arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / arch / powerpc / kernel / signal.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Common signal handling code for both 32 and 64 bits
4  *
5  *    Copyright (c) 2007 Benjamin Herrenschmidt, IBM Corporation
6  *    Extracted from signal_32.c and signal_64.c
7  */
8
9 #include <linux/resume_user_mode.h>
10 #include <linux/signal.h>
11 #include <linux/uprobes.h>
12 #include <linux/key.h>
13 #include <linux/context_tracking.h>
14 #include <linux/livepatch.h>
15 #include <linux/syscalls.h>
16 #include <asm/hw_breakpoint.h>
17 #include <linux/uaccess.h>
18 #include <asm/switch_to.h>
19 #include <asm/unistd.h>
20 #include <asm/debug.h>
21 #include <asm/tm.h>
22
23 #include "signal.h"
24
25 #ifdef CONFIG_VSX
26 unsigned long copy_fpr_to_user(void __user *to,
27                                struct task_struct *task)
28 {
29         u64 buf[ELF_NFPREG];
30         int i;
31
32         /* save FPR copy to local buffer then write to the thread_struct */
33         for (i = 0; i < (ELF_NFPREG - 1) ; i++)
34                 buf[i] = task->thread.TS_FPR(i);
35         buf[i] = task->thread.fp_state.fpscr;
36         return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
37 }
38
39 unsigned long copy_fpr_from_user(struct task_struct *task,
40                                  void __user *from)
41 {
42         u64 buf[ELF_NFPREG];
43         int i;
44
45         if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
46                 return 1;
47         for (i = 0; i < (ELF_NFPREG - 1) ; i++)
48                 task->thread.TS_FPR(i) = buf[i];
49         task->thread.fp_state.fpscr = buf[i];
50
51         return 0;
52 }
53
54 unsigned long copy_vsx_to_user(void __user *to,
55                                struct task_struct *task)
56 {
57         u64 buf[ELF_NVSRHALFREG];
58         int i;
59
60         /* save FPR copy to local buffer then write to the thread_struct */
61         for (i = 0; i < ELF_NVSRHALFREG; i++)
62                 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
63         return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
64 }
65
66 unsigned long copy_vsx_from_user(struct task_struct *task,
67                                  void __user *from)
68 {
69         u64 buf[ELF_NVSRHALFREG];
70         int i;
71
72         if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
73                 return 1;
74         for (i = 0; i < ELF_NVSRHALFREG ; i++)
75                 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
76         return 0;
77 }
78
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 unsigned long copy_ckfpr_to_user(void __user *to,
81                                   struct task_struct *task)
82 {
83         u64 buf[ELF_NFPREG];
84         int i;
85
86         /* save FPR copy to local buffer then write to the thread_struct */
87         for (i = 0; i < (ELF_NFPREG - 1) ; i++)
88                 buf[i] = task->thread.TS_CKFPR(i);
89         buf[i] = task->thread.ckfp_state.fpscr;
90         return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
91 }
92
93 unsigned long copy_ckfpr_from_user(struct task_struct *task,
94                                           void __user *from)
95 {
96         u64 buf[ELF_NFPREG];
97         int i;
98
99         if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
100                 return 1;
101         for (i = 0; i < (ELF_NFPREG - 1) ; i++)
102                 task->thread.TS_CKFPR(i) = buf[i];
103         task->thread.ckfp_state.fpscr = buf[i];
104
105         return 0;
106 }
107
108 unsigned long copy_ckvsx_to_user(void __user *to,
109                                   struct task_struct *task)
110 {
111         u64 buf[ELF_NVSRHALFREG];
112         int i;
113
114         /* save FPR copy to local buffer then write to the thread_struct */
115         for (i = 0; i < ELF_NVSRHALFREG; i++)
116                 buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
117         return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
118 }
119
120 unsigned long copy_ckvsx_from_user(struct task_struct *task,
121                                           void __user *from)
122 {
123         u64 buf[ELF_NVSRHALFREG];
124         int i;
125
126         if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
127                 return 1;
128         for (i = 0; i < ELF_NVSRHALFREG ; i++)
129                 task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
130         return 0;
131 }
132 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
133 #endif
134
135 /* Log an error when sending an unhandled signal to a process. Controlled
136  * through debug.exception-trace sysctl.
137  */
138
139 int show_unhandled_signals = 1;
140
141 unsigned long get_min_sigframe_size(void)
142 {
143         if (IS_ENABLED(CONFIG_PPC64))
144                 return get_min_sigframe_size_64();
145         else
146                 return get_min_sigframe_size_32();
147 }
148
149 #ifdef CONFIG_COMPAT
150 unsigned long get_min_sigframe_size_compat(void)
151 {
152         return get_min_sigframe_size_32();
153 }
154 #endif
155
156 /*
157  * Allocate space for the signal frame
158  */
159 static unsigned long get_tm_stackpointer(struct task_struct *tsk);
160
161 void __user *get_sigframe(struct ksignal *ksig, struct task_struct *tsk,
162                           size_t frame_size, int is_32)
163 {
164         unsigned long oldsp, newsp;
165         unsigned long sp = get_tm_stackpointer(tsk);
166
167         /* Default to using normal stack */
168         if (is_32)
169                 oldsp = sp & 0x0ffffffffUL;
170         else
171                 oldsp = sp;
172         oldsp = sigsp(oldsp, ksig);
173         newsp = (oldsp - frame_size) & ~0xFUL;
174
175         return (void __user *)newsp;
176 }
177
178 static void check_syscall_restart(struct pt_regs *regs, struct k_sigaction *ka,
179                                   int has_handler)
180 {
181         unsigned long ret = regs->gpr[3];
182         int restart = 1;
183
184         /* syscall ? */
185         if (!trap_is_syscall(regs))
186                 return;
187
188         if (trap_norestart(regs))
189                 return;
190
191         /* error signalled ? */
192         if (trap_is_scv(regs)) {
193                 /* 32-bit compat mode sign extend? */
194                 if (!IS_ERR_VALUE(ret))
195                         return;
196                 ret = -ret;
197         } else if (!(regs->ccr & 0x10000000)) {
198                 return;
199         }
200
201         switch (ret) {
202         case ERESTART_RESTARTBLOCK:
203         case ERESTARTNOHAND:
204                 /* ERESTARTNOHAND means that the syscall should only be
205                  * restarted if there was no handler for the signal, and since
206                  * we only get here if there is a handler, we dont restart.
207                  */
208                 restart = !has_handler;
209                 break;
210         case ERESTARTSYS:
211                 /* ERESTARTSYS means to restart the syscall if there is no
212                  * handler or the handler was registered with SA_RESTART
213                  */
214                 restart = !has_handler || (ka->sa.sa_flags & SA_RESTART) != 0;
215                 break;
216         case ERESTARTNOINTR:
217                 /* ERESTARTNOINTR means that the syscall should be
218                  * called again after the signal handler returns.
219                  */
220                 break;
221         default:
222                 return;
223         }
224         if (restart) {
225                 if (ret == ERESTART_RESTARTBLOCK)
226                         regs->gpr[0] = __NR_restart_syscall;
227                 else
228                         regs->gpr[3] = regs->orig_gpr3;
229                 regs_add_return_ip(regs, -4);
230                 regs->result = 0;
231         } else {
232                 if (trap_is_scv(regs)) {
233                         regs->result = -EINTR;
234                         regs->gpr[3] = -EINTR;
235                 } else {
236                         regs->result = -EINTR;
237                         regs->gpr[3] = EINTR;
238                         regs->ccr |= 0x10000000;
239                 }
240         }
241 }
242
243 static void do_signal(struct task_struct *tsk)
244 {
245         sigset_t *oldset = sigmask_to_save();
246         struct ksignal ksig = { .sig = 0 };
247         int ret;
248
249         BUG_ON(tsk != current);
250
251         get_signal(&ksig);
252
253         /* Is there any syscall restart business here ? */
254         check_syscall_restart(tsk->thread.regs, &ksig.ka, ksig.sig > 0);
255
256         if (ksig.sig <= 0) {
257                 /* No signal to deliver -- put the saved sigmask back */
258                 restore_saved_sigmask();
259                 set_trap_norestart(tsk->thread.regs);
260                 return;               /* no signals delivered */
261         }
262
263         /*
264          * Reenable the DABR before delivering the signal to
265          * user space. The DABR will have been cleared if it
266          * triggered inside the kernel.
267          */
268         if (!IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
269                 int i;
270
271                 for (i = 0; i < nr_wp_slots(); i++) {
272                         if (tsk->thread.hw_brk[i].address && tsk->thread.hw_brk[i].type)
273                                 __set_breakpoint(i, &tsk->thread.hw_brk[i]);
274                 }
275         }
276
277         /* Re-enable the breakpoints for the signal stack */
278         thread_change_pc(tsk, tsk->thread.regs);
279
280         rseq_signal_deliver(&ksig, tsk->thread.regs);
281
282         if (is_32bit_task()) {
283                 if (ksig.ka.sa.sa_flags & SA_SIGINFO)
284                         ret = handle_rt_signal32(&ksig, oldset, tsk);
285                 else
286                         ret = handle_signal32(&ksig, oldset, tsk);
287         } else {
288                 ret = handle_rt_signal64(&ksig, oldset, tsk);
289         }
290
291         set_trap_norestart(tsk->thread.regs);
292         signal_setup_done(ret, &ksig, test_thread_flag(TIF_SINGLESTEP));
293 }
294
295 void do_notify_resume(struct pt_regs *regs, unsigned long thread_info_flags)
296 {
297         if (thread_info_flags & _TIF_UPROBE)
298                 uprobe_notify_resume(regs);
299
300         if (thread_info_flags & _TIF_PATCH_PENDING)
301                 klp_update_patch_state(current);
302
303         if (thread_info_flags & (_TIF_SIGPENDING | _TIF_NOTIFY_SIGNAL)) {
304                 BUG_ON(regs != current->thread.regs);
305                 do_signal(current);
306         }
307
308         if (thread_info_flags & _TIF_NOTIFY_RESUME)
309                 resume_user_mode_work(regs);
310 }
311
312 static unsigned long get_tm_stackpointer(struct task_struct *tsk)
313 {
314         /* When in an active transaction that takes a signal, we need to be
315          * careful with the stack.  It's possible that the stack has moved back
316          * up after the tbegin.  The obvious case here is when the tbegin is
317          * called inside a function that returns before a tend.  In this case,
318          * the stack is part of the checkpointed transactional memory state.
319          * If we write over this non transactionally or in suspend, we are in
320          * trouble because if we get a tm abort, the program counter and stack
321          * pointer will be back at the tbegin but our in memory stack won't be
322          * valid anymore.
323          *
324          * To avoid this, when taking a signal in an active transaction, we
325          * need to use the stack pointer from the checkpointed state, rather
326          * than the speculated state.  This ensures that the signal context
327          * (written tm suspended) will be written below the stack required for
328          * the rollback.  The transaction is aborted because of the treclaim,
329          * so any memory written between the tbegin and the signal will be
330          * rolled back anyway.
331          *
332          * For signals taken in non-TM or suspended mode, we use the
333          * normal/non-checkpointed stack pointer.
334          */
335         struct pt_regs *regs = tsk->thread.regs;
336         unsigned long ret = regs->gpr[1];
337
338 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
339         BUG_ON(tsk != current);
340
341         if (MSR_TM_ACTIVE(regs->msr)) {
342                 preempt_disable();
343                 tm_reclaim_current(TM_CAUSE_SIGNAL);
344                 if (MSR_TM_TRANSACTIONAL(regs->msr))
345                         ret = tsk->thread.ckpt_regs.gpr[1];
346
347                 /*
348                  * If we treclaim, we must clear the current thread's TM bits
349                  * before re-enabling preemption. Otherwise we might be
350                  * preempted and have the live MSR[TS] changed behind our back
351                  * (tm_recheckpoint_new_task() would recheckpoint). Besides, we
352                  * enter the signal handler in non-transactional state.
353                  */
354                 regs_set_return_msr(regs, regs->msr & ~MSR_TS_MASK);
355                 preempt_enable();
356         }
357 #endif
358         return ret;
359 }
360
361 static const char fm32[] = KERN_INFO "%s[%d]: bad frame in %s: %p nip %08lx lr %08lx\n";
362 static const char fm64[] = KERN_INFO "%s[%d]: bad frame in %s: %p nip %016lx lr %016lx\n";
363
364 void signal_fault(struct task_struct *tsk, struct pt_regs *regs,
365                   const char *where, void __user *ptr)
366 {
367         if (show_unhandled_signals)
368                 printk_ratelimited(regs->msr & MSR_64BIT ? fm64 : fm32, tsk->comm,
369                                    task_pid_nr(tsk), where, ptr, regs->nip, regs->link);
370 }