr((void __user *) addr, key);
366 }
367
368 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
369 {
370         if (!exception_common(signr, regs, code, addr))
371                 return;
372
373         force_sig_fault(signr, code, (void __user *)addr);
374 }
375
376 /*
377  * The interrupt architecture has a quirk in that the HV interrupts excluding
378  * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
379  * that an interrupt handler must do is save off a GPR into a scratch register,
380  * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
381  * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
382  * that it is non-reentrant, which leads to random data corruption.
383  *
384  * The solution is for NMI interrupts in HV mode to check if they originated
385  * from these critical HV interrupt regions. If so, then mark them not
386  * recoverable.
387  *
388  * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
389  * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
390  * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
391  * that would work. However any other guest OS that may have the SPRG live
392  * and MSR[RI]=1 could encounter silent corruption.
393  *
394  * Builds that do not support KVM could take this second option to increase
395  * the recoverability of NMIs.
396  */
397 noinstr void hv_nmi_check_nonrecoverable(struct pt_regs *regs)
398 {
399 #ifdef CONFIG_PPC_POWERNV
400         unsigned long kbase = (unsigned long)_stext;
401         unsigned long nip = regs->nip;
402
403         if (!(regs->msr & MSR_RI))
404                 return;
405         if (!(regs->msr & MSR_HV))
406                 return;
407         if (regs->msr & MSR_PR)
408                 return;
409
410         /*
411          * Now test if the interrupt has hit a range that may be using
412          * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
413          * problem ranges all run un-relocated. Test real and virt modes
414          * at the same time by dropping the high bit of the nip (virt mode
415          * entry points still have the +0x4000 offset).
416          */
417         nip &= ~0xc000000000000000ULL;
418         if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600))
419                 goto nonrecoverable;
420         if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00))
421                 goto nonrecoverable;
422         if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0))
423                 goto nonrecoverable;
424         if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0))
425                 goto nonrecoverable;
426
427         /* Trampoline code runs un-relocated so subtract kbase. */
428         if (nip >= (unsigned long)(start_real_trampolines - kbase) &&
429                         nip < (unsigned long)(end_real_trampolines - kbase))
430                 goto nonrecoverable;
431         if (nip >= (unsigned long)(start_virt_trampolines - kbase) &&
432                         nip < (unsigned long)(end_virt_trampolines - kbase))
433                 goto nonrecoverable;
434         return;
435
436 nonrecoverable:
437         regs->msr &= ~MSR_RI;
438         local_paca->hsrr_valid = 0;
439         local_paca->srr_valid = 0;
440 #endif
441 }
442 DEFINE_INTERRUPT_HANDLER_NMI(system_reset_exception)
443 {
444         unsigned long hsrr0, hsrr1;
445         bool saved_hsrrs = false;
446
447         /*
448          * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
449          * The system reset interrupt itself may clobber HSRRs (e.g., to call
450          * OPAL), so save them here and restore them before returning.
451          *
452          * Machine checks don't need to save HSRRs, as the real mode handler
453          * is careful to avoid them, and the regular handler is not delivered
454          * as an NMI.
455          */
456         if (cpu_has_feature(CPU_FTR_HVMODE)) {
457                 hsrr0 = mfspr(SPRN_HSRR0);
458                 hsrr1 = mfspr(SPRN_HSRR1);
459                 saved_hsrrs = true;
460         }
461
462         hv_nmi_check_nonrecoverable(regs);
463
464         __this_cpu_inc(irq_stat.sreset_irqs);
465
466         /* See if any machine dependent calls */
467         if (ppc_md.system_reset_exception) {
468                 if (ppc_md.system_reset_exception(regs))
469                         goto out;
470         }
471
472         if (debugger(regs))
473                 goto out;
474
475         kmsg_dump(KMSG_DUMP_OOPS);
476         /*
477          * A system reset is a request to dump, so we always send
478          * it through the crashdump code (if fadump or kdump are
479          * registered).
480          */
481         crash_fadump(regs, "System Reset");
482
483         crash_kexec(regs);
484
485         /*
486          * We aren't the primary crash CPU. We need to send it
487          * to a holding pattern to avoid it ending up in the panic
488          * code.
489          */
490         crash_kexec_secondary(regs);
491
492         /*
493          * No debugger or crash dump registered, print logs then
494          * panic.
495          */
496         die("System Reset", regs, SIGABRT);
497
498         mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
499         add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
500         nmi_panic(regs, "System Reset");
501
502 out:
503 #ifdef CONFIG_PPC_BOOK3S_64
504         BUG_ON(get_paca()->in_nmi == 0);
505         if (get_paca()->in_nmi > 1)
506                 die("Unrecoverable nested System Reset", regs, SIGABRT);
507 #endif
508         /* Must die if the interrupt is not recoverable */
509         if (regs_is_unrecoverable(regs)) {
510                 /* For the reason explained in die_mce, nmi_exit before die */
511                 nmi_exit();
512                 die("Unrecoverable System Reset", regs, SIGABRT);
513         }
514
515         if (saved_hsrrs) {
516                 mtspr(SPRN_HSRR0, hsrr0);
517                 mtspr(SPRN_HSRR1, hsrr1);
518         }
519
520         /* What should we do here? We could issue a shutdown or hard reset. */
521
522         return 0;
523 }
524
525 /*
526  * I/O accesses can cause machine checks on powermacs.
527  * Check if the NIP corresponds to the address of a sync
528  * instruction for which there is an entry in the exception
529  * table.
530  *  -- paulus.
531  */
532 static inline int check_io_access(struct pt_regs *regs)
533 {
534 #ifdef CONFIG_PPC32
535         unsigned long msr = regs->msr;
536         const struct exception_table_entry *entry;
537         unsigned int *nip = (unsigned int *)regs->nip;
538
539         if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
540             && (entry = search_exception_tables(regs->nip)) != NULL) {
541                 /*
542                  * Check that it's a sync instruction, or somewhere
543                  * in the twi; isync; nop sequence that inb/inw/inl uses.
544                  * As the address is in the exception table
545                  * we should be able to read the instr there.
546                  * For the debug message, we look at the preceding
547                  * load or store.
548                  */
549                 if (*nip == PPC_RAW_NOP())
550                         nip -= 2;
551                 else if (*nip == PPC_RAW_ISYNC())
552                         --nip;
553                 if (*nip == PPC_RAW_SYNC() || get_op(*nip) == OP_TRAP) {
554                         unsigned int rb;
555
556                         --nip;
557                         rb = (*nip >> 11) & 0x1f;
558                         printk(KERN_DEBUG "%s bad port %lx at %p\n",
559                                (*nip & 0x100)? "OUT to": "IN from",
560                                regs->gpr[rb] - _IO_BASE, nip);
561                         regs_set_recoverable(regs);
562                         regs_set_return_ip(regs, extable_fixup(entry));
563                         return 1;
564                 }
565         }
566 #endif /* CONFIG_PPC32 */
567         return 0;
568 }
569
570 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
571 /* On 4xx, the reason for the machine check or program exception
572    is in the ESR. */
573 #define get_reason(regs)        ((regs)->esr)
574 #define REASON_FP               ESR_FP
575 #define REASON_ILLEGAL          (ESR_PIL | ESR_PUO)
576 #define REASON_PRIVILEGED       ESR_PPR
577 #define REASON_TRAP             ESR_PTR
578 #define REASON_PREFIXED         0
579 #define REASON_BOUNDARY         0
580
581 /* single-step stuff */
582 #define single_stepping(regs)   (current->thread.debug.dbcr0 & DBCR0_IC)
583 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
584 #define clear_br_trace(regs)    do {} while(0)
585 #else
586 /* On non-4xx, the reason for the machine check or program
587    exception is in the MSR. */
588 #define get_reason(regs)        ((regs)->msr)
589 #define REASON_TM               SRR1_PROGTM
590 #define REASON_FP               SRR1_PROGFPE
591 #define REASON_ILLEGAL          SRR1_PROGILL
592 #define REASON_PRIVILEGED       SRR1_PROGPRIV
593 #define REASON_TRAP             SRR1_PROGTRAP
594 #define REASON_PREFIXED         SRR1_PREFIXED
595 #define REASON_BOUNDARY         SRR1_BOUNDARY
596
597 #define single_stepping(regs)   ((regs)->msr & MSR_SE)
598 #define clear_single_step(regs) (regs_set_return_msr((regs), (regs)->msr & ~MSR_SE))
599 #define clear_br_trace(regs)    (regs_set_return_msr((regs), (regs)->msr & ~MSR_BE))
600 #endif
601
602 #define inst_length(reason)     (((reason) & REASON_PREFIXED) ? 8 : 4)
603
604 #if defined(CONFIG_PPC_E500)
605 int machine_check_e500mc(struct pt_regs *regs)
606 {
607         unsigned long mcsr = mfspr(SPRN_MCSR);
608         unsigned long pvr = mfspr(SPRN_PVR);
609         unsigned long reason = mcsr;
610         int recoverable = 1;
611
612         if (reason & MCSR_LD) {
613                 recoverable = fsl_rio_mcheck_exception(regs);
614                 if (recoverable == 1)
615                         goto silent_out;
616         }
617
618         printk("Machine check in kernel mode.\n");
619         printk("Caused by (from MCSR=%lx): ", reason);
620
621         if (reason & MCSR_MCP)
622                 pr_cont("Machine Check Signal\n");
623
624         if (reason & MCSR_ICPERR) {
625                 pr_cont("Instruction Cache Parity Error\n");
626
627                 /*
628                  * This is recoverable by invalidating the i-cache.
629                  */
630                 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
631                 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
632                         ;
633
634                 /*
635                  * This will generally be accompanied by an instruction
636                  * fetch error report -- only treat MCSR_IF as fatal
637                  * if it wasn't due to an L1 parity error.
638                  */
639                 reason &= ~MCSR_IF;
640         }
641
642         if (reason & MCSR_DCPERR_MC) {
643                 pr_cont("Data Cache Parity Error\n");
644
645                 /*
646                  * In write shadow mode we auto-recover from the error, but it
647                  * may still get logged and cause a machine check.  We should
648                  * only treat the non-write shadow case as non-recoverable.
649                  */
650                 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
651                  * is not implemented but L1 data cache always runs in write
652                  * shadow mode. Hence on data cache parity errors HW will
653                  * automatically invalidate the L1 Data Cache.
654                  */
655                 if (PVR_VER(pvr) != PVR_VER_E6500) {
656                         if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
657                                 recoverable = 0;
658                 }
659         }
660
661         if (reason & MCSR_L2MMU_MHIT) {
662                 pr_cont("Hit on multiple TLB entries\n");
663                 recoverable = 0;
664         }
665
666         if (reason & MCSR_NMI)
667                 pr_cont("Non-maskable interrupt\n");
668
669         if (reason & MCSR_IF) {
670                 pr_cont("Instruction Fetch Error Report\n");
671                 recoverable = 0;
672         }
673
674         if (reason & MCSR_LD) {
675                 pr_cont("Load Error Report\n");
676                 recoverable = 0;
677         }
678
679         if (reason & MCSR_ST) {
680                 pr_cont("Store Error Report\n");
681                 recoverable = 0;
682         }
683
684         if (reason & MCSR_LDG) {
685                 pr_cont("Guarded Load Error Report\n");
686                 recoverable = 0;
687         }
688
689         if (reason & MCSR_TLBSYNC)
690                 pr_cont("Simultaneous tlbsync operations\n");
691
692         if (reason & MCSR_BSL2_ERR) {
693                 pr_cont("Level 2 Cache Error\n");
694                 recoverable = 0;
695         }
696
697         if (reason & MCSR_MAV) {
698                 u64 addr;
699
700                 addr = mfspr(SPRN_MCAR);
701                 addr |= (u64)mfspr(SPRN_MCARU) << 32;
702
703                 pr_cont("Machine Check %s Address: %#llx\n",
704                        reason & MCSR_MEA ? "Effective" : "Physical", addr);
705         }
706
707 silent_out:
708         mtspr(SPRN_MCSR, mcsr);
709         return mfspr(SPRN_MCSR) == 0 && recoverable;
710 }
711
712 int machine_check_e500(struct pt_regs *regs)
713 {
714         unsigned long reason = mfspr(SPRN_MCSR);
715
716         if (reason & MCSR_BUS_RBERR) {
717                 if (fsl_rio_mcheck_exception(regs))
718                         return 1;
719                 if (fsl_pci_mcheck_exception(regs))
720                         return 1;
721         }
722
723         printk("Machine check in kernel mode.\n");
724         printk("Caused by (from MCSR=%lx): ", reason);
725
726         if (reason & MCSR_MCP)
727                 pr_cont("Machine Check Signal\n");
728         if (reason & MCSR_ICPERR)
729                 pr_cont("Instruction Cache Parity Error\n");
730         if (reason & MCSR_DCP_PERR)
731                 pr_cont("Data Cache Push Parity Error\n");
732         if (reason & MCSR_DCPERR)
733                 pr_cont("Data Cache Parity Error\n");
734         if (reason & MCSR_BUS_IAERR)
735                 pr_cont("Bus - Instruction Address Error\n");
736         if (reason & MCSR_BUS_RAERR)
737                 pr_cont("Bus - Read Address Error\n");
738         if (reason & MCSR_BUS_WAERR)
739                 pr_cont("Bus - Write Address Error\n");
740         if (reason & MCSR_BUS_IBERR)
741                 pr_cont("Bus - Instruction Data Error\n");
742         if (reason & MCSR_BUS_RBERR)
743                 pr_cont("Bus - Read Data Bus Error\n");
744         if (reason & MCSR_BUS_WBERR)
745                 pr_cont("Bus - Write Data Bus Error\n");
746         if (reason & MCSR_BUS_IPERR)
747                 pr_cont("Bus - Instruction Parity Error\n");
748         if (reason & MCSR_BUS_RPERR)
749                 pr_cont("Bus - Read Parity Error\n");
750
751         return 0;
752 }
753
754 int machine_check_generic(struct pt_regs *regs)
755 {
756         return 0;
757 }
758 #elif defined(CONFIG_PPC32)
759 int machine_check_generic(struct pt_regs *regs)
760 {
761         unsigned long reason = regs->msr;
762
763         printk("Machine check in kernel mode.\n");
764         printk("Caused by (from SRR1=%lx): ", reason);
765         switch (reason & 0x601F0000) {
766         case 0x80000:
767                 pr_cont("Machine check signal\n");
768                 break;
769         case 0x40000:
770         case 0x140000:  /* 7450 MSS error and TEA */
771                 pr_cont("Transfer error ack signal\n");
772                 break;
773         case 0x20000:
774                 pr_cont("Data parity error signal\n");
775                 break;
776         case 0x10000:
777                 pr_cont("Address parity error signal\n");
778                 break;
779         case 0x20000000:
780                 pr_cont("L1 Data Cache error\n");
781                 break;
782         case 0x40000000:
783                 pr_cont("L1 Instruction Cache error\n");
784                 break;
785         case 0x00100000:
786                 pr_cont("L2 data cache parity error\n");
787                 break;
788         default:
789                 pr_cont("Unknown values in msr\n");
790         }
791         return 0;
792 }
793 #endif /* everything else */
794
795 void die_mce(const char *str, struct pt_regs *regs, long err)
796 {
797         /*
798          * The machine check wants to kill the interrupted context,
799          * but make_task_dead() checks for in_interrupt() and panics
800          * in that case, so exit the irq/nmi before calling die.
801          */
802         if (in_nmi())
803                 nmi_exit();
804         else
805                 irq_exit();
806         die(str, regs, err);
807 }
808
809 /*
810  * BOOK3S_64 does not usually call this handler as a non-maskable interrupt
811  * (it uses its own early real-mode handler to handle the MCE proper
812  * and then raises irq_work to call this handler when interrupts are
813  * enabled). The only time when this is not true is if the early handler
814  * is unrecoverable, then it does call this directly to try to get a
815  * message out.
816  */
817 static void __machine_check_exception(struct pt_regs *regs)
818 {
819         int recover = 0;
820
821         __this_cpu_inc(irq_stat.mce_exceptions);
822
823         add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
824
825         /* See if any machine dependent calls. In theory, we would want
826          * to call the CPU first, and call the ppc_md. one if the CPU
827          * one returns a positive number. However there is existing code
828          * that assumes the board gets a first chance, so let's keep it
829          * that way for now and fix things later. --BenH.
830          */
831         if (ppc_md.machine_check_exception)
832                 recover = ppc_md.machine_check_exception(regs);
833         else if (cur_cpu_spec->machine_check)
834                 recover = cur_cpu_spec->machine_check(regs);
835
836         if (recover > 0)
837                 goto bail;
838
839         if (debugger_fault_handler(regs))
840                 goto bail;
841
842         if (check_io_access(regs))
843                 goto bail;
844
845         die_mce("Machine check", regs, SIGBUS);
846
847 bail:
848         /* Must die if the interrupt is not recoverable */
849         if (regs_is_unrecoverable(regs))
850                 die_mce("Unrecoverable Machine check", regs, SIGBUS);
851 }
852
853 #ifdef CONFIG_PPC_BOOK3S_64
854 DEFINE_INTERRUPT_HANDLER_RAW(machine_check_early_boot)
855 {
856         udbg_printf("Machine check (early boot)\n");
857         udbg_printf("SRR0=0x%016lx   SRR1=0x%016lx\n", regs->nip, regs->msr);
858         udbg_printf(" DAR=0x%016lx  DSISR=0x%08lx\n", regs->dar, regs->dsisr);
859         udbg_printf("  LR=0x%016lx     R1=0x%08lx\n", regs->link, regs->gpr[1]);
860         udbg_printf("------\n");
861         die("Machine check (early boot)", regs, SIGBUS);
862         for (;;)
863                 ;
864         return 0;
865 }
866
867 DEFINE_INTERRUPT_HANDLER_ASYNC(machine_check_exception_async)
868 {
869         __machine_check_exception(regs);
870 }
871 #endif
872 DEFINE_INTERRUPT_HANDLER_NMI(machine_check_exception)
873 {
874         __machine_check_exception(regs);
875
876         return 0;
877 }
878
879 DEFINE_INTERRUPT_HANDLER(SMIException) /* async? */
880 {
881         die("System Management Interrupt", regs, SIGABRT);
882 }
883
884 #ifdef CONFIG_VSX
885 static void p9_hmi_special_emu(struct pt_regs *regs)
886 {
887         unsigned int ra, rb, t, i, sel, instr, rc;
888         const void __user *addr;
889         u8 vbuf[16] __aligned(16), *vdst;
890         unsigned long ea, msr, msr_mask;
891         bool swap;
892
893         if (__get_user(instr, (unsigned int __user *)regs->nip))
894                 return;
895
896         /*
897          * lxvb16x      opcode: 0x7c0006d8
898          * lxvd2x       opcode: 0x7c000698
899          * lxvh8x       opcode: 0x7c000658
900          * lxvw4x       opcode: 0x7c000618
901          */
902         if ((instr & 0xfc00073e) != 0x7c000618) {
903                 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
904                          " instr=%08x\n",
905                          smp_processor_id(), current->comm, current->pid,
906                          regs->nip, instr);
907                 return;
908         }
909
910         /* Grab vector registers into the task struct */
911         msr = regs->msr; /* Grab msr before we flush the bits */
912         flush_vsx_to_thread(current);
913         enable_kernel_altivec();
914
915         /*
916          * Is userspace running with a different endian (this is rare but
917          * not impossible)
918          */
919         swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
920
921         /* Decode the instruction */
922         ra = (instr >> 16) & 0x1f;
923         rb = (instr >> 11) & 0x1f;
924         t = (instr >> 21) & 0x1f;
925         if (instr & 1)
926                 vdst = (u8 *)&current->thread.vr_state.vr[t];
927         else
928                 vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
929
930         /* Grab the vector address */
931         ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
932         if (is_32bit_task())
933                 ea &= 0xfffffffful;
934         addr = (__force const void __user *)ea;
935
936         /* Check it */
937         if (!access_ok(addr, 16)) {
938                 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
939                          " instr=%08x addr=%016lx\n",
940                          smp_processor_id(), current->comm, current->pid,
941                          regs->nip, instr, (unsigned long)addr);
942                 return;
943         }
944
945         /* Read the vector */
946         rc = 0;
947         if ((unsigned long)addr & 0xfUL)
948                 /* unaligned case */
949                 rc = __copy_from_user_inatomic(vbuf, addr, 16);
950         else
951                 __get_user_atomic_128_aligned(vbuf, addr, rc);
952         if (rc) {
953                 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
954                          " instr=%08x addr=%016lx\n",
955                          smp_processor_id(), current->comm, current->pid,
956                          regs->nip, instr, (unsigned long)addr);
957                 return;
958         }
959
960         pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
961                  " instr=%08x addr=%016lx\n",
962                  smp_processor_id(), current->comm, current->pid, regs->nip,
963                  instr, (unsigned long) addr);
964
965         /* Grab instruction "selector" */
966         sel = (instr >> 6) & 3;
967
968         /*
969          * Check to make sure the facility is actually enabled. This
970          * could happen if we get a false positive hit.
971          *
972          * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
973          * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
974          */
975         msr_mask = MSR_VSX;
976         if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
977                 msr_mask = MSR_VEC;
978         if (!(msr & msr_mask)) {
979                 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
980                          " instr=%08x msr:%016lx\n",
981                          smp_processor_id(), current->comm, current->pid,
982                          regs->nip, instr, msr);
983                 return;
984         }
985
986         /* Do logging here before we modify sel based on endian */
987         switch (sel) {
988         case 0: /* lxvw4x */
989                 PPC_WARN_EMULATED(lxvw4x, regs);
990                 break;
991         case 1: /* lxvh8x */
992                 PPC_WARN_EMULATED(lxvh8x, regs);
993                 break;
994         case 2: /* lxvd2x */
995                 PPC_WARN_EMULATED(lxvd2x, regs);
996                 break;
997         case 3: /* lxvb16x */
998                 PPC_WARN_EMULATED(lxvb16x, regs);
999                 break;
1000         }
1001
1002 #ifdef __LITTLE_ENDIAN__
1003         /*
1004          * An LE kernel stores the vector in the task struct as an LE
1005          * byte array (effectively swapping both the components and
1006          * the content of the components). Those instructions expect
1007          * the components to remain in ascending address order, so we
1008          * swap them back.
1009          *
1010          * If we are running a BE user space, the expectation is that
1011          * of a simple memcpy, so forcing the emulation to look like
1012          * a lxvb16x should do the trick.
1013          */
1014         if (swap)
1015                 sel = 3;
1016
1017         switch (sel) {
1018         case 0: /* lxvw4x */
1019                 for (i = 0; i < 4; i++)
1020                         ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
1021                 break;
1022         case 1: /* lxvh8x */
1023                 for (i = 0; i < 8; i++)
1024                         ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
1025                 break;
1026         case 2: /* lxvd2x */
1027                 for (i = 0; i < 2; i++)
1028                         ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
1029                 break;
1030         case 3: /* lxvb16x */
1031                 for (i = 0; i < 16; i++)
1032                         vdst[i] = vbuf[15-i];
1033                 break;
1034         }
1035 #else /* __LITTLE_ENDIAN__ */
1036         /* On a big endian kernel, a BE userspace only needs a memcpy */
1037         if (!swap)
1038                 sel = 3;
1039
1040         /* Otherwise, we need to swap the content of the components */
1041         switch (sel) {
1042         case 0: /* lxvw4x */
1043                 for (i = 0; i < 4; i++)
1044                         ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
1045                 break;
1046         case 1: /* lxvh8x */
1047                 for (i = 0; i < 8; i++)
1048                         ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
1049                 break;
1050         case 2: /* lxvd2x */
1051                 for (i = 0; i < 2; i++)
1052                         ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
1053                 break;
1054         case 3: /* lxvb16x */
1055                 memcpy(vdst, vbuf, 16);
1056                 break;
1057         }
1058 #endif /* !__LITTLE_ENDIAN__ */
1059
1060         /* Go to next instruction */
1061         regs_add_return_ip(regs, 4);
1062 }
1063 #endif /* CONFIG_VSX */
1064
1065 DEFINE_INTERRUPT_HANDLER_ASYNC(handle_hmi_exception)
1066 {
1067         struct pt_regs *old_regs;
1068
1069         old_regs = set_irq_regs(regs);
1070
1071 #ifdef CONFIG_VSX
1072         /* Real mode flagged P9 special emu is needed */
1073         if (local_paca->hmi_p9_special_emu) {
1074                 local_paca->hmi_p9_special_emu = 0;
1075
1076                 /*
1077                  * We don't want to take page faults while doing the
1078                  * emulation, we just replay the instruction if necessary.
1079                  */
1080                 pagefault_disable();
1081                 p9_hmi_special_emu(regs);
1082                 pagefault_enable();
1083         }
1084 #endif /* CONFIG_VSX */
1085
1086         if (ppc_md.handle_hmi_exception)
1087                 ppc_md.handle_hmi_exception(regs);
1088
1089         set_irq_regs(old_regs);
1090 }
1091
1092 DEFINE_INTERRUPT_HANDLER(unknown_exception)
1093 {
1094         printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1095                regs->nip, regs->msr, regs->trap);
1096
1097         _exception(SIGTRAP, regs, TRAP_UNK, 0);
1098 }
1099
1100 DEFINE_INTERRUPT_HANDLER_ASYNC(unknown_async_exception)
1101 {
1102         printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1103                regs->nip, regs->msr, regs->trap);
1104
1105         _exception(SIGTRAP, regs, TRAP_UNK, 0);
1106 }
1107
1108 DEFINE_INTERRUPT_HANDLER_NMI(unknown_nmi_exception)
1109 {
1110         printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1111                regs->nip, regs->msr, regs->trap);
1112
1113         _exception(SIGTRAP, regs, TRAP_UNK, 0);
1114
1115         return 0;
1116 }
1117
1118 DEFINE_INTERRUPT_HANDLER(instruction_breakpoint_exception)
1119 {
1120         if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1121                                         5, SIGTRAP) == NOTIFY_STOP)
1122                 return;
1123         if (debugger_iabr_match(regs))
1124                 return;
1125         _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1126 }
1127
1128 DEFINE_INTERRUPT_HANDLER(RunModeException)
1129 {
1130         _exception(SIGTRAP, regs, TRAP_UNK, 0);
1131 }
1132
1133 static void __single_step_exception(struct pt_regs *regs)
1134 {
1135         clear_single_step(regs);
1136         clear_br_trace(regs);
1137
1138         if (kprobe_post_handler(regs))
1139                 return;
1140
1141         if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1142                                         5, SIGTRAP) == NOTIFY_STOP)
1143                 return;
1144         if (debugger_sstep(regs))
1145                 return;
1146
1147         _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1148 }
1149
1150 DEFINE_INTERRUPT_HANDLER(single_step_exception)
1151 {
1152         __single_step_exception(regs);
1153 }
1154
1155 /*
1156  * After we have successfully emulated an instruction, we have to
1157  * check if the instruction was being single-stepped, and if so,
1158  * pretend we got a single-step exception.  This was pointed out
1159  * by Kumar Gala.  -- paulus
1160  */
1161 static void emulate_single_step(struct pt_regs *regs)
1162 {
1163         if (single_stepping(regs))
1164                 __single_step_exception(regs);
1165 }
1166
1167 static inline int __parse_fpscr(unsigned long fpscr)
1168 {
1169         int ret = FPE_FLTUNK;
1170
1171         /* Invalid operation */
1172         if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1173                 ret = FPE_FLTINV;
1174
1175         /* Overflow */
1176         else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1177                 ret = FPE_FLTOVF;
1178
1179         /* Underflow */
1180         else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1181                 ret = FPE_FLTUND;
1182
1183         /* Divide by zero */
1184         else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1185                 ret = FPE_FLTDIV;
1186
1187         /* Inexact result */
1188         else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1189                 ret = FPE_FLTRES;
1190
1191         return ret;
1192 }
1193
1194 static void parse_fpe(struct pt_regs *regs)
1195 {
1196         int code = 0;
1197
1198         flush_fp_to_thread(current);
1199
1200 #ifdef CONFIG_PPC_FPU_REGS
1201         code = __parse_fpscr(current->thread.fp_state.fpscr);
1202 #endif
1203
1204         _exception(SIGFPE, regs, code, regs->nip);
1205 }
1206
1207 /*
1208  * Illegal instruction emulation support.  Originally written to
1209  * provide the PVR to user applications using the mfspr rd, PVR.
1210  * Return non-zero if we can't emulate, or -EFAULT if the associated
1211  * memory access caused an access fault.  Return zero on success.
1212  *
1213  * There are a couple of ways to do this, either "decode" the instruction
1214  * or directly match lots of bits.  In this case, matching lots of
1215  * bits is faster and easier.
1216  *
1217  */
1218 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1219 {
1220         u8 rT = (instword >> 21) & 0x1f;
1221         u8 rA = (instword >> 16) & 0x1f;
1222         u8 NB_RB = (instword >> 11) & 0x1f;
1223         u32 num_bytes;
1224         unsigned long EA;
1225         int pos = 0;
1226
1227         /* Early out if we are an invalid form of lswx */
1228         if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1229                 if ((rT == rA) || (rT == NB_RB))
1230                         return -EINVAL;
1231
1232         EA = (rA == 0) ? 0 : regs->gpr[rA];
1233
1234         switch (instword & PPC_INST_STRING_MASK) {
1235                 case PPC_INST_LSWX:
1236                 case PPC_INST_STSWX:
1237                         EA += NB_RB;
1238                         num_bytes = regs->xer & 0x7f;
1239                         break;
1240                 case PPC_INST_LSWI:
1241                 case PPC_INST_STSWI:
1242                         num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1243                         break;
1244                 default:
1245                         return -EINVAL;
1246         }
1247
1248         while (num_bytes != 0)
1249         {
1250                 u8 val;
1251                 u32 shift = 8 * (3 - (pos & 0x3));
1252
1253                 /* if process is 32-bit, clear upper 32 bits of EA */
1254                 if ((regs->msr & MSR_64BIT) == 0)
1255                         EA &= 0xFFFFFFFF;
1256
1257                 switch ((instword & PPC_INST_STRING_MASK)) {
1258                         case PPC_INST_LSWX:
1259                         case PPC_INST_LSWI:
1260                                 if (get_user(val, (u8 __user *)EA))
1261                                         return -EFAULT;
1262                                 /* first time updating this reg,
1263                                  * zero it out */
1264                                 if (pos == 0)
1265                                         regs->gpr[rT] = 0;
1266                                 regs->gpr[rT] |= val << shift;
1267                                 break;
1268                         case PPC_INST_STSWI:
1269                         case PPC_INST_STSWX:
1270                                 val = regs->gpr[rT] >> shift;
1271                                 if (put_user(val, (u8 __user *)EA))
1272                                         return -EFAULT;
1273                                 break;
1274                 }
1275                 /* move EA to next address */
1276                 EA += 1;
1277                 num_bytes--;
1278
1279                 /* manage our position within the register */
1280                 if (++pos == 4) {
1281                         pos = 0;
1282                         if (++rT == 32)
1283                                 rT = 0;
1284                 }
1285         }
1286
1287         return 0;
1288 }
1289
1290 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1291 {
1292         u32 ra,rs;
1293         unsigned long tmp;
1294
1295         ra = (instword >> 16) & 0x1f;
1296         rs = (instword >> 21) & 0x1f;
1297
1298         tmp = regs->gpr[rs];
1299         tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1300         tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1301         tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1302         regs->gpr[ra] = tmp;
1303
1304         return 0;
1305 }
1306
1307 static int emulate_isel(struct pt_regs *regs, u32 instword)
1308 {
1309         u8 rT = (instword >> 21) & 0x1f;
1310         u8 rA = (instword >> 16) & 0x1f;
1311         u8 rB = (instword >> 11) & 0x1f;
1312         u8 BC = (instword >> 6) & 0x1f;
1313         u8 bit;
1314         unsigned long tmp;
1315
1316         tmp = (rA == 0) ? 0 : regs->gpr[rA];
1317         bit = (regs->ccr >> (31 - BC)) & 0x1;
1318
1319         regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1320
1321         return 0;
1322 }
1323
1324 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1325 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1326 {
1327         /* If we're emulating a load/store in an active transaction, we cannot
1328          * emulate it as the kernel operates in transaction suspended context.
1329          * We need to abort the transaction.  This creates a persistent TM
1330          * abort so tell the user what caused it with a new code.
1331          */
1332         if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1333                 tm_enable();
1334                 tm_abort(cause);
1335                 return true;
1336         }
1337         return false;
1338 }
1339 #else
1340 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1341 {
1342         return false;
1343 }
1344 #endif
1345
1346 static int emulate_instruction(struct pt_regs *regs)
1347 {
1348         u32 instword;
1349         u32 rd;
1350
1351         if (!user_mode(regs))
1352                 return -EINVAL;
1353
1354         if (get_user(instword, (u32 __user *)(regs->nip)))
1355                 return -EFAULT;
1356
1357         /* Emulate the mfspr rD, PVR. */
1358         if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1359                 PPC_WARN_EMULATED(mfpvr, regs);
1360                 rd = (instword >> 21) & 0x1f;
1361                 regs->gpr[rd] = mfspr(SPRN_PVR);
1362                 return 0;
1363         }
1364
1365         /* Emulating the dcba insn is just a no-op.  */
1366         if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1367                 PPC_WARN_EMULATED(dcba, regs);
1368                 return 0;
1369         }
1370
1371         /* Emulate the mcrxr insn.  */
1372         if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1373                 int shift = (instword >> 21) & 0x1c;
1374                 unsigned long msk = 0xf0000000UL >> shift;
1375
1376                 PPC_WARN_EMULATED(mcrxr, regs);
1377                 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1378                 regs->xer &= ~0xf0000000UL;
1379                 return 0;
1380         }
1381
1382         /* Emulate load/store string insn. */
1383         if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1384                 if (tm_abort_check(regs,
1385                                    TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1386                         return -EINVAL;
1387                 PPC_WARN_EMULATED(string, regs);
1388                 return emulate_string_inst(regs, instword);
1389         }
1390
1391         /* Emulate the popcntb (Population Count Bytes) instruction. */
1392         if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1393                 PPC_WARN_EMULATED(popcntb, regs);
1394                 return emulate_popcntb_inst(regs, instword);
1395         }
1396
1397         /* Emulate isel (Integer Select) instruction */
1398         if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1399                 PPC_WARN_EMULATED(isel, regs);
1400                 return emulate_isel(regs, instword);
1401         }
1402
1403         /* Emulate sync instruction variants */
1404         if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1405                 PPC_WARN_EMULATED(sync, regs);
1406                 asm volatile("sync");
1407                 return 0;
1408         }
1409
1410 #ifdef CONFIG_PPC64
1411         /* Emulate the mfspr rD, DSCR. */
1412         if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1413                 PPC_INST_MFSPR_DSCR_USER) ||
1414              ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1415                 PPC_INST_MFSPR_DSCR)) &&
1416                         cpu_has_feature(CPU_FTR_DSCR)) {
1417                 PPC_WARN_EMULATED(mfdscr, regs);
1418                 rd = (instword >> 21) & 0x1f;
1419                 regs->gpr[rd] = mfspr(SPRN_DSCR);
1420                 return 0;
1421         }
1422         /* Emulate the mtspr DSCR, rD. */
1423         if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1424                 PPC_INST_MTSPR_DSCR_USER) ||
1425              ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1426                 PPC_INST_MTSPR_DSCR)) &&
1427                         cpu_has_feature(CPU_FTR_DSCR)) {
1428                 PPC_WARN_EMULATED(mtdscr, regs);
1429                 rd = (instword >> 21) & 0x1f;
1430                 current->thread.dscr = regs->gpr[rd];
1431                 current->thread.dscr_inherit = 1;
1432                 mtspr(SPRN_DSCR, current->thread.dscr);
1433                 return 0;
1434         }
1435 #endif
1436
1437         return -EINVAL;
1438 }
1439
1440 int is_valid_bugaddr(unsigned long addr)
1441 {
1442         return is_kernel_addr(addr);
1443 }
1444
1445 #ifdef CONFIG_MATH_EMULATION
1446 static int emulate_math(struct pt_regs *regs)
1447 {
1448         int ret;
1449
1450         ret = do_mathemu(regs);
1451         if (ret >= 0)
1452                 PPC_WARN_EMULATED(math, regs);
1453
1454         switch (ret) {
1455         case 0:
1456                 emulate_single_step(regs);
1457                 return 0;
1458         case 1: {
1459                         int code = 0;
1460                         code = __parse_fpscr(current->thread.fp_state.fpscr);
1461                         _exception(SIGFPE, regs, code, regs->nip);
1462                         return 0;
1463                 }
1464         case -EFAULT:
1465                 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1466                 return 0;
1467         }
1468
1469         return -1;
1470 }
1471 #else
1472 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1473 #endif
1474
1475 static void do_program_check(struct pt_regs *regs)
1476 {
1477         unsigned int reason = get_reason(regs);
1478
1479         /* We can now get here via a FP Unavailable exception if the core
1480          * has no FPU, in that case the reason flags will be 0 */
1481
1482         if (reason & REASON_FP) {
1483                 /* IEEE FP exception */
1484                 parse_fpe(regs);
1485                 return;
1486         }
1487         if (reason & REASON_TRAP) {
1488                 unsigned long bugaddr;
1489                 /* Debugger is first in line to stop recursive faults in
1490                  * rcu_lock, notify_die, or atomic_notifier_call_chain */
1491                 if (debugger_bpt(regs))
1492                         return;
1493
1494                 if (kprobe_handler(regs))
1495                         return;
1496
1497                 /* trap exception */
1498                 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1499                                 == NOTIFY_STOP)
1500                         return;
1501
1502                 bugaddr = regs->nip;
1503                 /*
1504                  * Fixup bugaddr for BUG_ON() in real mode
1505                  */
1506                 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1507                         bugaddr += PAGE_OFFSET;
1508
1509                 if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1510                     report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1511                         regs_add_return_ip(regs, 4);
1512                         return;
1513                 }
1514
1515                 /* User mode considers other cases after enabling IRQs */
1516                 if (!user_mode(regs)) {
1517                         _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1518                         return;
1519                 }
1520         }
1521 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1522         if (reason & REASON_TM) {
1523                 /* This is a TM "Bad Thing Exception" program check.
1524                  * This occurs when:
1525                  * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1526                  *    transition in TM states.
1527                  * -  A trechkpt is attempted when transactional.
1528                  * -  A treclaim is attempted when non transactional.
1529                  * -  A tend is illegally attempted.
1530                  * -  writing a TM SPR when transactional.
1531                  *
1532                  * If usermode caused this, it's done something illegal and
1533                  * gets a SIGILL slap on the wrist.  We call it an illegal
1534                  * operand to distinguish from the instruction just being bad
1535                  * (e.g. executing a 'tend' on a CPU without TM!); it's an
1536                  * illegal /placement/ of a valid instruction.
1537                  */
1538                 if (user_mode(regs)) {
1539                         _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1540                         return;
1541                 } else {
1542                         printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1543                                "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1544                                regs->nip, regs->msr, get_paca()->tm_scratch);
1545                         die("Unrecoverable exception", regs, SIGABRT);
1546                 }
1547         }
1548 #endif
1549
1550         /*
1551          * If we took the program check in the kernel skip down to sending a
1552          * SIGILL. The subsequent cases all relate to user space, such as
1553          * emulating instructions which we should only do for user space. We
1554          * also do not want to enable interrupts for kernel faults because that
1555          * might lead to further faults, and loose the context of the original
1556          * exception.
1557          */
1558         if (!user_mode(regs))
1559                 goto sigill;
1560
1561         interrupt_cond_local_irq_enable(regs);
1562
1563         /*
1564          * (reason & REASON_TRAP) is mostly handled before enabling IRQs,
1565          * except get_user_instr() can sleep so we cannot reliably inspect the
1566          * current instruction in that context. Now that we know we are
1567          * handling a user space trap and can sleep, we can check if the trap
1568          * was a hashchk failure.
1569          */
1570         if (reason & REASON_TRAP) {
1571                 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) {
1572                         ppc_inst_t insn;
1573
1574                         if (get_user_instr(insn, (void __user *)regs->nip)) {
1575                                 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1576                                 return;
1577                         }
1578
1579                         if (ppc_inst_primary_opcode(insn) == 31 &&
1580                             get_xop(ppc_inst_val(insn)) == OP_31_XOP_HASHCHK) {
1581                                 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1582                                 return;
1583                         }
1584                 }
1585
1586                 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1587                 return;
1588         }
1589
1590         /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1591          * but there seems to be a hardware bug on the 405GP (RevD)
1592          * that means ESR is sometimes set incorrectly - either to
1593          * ESR_DST (!?) or 0.  In the process of chasing this with the
1594          * hardware people - not sure if it can happen on any illegal
1595          * instruction or only on FP instructions, whether there is a
1596          * pattern to occurrences etc. -dgibson 31/Mar/2003
1597          */
1598         if (!emulate_math(regs))
1599                 return;
1600
1601         /* Try to emulate it if we should. */
1602         if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1603                 switch (emulate_instruction(regs)) {
1604                 case 0:
1605                         regs_add_return_ip(regs, 4);
1606                         emulate_single_step(regs);
1607                         return;
1608                 case -EFAULT:
1609                         _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1610                         return;
1611                 }
1612         }
1613
1614 sigill:
1615         if (reason & REASON_PRIVILEGED)
1616                 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1617         else
1618                 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1619
1620 }
1621
1622 DEFINE_INTERRUPT_HANDLER(program_check_exception)
1623 {
1624         do_program_check(regs);
1625 }
1626
1627 /*
1628  * This occurs when running in hypervisor mode on POWER6 or later
1629  * and an illegal instruction is encountered.
1630  */
1631 DEFINE_INTERRUPT_HANDLER(emulation_assist_interrupt)
1632 {
1633         regs_set_return_msr(regs, regs->msr | REASON_ILLEGAL);
1634         do_program_check(regs);
1635 }
1636
1637 DEFINE_INTERRUPT_HANDLER(alignment_exception)
1638 {
1639         int sig, code, fixed = 0;
1640         unsigned long  reason;
1641
1642         interrupt_cond_local_irq_enable(regs);
1643
1644         reason = get_reason(regs);
1645         if (reason & REASON_BOUNDARY) {
1646                 sig = SIGBUS;
1647                 code = BUS_ADRALN;
1648                 goto bad;
1649         }
1650
1651         if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1652                 return;
1653
1654         /* we don't implement logging of alignment exceptions */
1655         if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1656                 fixed = fix_alignment(regs);
1657
1658         if (fixed == 1) {
1659                 /* skip over emulated instruction */
1660                 regs_add_return_ip(regs, inst_length(reason));
1661                 emulate_single_step(regs);
1662                 return;
1663         }
1664
1665         /* Operand address was bad */
1666         if (fixed == -EFAULT) {
1667                 sig = SIGSEGV;
1668                 code = SEGV_ACCERR;
1669         } else {
1670                 sig = SIGBUS;
1671                 code = BUS_ADRALN;
1672         }
1673 bad:
1674         if (user_mode(regs))
1675                 _exception(sig, regs, code, regs->dar);
1676         else
1677                 bad_page_fault(regs, sig);
1678 }
1679
1680 DEFINE_INTERRUPT_HANDLER(stack_overflow_exception)
1681 {
1682         die("Kernel stack overflow", regs, SIGSEGV);
1683 }
1684
1685 DEFINE_INTERRUPT_HANDLER(kernel_fp_unavailable_exception)
1686 {
1687         printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1688                           "%lx at %lx\n", regs->trap, regs->nip);
1689         die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1690 }
1691
1692 DEFINE_INTERRUPT_HANDLER(altivec_unavailable_exception)
1693 {
1694         if (user_mode(regs)) {
1695                 /* A user program has executed an altivec instruction,
1696                    but this kernel doesn't support altivec. */
1697                 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1698                 return;
1699         }
1700
1701         printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1702                         "%lx at %lx\n", regs->trap, regs->nip);
1703         die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1704 }
1705
1706 DEFINE_INTERRUPT_HANDLER(vsx_unavailable_exception)
1707 {
1708         if (user_mode(regs)) {
1709                 /* A user program has executed an vsx instruction,
1710                    but this kernel doesn't support vsx. */
1711                 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1712                 return;
1713         }
1714
1715         printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1716                         "%lx at %lx\n", regs->trap, regs->nip);
1717         die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1718 }
1719
1720 #ifdef CONFIG_PPC_BOOK3S_64
1721 static void tm_unavailable(struct pt_regs *regs)
1722 {
1723 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1724         if (user_mode(regs)) {
1725                 current->thread.load_tm++;
1726                 regs_set_return_msr(regs, regs->msr | MSR_TM);
1727                 tm_enable();
1728                 tm_restore_sprs(&current->thread);
1729                 return;
1730         }
1731 #endif
1732         pr_emerg("Unrecoverable TM Unavailable Exception "
1733                         "%lx at %lx\n", regs->trap, regs->nip);
1734         die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1735 }
1736
1737 DEFINE_INTERRUPT_HANDLER(facility_unavailable_exception)
1738 {
1739         static char *facility_strings[] = {
1740                 [FSCR_FP_LG] = "FPU",
1741                 [FSCR_VECVSX_LG] = "VMX/VSX",
1742                 [FSCR_DSCR_LG] = "DSCR",
1743                 [FSCR_PM_LG] = "PMU SPRs",
1744                 [FSCR_BHRB_LG] = "BHRB",
1745                 [FSCR_TM_LG] = "TM",
1746                 [FSCR_EBB_LG] = "EBB",
1747                 [FSCR_TAR_LG] = "TAR",
1748                 [FSCR_MSGP_LG] = "MSGP",
1749                 [FSCR_SCV_LG] = "SCV",
1750                 [FSCR_PREFIX_LG] = "PREFIX",
1751         };
1752         char *facility = "unknown";
1753         u64 value;
1754         u32 instword, rd;
1755         u8 status;
1756         bool hv;
1757
1758         hv = (TRAP(regs) == INTERRUPT_H_FAC_UNAVAIL);
1759         if (hv)
1760                 value = mfspr(SPRN_HFSCR);
1761         else
1762                 value = mfspr(SPRN_FSCR);
1763
1764         status = value >> 56;
1765         if ((hv || status >= 2) &&
1766             (status < ARRAY_SIZE(facility_strings)) &&
1767             facility_strings[status])
1768                 facility = facility_strings[status];
1769
1770         /* We should not have taken this interrupt in kernel */
1771         if (!user_mode(regs)) {
1772                 pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1773                          facility, status, regs->nip);
1774                 die("Unexpected facility unavailable exception", regs, SIGABRT);
1775         }
1776
1777         interrupt_cond_local_irq_enable(regs);
1778
1779         if (status == FSCR_DSCR_LG) {
1780                 /*
1781                  * User is accessing the DSCR register using the problem
1782                  * state only SPR number (0x03) either through a mfspr or
1783                  * a mtspr instruction. If it is a write attempt through
1784                  * a mtspr, then we set the inherit bit. This also allows
1785                  * the user to write or read the register directly in the
1786                  * future by setting via the FSCR DSCR bit. But in case it
1787                  * is a read DSCR attempt through a mfspr instruction, we
1788                  * just emulate the instruction instead. This code path will
1789                  * always emulate all the mfspr instructions till the user
1790                  * has attempted at least one mtspr instruction. This way it
1791                  * preserves the same behaviour when the user is accessing
1792                  * the DSCR through privilege level only SPR number (0x11)
1793                  * which is emulated through illegal instruction exception.
1794                  * We always leave HFSCR DSCR set.
1795                  */
1796                 if (get_user(instword, (u32 __user *)(regs->nip))) {
1797                         pr_err("Failed to fetch the user instruction\n");
1798                         return;
1799                 }
1800
1801                 /* Write into DSCR (mtspr 0x03, RS) */
1802                 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1803                                 == PPC_INST_MTSPR_DSCR_USER) {
1804                         rd = (instword >> 21) & 0x1f;
1805                         current->thread.dscr = regs->gpr[rd];
1806                         current->thread.dscr_inherit = 1;
1807                         current->thread.fscr |= FSCR_DSCR;
1808                         mtspr(SPRN_FSCR, current->thread.fscr);
1809                 }
1810
1811                 /* Read from DSCR (mfspr RT, 0x03) */
1812                 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1813                                 == PPC_INST_MFSPR_DSCR_USER) {
1814                         if (emulate_instruction(regs)) {
1815                                 pr_err("DSCR based mfspr emulation failed\n");
1816                                 return;
1817                         }
1818                         regs_add_return_ip(regs, 4);
1819                         emulate_single_step(regs);
1820                 }
1821                 return;
1822         }
1823
1824         if (status == FSCR_TM_LG) {
1825                 /*
1826                  * If we're here then the hardware is TM aware because it
1827                  * generated an exception with FSRM_TM set.
1828                  *
1829                  * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1830                  * told us not to do TM, or the kernel is not built with TM
1831                  * support.
1832                  *
1833                  * If both of those things are true, then userspace can spam the
1834                  * console by triggering the printk() below just by continually
1835                  * doing tbegin (or any TM instruction). So in that case just
1836                  * send the process a SIGILL immediately.
1837                  */
1838                 if (!cpu_has_feature(CPU_FTR_TM))
1839                         goto out;
1840
1841                 tm_unavailable(regs);
1842                 return;
1843         }
1844
1845         pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1846                 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1847
1848 out:
1849         _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1850 }
1851 #endif
1852
1853 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1854
1855 DEFINE_INTERRUPT_HANDLER(fp_unavailable_tm)
1856 {
1857         /* Note:  This does not handle any kind of FP laziness. */
1858
1859         TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1860                  regs->nip, regs->msr);
1861
1862         /* We can only have got here if the task started using FP after
1863          * beginning the transaction.  So, the transactional regs are just a
1864          * copy of the checkpointed ones.  But, we still need to recheckpoint
1865          * as we're enabling FP for the process; it will return, abort the
1866          * transaction, and probably retry but now with FP enabled.  So the
1867          * checkpointed FP registers need to be loaded.
1868          */
1869         tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1870
1871         /*
1872          * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1873          * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1874          *
1875          * At this point, ck{fp,vr}_state contains the exact values we want to
1876          * recheckpoint.
1877          */
1878
1879         /* Enable FP for the task: */
1880         current->thread.load_fp = 1;
1881
1882         /*
1883          * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
1884          */
1885         tm_recheckpoint(&current->thread);
1886 }
1887
1888 DEFINE_INTERRUPT_HANDLER(altivec_unavailable_tm)
1889 {
1890         /* See the comments in fp_unavailable_tm().  This function operates
1891          * the same way.
1892          */
1893
1894         TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1895                  "MSR=%lx\n",
1896                  regs->nip, regs->msr);
1897         tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1898         current->thread.load_vec = 1;
1899         tm_recheckpoint(&current->thread);
1900         current->thread.used_vr = 1;
1901 }
1902
1903 DEFINE_INTERRUPT_HANDLER(vsx_unavailable_tm)
1904 {
1905         /* See the comments in fp_unavailable_tm().  This works similarly,
1906          * though we're loading both FP and VEC registers in here.
1907          *
1908          * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1909          * regs.  Either way, set MSR_VSX.
1910          */
1911
1912         TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1913                  "MSR=%lx\n",
1914                  regs->nip, regs->msr);
1915
1916         current->thread.used_vsr = 1;
1917
1918         /* This reclaims FP and/or VR regs if they're already enabled */
1919         tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1920
1921         current->thread.load_vec = 1;
1922         current->thread.load_fp = 1;
1923
1924         tm_recheckpoint(&current->thread);
1925 }
1926 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1927
1928 #ifdef CONFIG_PPC64
1929 DECLARE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi);
1930 DEFINE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi)
1931 {
1932         __this_cpu_inc(irq_stat.pmu_irqs);
1933
1934         perf_irq(regs);
1935
1936         return 0;
1937 }
1938 #endif
1939
1940 DECLARE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async);
1941 DEFINE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async)
1942 {
1943         __this_cpu_inc(irq_stat.pmu_irqs);
1944
1945         perf_irq(regs);
1946 }
1947
1948 DEFINE_INTERRUPT_HANDLER_RAW(performance_monitor_exception)
1949 {
1950         /*
1951          * On 64-bit, if perf interrupts hit in a local_irq_disable
1952          * (soft-masked) region, we consider them as NMIs. This is required to
1953          * prevent hash faults on user addresses when reading callchains (and
1954          * looks better from an irq tracing perspective).
1955          */
1956         if (IS_ENABLED(CONFIG_PPC64) && unlikely(arch_irq_disabled_regs(regs)))
1957                 performance_monitor_exception_nmi(regs);
1958         else
1959                 performance_monitor_exception_async(regs);
1960
1961         return 0;
1962 }
1963
1964 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1965 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1966 {
1967         int changed = 0;
1968         /*
1969          * Determine the cause of the debug event, clear the
1970          * event flags and send a trap to the handler. Torez
1971          */
1972         if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1973                 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1974 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1975                 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1976 #endif
1977                 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1978                              5);
1979                 changed |= 0x01;
1980         }  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1981                 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1982                 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1983                              6);
1984                 changed |= 0x01;
1985         }  else if (debug_status & DBSR_IAC1) {
1986                 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1987                 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1988                 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1989                              1);
1990                 changed |= 0x01;
1991         }  else if (debug_status & DBSR_IAC2) {
1992                 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1993                 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1994                              2);
1995                 changed |= 0x01;
1996         }  else if (debug_status & DBSR_IAC3) {
1997                 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1998                 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1999                 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
2000                              3);
2001                 changed |= 0x01;
2002         }  else if (debug_status & DBSR_IAC4) {
2003                 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
2004                 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
2005                              4);
2006                 changed |= 0x01;
2007         }
2008         /*
2009          * At the point this routine was called, the MSR(DE) was turned off.
2010          * Check all other debug flags and see if that bit needs to be turned
2011          * back on or not.
2012          */
2013         if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
2014                                current->thread.debug.dbcr1))
2015                 regs_set_return_msr(regs, regs->msr | MSR_DE);
2016         else
2017                 /* Make sure the IDM flag is off */
2018                 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
2019
2020         if (changed & 0x01)
2021                 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
2022 }
2023
2024 DEFINE_INTERRUPT_HANDLER(DebugException)
2025 {
2026         unsigned long debug_status = regs->dsisr;
2027
2028         current->thread.debug.dbsr = debug_status;
2029
2030         /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
2031          * on server, it stops on the target of the branch. In order to simulate
2032          * the server behaviour, we thus restart right away with a single step
2033          * instead of stopping here when hitting a BT
2034          */
2035         if (debug_status & DBSR_BT) {
2036                 regs_set_return_msr(regs, regs->msr & ~MSR_DE);
2037
2038                 /* Disable BT */
2039                 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
2040                 /* Clear the BT event */
2041                 mtspr(SPRN_DBSR, DBSR_BT);
2042
2043                 /* Do the single step trick only when coming from userspace */
2044                 if (user_mode(regs)) {
2045                         current->thread.debug.dbcr0 &= ~DBCR0_BT;
2046                         current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2047                         regs_set_return_msr(regs, regs->msr | MSR_DE);
2048                         return;
2049                 }
2050
2051                 if (kprobe_post_handler(regs))
2052                         return;
2053
2054                 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
2055                                5, SIGTRAP) == NOTIFY_STOP) {
2056                         return;
2057                 }
2058                 if (debugger_sstep(regs))
2059                         return;
2060         } else if (debug_status & DBSR_IC) {    /* Instruction complete */
2061                 regs_set_return_msr(regs, regs->msr & ~MSR_DE);
2062
2063                 /* Disable instruction completion */
2064                 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
2065                 /* Clear the instruction completion event */
2066                 mtspr(SPRN_DBSR, DBSR_IC);
2067
2068                 if (kprobe_post_handler(regs))
2069                         return;
2070
2071                 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
2072                                5, SIGTRAP) == NOTIFY_STOP) {
2073                         return;
2074                 }
2075
2076                 if (debugger_sstep(regs))
2077                         return;
2078
2079                 if (user_mode(regs)) {
2080                         current->thread.debug.dbcr0 &= ~DBCR0_IC;
2081                         if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
2082                                                current->thread.debug.dbcr1))
2083                                 regs_set_return_msr(regs, regs->msr | MSR_DE);
2084                         else
2085                                 /* Make sure the IDM bit is off */
2086                                 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
2087                 }
2088
2089                 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
2090         } else
2091                 handle_debug(regs, debug_status);
2092 }
2093 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2094
2095 #ifdef CONFIG_ALTIVEC
2096 DEFINE_INTERRUPT_HANDLER(altivec_assist_exception)
2097 {
2098         int err;
2099
2100         if (!user_mode(regs)) {
2101                 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
2102                        " at %lx\n", regs->nip);
2103                 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
2104         }
2105
2106         flush_altivec_to_thread(current);
2107
2108         PPC_WARN_EMULATED(altivec, regs);
2109         err = emulate_altivec(regs);
2110         if (err == 0) {
2111                 regs_add_return_ip(regs, 4); /* skip emulated instruction */
2112                 emulate_single_step(regs);
2113                 return;
2114         }
2115
2116         if (err == -EFAULT) {
2117                 /* got an error reading the instruction */
2118                 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2119         } else {
2120                 /* didn't recognize the instruction */
2121                 /* XXX quick hack for now: set the non-Java bit in the VSCR */
2122                 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
2123                                    "in %s at %lx\n", current->comm, regs->nip);
2124                 current->thread.vr_state.vscr.u[3] |= 0x10000;
2125         }
2126 }
2127 #endif /* CONFIG_ALTIVEC */
2128
2129 #ifdef CONFIG_PPC_85xx
2130 DEFINE_INTERRUPT_HANDLER(CacheLockingException)
2131 {
2132         unsigned long error_code = regs->dsisr;
2133
2134         /* We treat cache locking instructions from the user
2135          * as priv ops, in the future we could try to do
2136          * something smarter
2137          */
2138         if (error_code & (ESR_DLK|ESR_ILK))
2139                 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
2140         return;
2141 }
2142 #endif /* CONFIG_PPC_85xx */
2143
2144 #ifdef CONFIG_SPE
2145 DEFINE_INTERRUPT_HANDLER(SPEFloatingPointException)
2146 {
2147         unsigned long spefscr;
2148         int fpexc_mode;
2149         int code = FPE_FLTUNK;
2150         int err;
2151
2152         interrupt_cond_local_irq_enable(regs);
2153
2154         flush_spe_to_thread(current);
2155
2156         spefscr = current->thread.spefscr;
2157         fpexc_mode = current->thread.fpexc_mode;
2158
2159         if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2160                 code = FPE_FLTOVF;
2161         }
2162         else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2163                 code = FPE_FLTUND;
2164         }
2165         else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2166                 code = FPE_FLTDIV;
2167         else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2168                 code = FPE_FLTINV;
2169         }
2170         else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2171                 code = FPE_FLTRES;
2172
2173         err = do_spe_mathemu(regs);
2174         if (err == 0) {
2175                 regs_add_return_ip(regs, 4); /* skip emulated instruction */
2176                 emulate_single_step(regs);
2177                 return;
2178         }
2179
2180         if (err == -EFAULT) {
2181                 /* got an error reading the instruction */
2182                 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2183         } else if (err == -EINVAL) {
2184                 /* didn't recognize the instruction */
2185                 printk(KERN_ERR "unrecognized spe instruction "
2186                        "in %s at %lx\n", current->comm, regs->nip);
2187         } else {
2188                 _exception(SIGFPE, regs, code, regs->nip);
2189         }
2190
2191         return;
2192 }
2193
2194 DEFINE_INTERRUPT_HANDLER(SPEFloatingPointRoundException)
2195 {
2196         int err;
2197
2198         interrupt_cond_local_irq_enable(regs);
2199
2200         preempt_disable();
2201         if (regs->msr & MSR_SPE)
2202                 giveup_spe(current);
2203         preempt_enable();
2204
2205         regs_add_return_ip(regs, -4);
2206         err = speround_handler(regs);
2207         if (err == 0) {
2208                 regs_add_return_ip(regs, 4); /* skip emulated instruction */
2209                 emulate_single_step(regs);
2210                 return;
2211         }
2212
2213         if (err == -EFAULT) {
2214                 /* got an error reading the instruction */
2215                 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2216         } else if (err == -EINVAL) {
2217                 /* didn't recognize the instruction */
2218                 printk(KERN_ERR "unrecognized spe instruction "
2219                        "in %s at %lx\n", current->comm, regs->nip);
2220         } else {
2221                 _exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
2222                 return;
2223         }
2224 }
2225 #endif
2226
2227 /*
2228  * We enter here if we get an unrecoverable exception, that is, one
2229  * that happened at a point where the RI (recoverable interrupt) bit
2230  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
2231  * we therefore lost state by taking this exception.
2232  */
2233 void __noreturn unrecoverable_exception(struct pt_regs *regs)
2234 {
2235         pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2236                  regs->trap, regs->nip, regs->msr);
2237         die("Unrecoverable exception", regs, SIGABRT);
2238         /* die() should not return */
2239         for (;;)
2240                 ;
2241 }
2242
2243 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2244 /*
2245  * Default handler for a Watchdog exception,
2246  * spins until a reboot occurs
2247  */
2248 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2249 {
2250         /* Generic WatchdogHandler, implement your own */
2251         mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2252         return;
2253 }
2254
2255 DEFINE_INTERRUPT_HANDLER_NMI(WatchdogException)
2256 {
2257         printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2258         WatchdogHandler(regs);
2259         return 0;
2260 }
2261 #endif
2262
2263 /*
2264  * We enter here if we discover during exception entry that we are
2265  * running in supervisor mode with a userspace value in the stack pointer.
2266  */
2267 DEFINE_INTERRUPT_HANDLER(kernel_bad_stack)
2268 {
2269         printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2270                regs->gpr[1], regs->nip);
2271         die("Bad kernel stack pointer", regs, SIGABRT);
2272 }
2273
2274 #ifdef CONFIG_PPC_EMULATED_STATS
2275
2276 #define WARN_EMULATED_SETUP(type)       .type = { .name = #type }
2277
2278 struct ppc_emulated ppc_emulated = {
2279 #ifdef CONFIG_ALTIVEC
2280         WARN_EMULATED_SETUP(altivec),
2281 #endif
2282         WARN_EMULATED_SETUP(dcba),
2283         WARN_EMULATED_SETUP(dcbz),
2284         WARN_EMULATED_SETUP(fp_pair),
2285         WARN_EMULATED_SETUP(isel),
2286         WARN_EMULATED_SETUP(mcrxr),
2287         WARN_EMULATED_SETUP(mfpvr),
2288         WARN_EMULATED_SETUP(multiple),
2289         WARN_EMULATED_SETUP(popcntb),
2290         WARN_EMULATED_SETUP(spe),
2291         WARN_EMULATED_SETUP(string),
2292         WARN_EMULATED_SETUP(sync),
2293         WARN_EMULATED_SETUP(unaligned),
2294 #ifdef CONFIG_MATH_EMULATION
2295         WARN_EMULATED_SETUP(math),
2296 #endif
2297 #ifdef CONFIG_VSX
2298         WARN_EMULATED_SETUP(vsx),
2299 #endif
2300 #ifdef CONFIG_PPC64
2301         WARN_EMULATED_SETUP(mfdscr),
2302         WARN_EMULATED_SETUP(mtdscr),
2303         WARN_EMULATED_SETUP(lq_stq),
2304         WARN_EMULATED_SETUP(lxvw4x),
2305         WARN_EMULATED_SETUP(lxvh8x),
2306         WARN_EMULATED_SETUP(lxvd2x),
2307         WARN_EMULATED_SETUP(lxvb16x),
2308 #endif
2309 };
2310
2311 u32 ppc_warn_emulated;
2312
2313 void ppc_warn_emulated_print(const char *type)
2314 {
2315         pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2316                             type);
2317 }
2318
2319 static int __init ppc_warn_emulated_init(void)
2320 {
2321         struct dentry *dir;
2322         unsigned int i;
2323         struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2324
2325         dir = debugfs_create_dir("emulated_instructions",
2326                                  arch_debugfs_dir);
2327
2328         debugfs_create_u32("do_warn", 0644, dir, &ppc_warn_emulated);
2329
2330         for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++)
2331                 debugfs_create_u32(entries[i].name, 0644, dir,
2332                                    (u32 *)&entries[i].val.counter);
2333
2334         return 0;
2335 }
2336
2337 device_initcall(ppc_warn_emulated_init);
2338
2339 #endif /* CONFIG_PPC_EMULATED_STATS */