GNU Linux-libre 4.4.300-gnu1
[releases.git] / arch / powerpc / kernel / setup_64.c
1 /*
2  * 
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12
13 #define DEBUG
14
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39 #include <linux/memory.h>
40 #include <linux/nmi.h>
41 #include <linux/debugfs.h>
42
43 #include <asm/io.h>
44 #include <asm/kdump.h>
45 #include <asm/prom.h>
46 #include <asm/processor.h>
47 #include <asm/pgtable.h>
48 #include <asm/smp.h>
49 #include <asm/elf.h>
50 #include <asm/machdep.h>
51 #include <asm/paca.h>
52 #include <asm/time.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
55 #include <asm/btext.h>
56 #include <asm/nvram.h>
57 #include <asm/setup.h>
58 #include <asm/rtas.h>
59 #include <asm/iommu.h>
60 #include <asm/serial.h>
61 #include <asm/cache.h>
62 #include <asm/page.h>
63 #include <asm/mmu.h>
64 #include <asm/firmware.h>
65 #include <asm/xmon.h>
66 #include <asm/udbg.h>
67 #include <asm/kexec.h>
68 #include <asm/mmu_context.h>
69 #include <asm/code-patching.h>
70 #include <asm/kvm_ppc.h>
71 #include <asm/hugetlb.h>
72 #include <asm/epapr_hcalls.h>
73
74 #ifdef DEBUG
75 #define DBG(fmt...) udbg_printf(fmt)
76 #else
77 #define DBG(fmt...)
78 #endif
79
80 int spinning_secondaries;
81 u64 ppc64_pft_size;
82
83 /* Pick defaults since we might want to patch instructions
84  * before we've read this from the device tree.
85  */
86 struct ppc64_caches ppc64_caches = {
87         .dline_size = 0x40,
88         .log_dline_size = 6,
89         .iline_size = 0x40,
90         .log_iline_size = 6
91 };
92 EXPORT_SYMBOL_GPL(ppc64_caches);
93
94 /*
95  * These are used in binfmt_elf.c to put aux entries on the stack
96  * for each elf executable being started.
97  */
98 int dcache_bsize;
99 int icache_bsize;
100 int ucache_bsize;
101
102 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
103 static void setup_tlb_core_data(void)
104 {
105         int cpu;
106
107         BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
108
109         for_each_possible_cpu(cpu) {
110                 int first = cpu_first_thread_sibling(cpu);
111
112                 /*
113                  * If we boot via kdump on a non-primary thread,
114                  * make sure we point at the thread that actually
115                  * set up this TLB.
116                  */
117                 if (cpu_first_thread_sibling(boot_cpuid) == first)
118                         first = boot_cpuid;
119
120                 paca[cpu].tcd_ptr = &paca[first].tcd;
121
122                 /*
123                  * If we have threads, we need either tlbsrx.
124                  * or e6500 tablewalk mode, or else TLB handlers
125                  * will be racy and could produce duplicate entries.
126                  */
127                 if (smt_enabled_at_boot >= 2 &&
128                     !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
129                     book3e_htw_mode != PPC_HTW_E6500) {
130                         /* Should we panic instead? */
131                         WARN_ONCE("%s: unsupported MMU configuration -- expect problems\n",
132                                   __func__);
133                 }
134         }
135 }
136 #else
137 static void setup_tlb_core_data(void)
138 {
139 }
140 #endif
141
142 #ifdef CONFIG_SMP
143
144 static char *smt_enabled_cmdline;
145
146 /* Look for ibm,smt-enabled OF option */
147 static void check_smt_enabled(void)
148 {
149         struct device_node *dn;
150         const char *smt_option;
151
152         /* Default to enabling all threads */
153         smt_enabled_at_boot = threads_per_core;
154
155         /* Allow the command line to overrule the OF option */
156         if (smt_enabled_cmdline) {
157                 if (!strcmp(smt_enabled_cmdline, "on"))
158                         smt_enabled_at_boot = threads_per_core;
159                 else if (!strcmp(smt_enabled_cmdline, "off"))
160                         smt_enabled_at_boot = 0;
161                 else {
162                         int smt;
163                         int rc;
164
165                         rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
166                         if (!rc)
167                                 smt_enabled_at_boot =
168                                         min(threads_per_core, smt);
169                 }
170         } else {
171                 dn = of_find_node_by_path("/options");
172                 if (dn) {
173                         smt_option = of_get_property(dn, "ibm,smt-enabled",
174                                                      NULL);
175
176                         if (smt_option) {
177                                 if (!strcmp(smt_option, "on"))
178                                         smt_enabled_at_boot = threads_per_core;
179                                 else if (!strcmp(smt_option, "off"))
180                                         smt_enabled_at_boot = 0;
181                         }
182
183                         of_node_put(dn);
184                 }
185         }
186 }
187
188 /* Look for smt-enabled= cmdline option */
189 static int __init early_smt_enabled(char *p)
190 {
191         smt_enabled_cmdline = p;
192         return 0;
193 }
194 early_param("smt-enabled", early_smt_enabled);
195
196 #else
197 #define check_smt_enabled()
198 #endif /* CONFIG_SMP */
199
200 /** Fix up paca fields required for the boot cpu */
201 static void fixup_boot_paca(void)
202 {
203         /* The boot cpu is started */
204         get_paca()->cpu_start = 1;
205         /* Allow percpu accesses to work until we setup percpu data */
206         get_paca()->data_offset = 0;
207 }
208
209 static void cpu_ready_for_interrupts(void)
210 {
211         /* Set IR and DR in PACA MSR */
212         get_paca()->kernel_msr = MSR_KERNEL;
213
214         /*
215          * Enable AIL if supported, and we are in hypervisor mode. If we are
216          * not in hypervisor mode, we enable relocation-on interrupts later
217          * in pSeries_setup_arch() using the H_SET_MODE hcall.
218          */
219         if (cpu_has_feature(CPU_FTR_HVMODE) &&
220             cpu_has_feature(CPU_FTR_ARCH_207S)) {
221                 unsigned long lpcr = mfspr(SPRN_LPCR);
222                 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
223         }
224
225         /*
226          * Fixup HFSCR:TM based on CPU features. The bit is set by our
227          * early asm init because at that point we haven't updated our
228          * CPU features from firmware and device-tree. Here we have,
229          * so let's do it.
230          */
231         if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
232                 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
233 }
234
235 /*
236  * Early initialization entry point. This is called by head.S
237  * with MMU translation disabled. We rely on the "feature" of
238  * the CPU that ignores the top 2 bits of the address in real
239  * mode so we can access kernel globals normally provided we
240  * only toy with things in the RMO region. From here, we do
241  * some early parsing of the device-tree to setup out MEMBLOCK
242  * data structures, and allocate & initialize the hash table
243  * and segment tables so we can start running with translation
244  * enabled.
245  *
246  * It is this function which will call the probe() callback of
247  * the various platform types and copy the matching one to the
248  * global ppc_md structure. Your platform can eventually do
249  * some very early initializations from the probe() routine, but
250  * this is not recommended, be very careful as, for example, the
251  * device-tree is not accessible via normal means at this point.
252  */
253
254 void __init early_setup(unsigned long dt_ptr)
255 {
256         static __initdata struct paca_struct boot_paca;
257
258         /* -------- printk is _NOT_ safe to use here ! ------- */
259
260         /* Identify CPU type */
261         identify_cpu(0, mfspr(SPRN_PVR));
262
263         /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
264         initialise_paca(&boot_paca, 0);
265         setup_paca(&boot_paca);
266         fixup_boot_paca();
267
268         /* Initialize lockdep early or else spinlocks will blow */
269         lockdep_init();
270
271         /* -------- printk is now safe to use ------- */
272
273         /* Enable early debugging if any specified (see udbg.h) */
274         udbg_early_init();
275
276         DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
277
278         /*
279          * Do early initialization using the flattened device
280          * tree, such as retrieving the physical memory map or
281          * calculating/retrieving the hash table size.
282          */
283         early_init_devtree(__va(dt_ptr));
284
285         epapr_paravirt_early_init();
286
287         /* Now we know the logical id of our boot cpu, setup the paca. */
288         setup_paca(&paca[boot_cpuid]);
289         fixup_boot_paca();
290
291         /* Probe the machine type */
292         probe_machine();
293
294         setup_kdump_trampoline();
295
296         DBG("Found, Initializing memory management...\n");
297
298         /* Initialize the hash table or TLB handling */
299         early_init_mmu();
300
301         /*
302          * At this point, we can let interrupts switch to virtual mode
303          * (the MMU has been setup), so adjust the MSR in the PACA to
304          * have IR and DR set and enable AIL if it exists
305          */
306         cpu_ready_for_interrupts();
307
308         /* Reserve large chunks of memory for use by CMA for KVM */
309         kvm_cma_reserve();
310
311         /*
312          * Reserve any gigantic pages requested on the command line.
313          * memblock needs to have been initialized by the time this is
314          * called since this will reserve memory.
315          */
316         reserve_hugetlb_gpages();
317
318         DBG(" <- early_setup()\n");
319
320 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
321         /*
322          * This needs to be done *last* (after the above DBG() even)
323          *
324          * Right after we return from this function, we turn on the MMU
325          * which means the real-mode access trick that btext does will
326          * no longer work, it needs to switch to using a real MMU
327          * mapping. This call will ensure that it does
328          */
329         btext_map();
330 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
331 }
332
333 #ifdef CONFIG_SMP
334 void early_setup_secondary(void)
335 {
336         /* Mark interrupts enabled in PACA */
337         get_paca()->soft_enabled = 0;
338
339         /* Initialize the hash table or TLB handling */
340         early_init_mmu_secondary();
341
342         /*
343          * At this point, we can let interrupts switch to virtual mode
344          * (the MMU has been setup), so adjust the MSR in the PACA to
345          * have IR and DR set.
346          */
347         cpu_ready_for_interrupts();
348 }
349
350 #endif /* CONFIG_SMP */
351
352 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
353 static bool use_spinloop(void)
354 {
355         if (!IS_ENABLED(CONFIG_PPC_BOOK3E))
356                 return true;
357
358         /*
359          * When book3e boots from kexec, the ePAPR spin table does
360          * not get used.
361          */
362         return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
363 }
364
365 void smp_release_cpus(void)
366 {
367         unsigned long *ptr;
368         int i;
369
370         if (!use_spinloop())
371                 return;
372
373         DBG(" -> smp_release_cpus()\n");
374
375         /* All secondary cpus are spinning on a common spinloop, release them
376          * all now so they can start to spin on their individual paca
377          * spinloops. For non SMP kernels, the secondary cpus never get out
378          * of the common spinloop.
379          */
380
381         ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
382                         - PHYSICAL_START);
383         *ptr = ppc_function_entry(generic_secondary_smp_init);
384
385         /* And wait a bit for them to catch up */
386         for (i = 0; i < 100000; i++) {
387                 mb();
388                 HMT_low();
389                 if (spinning_secondaries == 0)
390                         break;
391                 udelay(1);
392         }
393         DBG("spinning_secondaries = %d\n", spinning_secondaries);
394
395         DBG(" <- smp_release_cpus()\n");
396 }
397 #endif /* CONFIG_SMP || CONFIG_KEXEC */
398
399 /*
400  * Initialize some remaining members of the ppc64_caches and systemcfg
401  * structures
402  * (at least until we get rid of them completely). This is mostly some
403  * cache informations about the CPU that will be used by cache flush
404  * routines and/or provided to userland
405  */
406 static void __init initialize_cache_info(void)
407 {
408         struct device_node *np;
409         unsigned long num_cpus = 0;
410
411         DBG(" -> initialize_cache_info()\n");
412
413         for_each_node_by_type(np, "cpu") {
414                 num_cpus += 1;
415
416                 /*
417                  * We're assuming *all* of the CPUs have the same
418                  * d-cache and i-cache sizes... -Peter
419                  */
420                 if (num_cpus == 1) {
421                         const __be32 *sizep, *lsizep;
422                         u32 size, lsize;
423
424                         size = 0;
425                         lsize = cur_cpu_spec->dcache_bsize;
426                         sizep = of_get_property(np, "d-cache-size", NULL);
427                         if (sizep != NULL)
428                                 size = be32_to_cpu(*sizep);
429                         lsizep = of_get_property(np, "d-cache-block-size",
430                                                  NULL);
431                         /* fallback if block size missing */
432                         if (lsizep == NULL)
433                                 lsizep = of_get_property(np,
434                                                          "d-cache-line-size",
435                                                          NULL);
436                         if (lsizep != NULL)
437                                 lsize = be32_to_cpu(*lsizep);
438                         if (sizep == NULL || lsizep == NULL)
439                                 DBG("Argh, can't find dcache properties ! "
440                                     "sizep: %p, lsizep: %p\n", sizep, lsizep);
441
442                         ppc64_caches.dsize = size;
443                         ppc64_caches.dline_size = lsize;
444                         ppc64_caches.log_dline_size = __ilog2(lsize);
445                         ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
446
447                         size = 0;
448                         lsize = cur_cpu_spec->icache_bsize;
449                         sizep = of_get_property(np, "i-cache-size", NULL);
450                         if (sizep != NULL)
451                                 size = be32_to_cpu(*sizep);
452                         lsizep = of_get_property(np, "i-cache-block-size",
453                                                  NULL);
454                         if (lsizep == NULL)
455                                 lsizep = of_get_property(np,
456                                                          "i-cache-line-size",
457                                                          NULL);
458                         if (lsizep != NULL)
459                                 lsize = be32_to_cpu(*lsizep);
460                         if (sizep == NULL || lsizep == NULL)
461                                 DBG("Argh, can't find icache properties ! "
462                                     "sizep: %p, lsizep: %p\n", sizep, lsizep);
463
464                         ppc64_caches.isize = size;
465                         ppc64_caches.iline_size = lsize;
466                         ppc64_caches.log_iline_size = __ilog2(lsize);
467                         ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
468                 }
469         }
470
471         DBG(" <- initialize_cache_info()\n");
472 }
473
474
475 /*
476  * Do some initial setup of the system.  The parameters are those which 
477  * were passed in from the bootloader.
478  */
479 void __init setup_system(void)
480 {
481         DBG(" -> setup_system()\n");
482
483         /* Apply the CPUs-specific and firmware specific fixups to kernel
484          * text (nop out sections not relevant to this CPU or this firmware)
485          */
486         do_feature_fixups(cur_cpu_spec->cpu_features,
487                           &__start___ftr_fixup, &__stop___ftr_fixup);
488         do_feature_fixups(cur_cpu_spec->mmu_features,
489                           &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
490         do_feature_fixups(powerpc_firmware_features,
491                           &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
492         do_lwsync_fixups(cur_cpu_spec->cpu_features,
493                          &__start___lwsync_fixup, &__stop___lwsync_fixup);
494         do_final_fixups();
495
496         /*
497          * Unflatten the device-tree passed by prom_init or kexec
498          */
499         unflatten_device_tree();
500
501         /*
502          * Fill the ppc64_caches & systemcfg structures with informations
503          * retrieved from the device-tree.
504          */
505         initialize_cache_info();
506
507 #ifdef CONFIG_PPC_RTAS
508         /*
509          * Initialize RTAS if available
510          */
511         rtas_initialize();
512 #endif /* CONFIG_PPC_RTAS */
513
514         /*
515          * Check if we have an initrd provided via the device-tree
516          */
517         check_for_initrd();
518
519         /*
520          * Do some platform specific early initializations, that includes
521          * setting up the hash table pointers. It also sets up some interrupt-mapping
522          * related options that will be used by finish_device_tree()
523          */
524         if (ppc_md.init_early)
525                 ppc_md.init_early();
526
527         /*
528          * We can discover serial ports now since the above did setup the
529          * hash table management for us, thus ioremap works. We do that early
530          * so that further code can be debugged
531          */
532         find_legacy_serial_ports();
533
534         /*
535          * Register early console
536          */
537         register_early_udbg_console();
538
539         /*
540          * Initialize xmon
541          */
542         xmon_setup();
543
544         smp_setup_cpu_maps();
545         check_smt_enabled();
546         setup_tlb_core_data();
547
548         /*
549          * Freescale Book3e parts spin in a loop provided by firmware,
550          * so smp_release_cpus() does nothing for them
551          */
552 #if defined(CONFIG_SMP)
553         /* Release secondary cpus out of their spinloops at 0x60 now that
554          * we can map physical -> logical CPU ids
555          */
556         smp_release_cpus();
557 #endif
558
559         pr_info("Starting Linux %s %s\n", init_utsname()->machine,
560                  init_utsname()->version);
561
562         pr_info("-----------------------------------------------------\n");
563         pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
564         pr_info("phys_mem_size     = 0x%llx\n", memblock_phys_mem_size());
565
566         if (ppc64_caches.dline_size != 0x80)
567                 pr_info("dcache_line_size  = 0x%x\n", ppc64_caches.dline_size);
568         if (ppc64_caches.iline_size != 0x80)
569                 pr_info("icache_line_size  = 0x%x\n", ppc64_caches.iline_size);
570
571         pr_info("cpu_features      = 0x%016lx\n", cur_cpu_spec->cpu_features);
572         pr_info("  possible        = 0x%016lx\n", CPU_FTRS_POSSIBLE);
573         pr_info("  always          = 0x%016lx\n", CPU_FTRS_ALWAYS);
574         pr_info("cpu_user_features = 0x%08x 0x%08x\n", cur_cpu_spec->cpu_user_features,
575                 cur_cpu_spec->cpu_user_features2);
576         pr_info("mmu_features      = 0x%08x\n", cur_cpu_spec->mmu_features);
577         pr_info("firmware_features = 0x%016lx\n", powerpc_firmware_features);
578
579 #ifdef CONFIG_PPC_STD_MMU_64
580         if (htab_address)
581                 pr_info("htab_address      = 0x%p\n", htab_address);
582
583         pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
584 #endif
585
586         if (PHYSICAL_START > 0)
587                 pr_info("physical_start    = 0x%llx\n",
588                        (unsigned long long)PHYSICAL_START);
589         pr_info("-----------------------------------------------------\n");
590
591         DBG(" <- setup_system()\n");
592 }
593
594 /* This returns the limit below which memory accesses to the linear
595  * mapping are guarnateed not to cause a TLB or SLB miss. This is
596  * used to allocate interrupt or emergency stacks for which our
597  * exception entry path doesn't deal with being interrupted.
598  */
599 static u64 safe_stack_limit(void)
600 {
601 #ifdef CONFIG_PPC_BOOK3E
602         /* Freescale BookE bolts the entire linear mapping */
603         if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
604                 return linear_map_top;
605         /* Other BookE, we assume the first GB is bolted */
606         return 1ul << 30;
607 #else
608         /* BookS, the first segment is bolted */
609         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
610                 return 1UL << SID_SHIFT_1T;
611         return 1UL << SID_SHIFT;
612 #endif
613 }
614
615 static void __init irqstack_early_init(void)
616 {
617         u64 limit = safe_stack_limit();
618         unsigned int i;
619
620         /*
621          * Interrupt stacks must be in the first segment since we
622          * cannot afford to take SLB misses on them.
623          */
624         for_each_possible_cpu(i) {
625                 softirq_ctx[i] = (struct thread_info *)
626                         __va(memblock_alloc_base(THREAD_SIZE,
627                                             THREAD_SIZE, limit));
628                 hardirq_ctx[i] = (struct thread_info *)
629                         __va(memblock_alloc_base(THREAD_SIZE,
630                                             THREAD_SIZE, limit));
631         }
632 }
633
634 #ifdef CONFIG_PPC_BOOK3E
635 static void __init exc_lvl_early_init(void)
636 {
637         unsigned int i;
638         unsigned long sp;
639
640         for_each_possible_cpu(i) {
641                 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
642                 critirq_ctx[i] = (struct thread_info *)__va(sp);
643                 paca[i].crit_kstack = __va(sp + THREAD_SIZE);
644
645                 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
646                 dbgirq_ctx[i] = (struct thread_info *)__va(sp);
647                 paca[i].dbg_kstack = __va(sp + THREAD_SIZE);
648
649                 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
650                 mcheckirq_ctx[i] = (struct thread_info *)__va(sp);
651                 paca[i].mc_kstack = __va(sp + THREAD_SIZE);
652         }
653
654         if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
655                 patch_exception(0x040, exc_debug_debug_book3e);
656 }
657 #else
658 #define exc_lvl_early_init()
659 #endif
660
661 /*
662  * Stack space used when we detect a bad kernel stack pointer, and
663  * early in SMP boots before relocation is enabled. Exclusive emergency
664  * stack for machine checks.
665  */
666 static void __init emergency_stack_init(void)
667 {
668         u64 limit;
669         unsigned int i;
670
671         /*
672          * Emergency stacks must be under 256MB, we cannot afford to take
673          * SLB misses on them. The ABI also requires them to be 128-byte
674          * aligned.
675          *
676          * Since we use these as temporary stacks during secondary CPU
677          * bringup, we need to get at them in real mode. This means they
678          * must also be within the RMO region.
679          */
680         limit = min(safe_stack_limit(), ppc64_rma_size);
681
682         for_each_possible_cpu(i) {
683                 unsigned long sp;
684                 sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
685                 sp += THREAD_SIZE;
686                 paca[i].emergency_sp = __va(sp);
687
688 #ifdef CONFIG_PPC_BOOK3S_64
689                 /* emergency stack for machine check exception handling. */
690                 sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
691                 sp += THREAD_SIZE;
692                 paca[i].mc_emergency_sp = __va(sp);
693 #endif
694         }
695 }
696
697 /*
698  * Called into from start_kernel this initializes memblock, which is used
699  * to manage page allocation until mem_init is called.
700  */
701 void __init setup_arch(char **cmdline_p)
702 {
703         *cmdline_p = boot_command_line;
704
705         /*
706          * Set cache line size based on type of cpu as a default.
707          * Systems with OF can look in the properties on the cpu node(s)
708          * for a possibly more accurate value.
709          */
710         dcache_bsize = ppc64_caches.dline_size;
711         icache_bsize = ppc64_caches.iline_size;
712
713         if (ppc_md.panic)
714                 setup_panic();
715
716         init_mm.start_code = (unsigned long)_stext;
717         init_mm.end_code = (unsigned long) _etext;
718         init_mm.end_data = (unsigned long) _edata;
719         init_mm.brk = klimit;
720 #ifdef CONFIG_PPC_64K_PAGES
721         init_mm.context.pte_frag = NULL;
722 #endif
723 #ifdef CONFIG_SPAPR_TCE_IOMMU
724         mm_iommu_init(&init_mm.context);
725 #endif
726         irqstack_early_init();
727         exc_lvl_early_init();
728         emergency_stack_init();
729
730         initmem_init();
731
732 #ifdef CONFIG_DUMMY_CONSOLE
733         conswitchp = &dummy_con;
734 #endif
735
736         if (ppc_md.setup_arch)
737                 ppc_md.setup_arch();
738
739         setup_barrier_nospec();
740         setup_spectre_v2();
741
742         paging_init();
743
744         /* Initialize the MMU context management stuff */
745         mmu_context_init();
746
747         /* Interrupt code needs to be 64K-aligned */
748         if ((unsigned long)_stext & 0xffff)
749                 panic("Kernelbase not 64K-aligned (0x%lx)!\n",
750                       (unsigned long)_stext);
751 }
752
753 #ifdef CONFIG_SMP
754 #define PCPU_DYN_SIZE           ()
755
756 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
757 {
758         return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
759                                     __pa(MAX_DMA_ADDRESS));
760 }
761
762 static void __init pcpu_fc_free(void *ptr, size_t size)
763 {
764         free_bootmem(__pa(ptr), size);
765 }
766
767 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
768 {
769         if (cpu_to_node(from) == cpu_to_node(to))
770                 return LOCAL_DISTANCE;
771         else
772                 return REMOTE_DISTANCE;
773 }
774
775 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
776 EXPORT_SYMBOL(__per_cpu_offset);
777
778 void __init setup_per_cpu_areas(void)
779 {
780         const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
781         size_t atom_size;
782         unsigned long delta;
783         unsigned int cpu;
784         int rc;
785
786         /*
787          * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
788          * to group units.  For larger mappings, use 1M atom which
789          * should be large enough to contain a number of units.
790          */
791         if (mmu_linear_psize == MMU_PAGE_4K)
792                 atom_size = PAGE_SIZE;
793         else
794                 atom_size = 1 << 20;
795
796         rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
797                                     pcpu_fc_alloc, pcpu_fc_free);
798         if (rc < 0)
799                 panic("cannot initialize percpu area (err=%d)", rc);
800
801         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
802         for_each_possible_cpu(cpu) {
803                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
804                 paca[cpu].data_offset = __per_cpu_offset[cpu];
805         }
806 }
807 #endif
808
809 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
810 unsigned long memory_block_size_bytes(void)
811 {
812         if (ppc_md.memory_block_size)
813                 return ppc_md.memory_block_size();
814
815         return MIN_MEMORY_BLOCK_SIZE;
816 }
817 #endif
818
819 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
820 struct ppc_pci_io ppc_pci_io;
821 EXPORT_SYMBOL(ppc_pci_io);
822 #endif
823
824 #ifdef CONFIG_HARDLOCKUP_DETECTOR
825 u64 hw_nmi_get_sample_period(int watchdog_thresh)
826 {
827         return ppc_proc_freq * watchdog_thresh;
828 }
829
830 /*
831  * The hardlockup detector breaks PMU event based branches and is likely
832  * to get false positives in KVM guests, so disable it by default.
833  */
834 static int __init disable_hardlockup_detector(void)
835 {
836         hardlockup_detector_disable();
837
838         return 0;
839 }
840 early_initcall(disable_hardlockup_detector);
841 #endif
842
843 #ifdef CONFIG_PPC_BOOK3S_64
844 static enum l1d_flush_type enabled_flush_types;
845 static void *l1d_flush_fallback_area;
846 static bool no_rfi_flush;
847 static bool no_entry_flush;
848 static bool no_uaccess_flush;
849 bool rfi_flush;
850 bool entry_flush;
851 bool uaccess_flush;
852 DEFINE_STATIC_KEY_FALSE(uaccess_flush_key);
853 EXPORT_SYMBOL(uaccess_flush_key);
854
855 static int __init handle_no_rfi_flush(char *p)
856 {
857         pr_info("rfi-flush: disabled on command line.");
858         no_rfi_flush = true;
859         return 0;
860 }
861 early_param("no_rfi_flush", handle_no_rfi_flush);
862
863 static int __init handle_no_entry_flush(char *p)
864 {
865         pr_info("entry-flush: disabled on command line.");
866         no_entry_flush = true;
867         return 0;
868 }
869 early_param("no_entry_flush", handle_no_entry_flush);
870
871 static int __init handle_no_uaccess_flush(char *p)
872 {
873         pr_info("uaccess-flush: disabled on command line.");
874         no_uaccess_flush = true;
875         return 0;
876 }
877 early_param("no_uaccess_flush", handle_no_uaccess_flush);
878
879 /*
880  * The RFI flush is not KPTI, but because users will see doco that says to use
881  * nopti we hijack that option here to also disable the RFI flush.
882  */
883 static int __init handle_no_pti(char *p)
884 {
885         pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
886         handle_no_rfi_flush(NULL);
887         return 0;
888 }
889 early_param("nopti", handle_no_pti);
890
891 static void do_nothing(void *unused)
892 {
893         /*
894          * We don't need to do the flush explicitly, just enter+exit kernel is
895          * sufficient, the RFI exit handlers will do the right thing.
896          */
897 }
898
899 void rfi_flush_enable(bool enable)
900 {
901         if (enable) {
902                 do_rfi_flush_fixups(enabled_flush_types);
903                 on_each_cpu(do_nothing, NULL, 1);
904         } else
905                 do_rfi_flush_fixups(L1D_FLUSH_NONE);
906
907         rfi_flush = enable;
908 }
909
910 void entry_flush_enable(bool enable)
911 {
912         if (enable) {
913                 do_entry_flush_fixups(enabled_flush_types);
914                 on_each_cpu(do_nothing, NULL, 1);
915         } else {
916                 do_entry_flush_fixups(L1D_FLUSH_NONE);
917         }
918
919         entry_flush = enable;
920 }
921
922 void uaccess_flush_enable(bool enable)
923 {
924         if (enable) {
925                 do_uaccess_flush_fixups(enabled_flush_types);
926                 if (static_key_initialized)
927                         static_branch_enable(&uaccess_flush_key);
928                 else
929                         printk(KERN_DEBUG "uaccess-flush: deferring static key until after static key initialization\n");
930                 on_each_cpu(do_nothing, NULL, 1);
931         } else {
932                 static_branch_disable(&uaccess_flush_key);
933                 do_uaccess_flush_fixups(L1D_FLUSH_NONE);
934         }
935
936         uaccess_flush = enable;
937 }
938
939 static void __ref init_fallback_flush(void)
940 {
941         u64 l1d_size, limit;
942         int cpu;
943
944         /* Only allocate the fallback flush area once (at boot time). */
945         if (l1d_flush_fallback_area)
946                 return;
947
948         l1d_size = ppc64_caches.dsize;
949         limit = min(safe_stack_limit(), ppc64_rma_size);
950
951         /*
952          * Align to L1d size, and size it at 2x L1d size, to catch possible
953          * hardware prefetch runoff. We don't have a recipe for load patterns to
954          * reliably avoid the prefetcher.
955          */
956         l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
957         memset(l1d_flush_fallback_area, 0, l1d_size * 2);
958
959         for_each_possible_cpu(cpu) {
960                 paca[cpu].rfi_flush_fallback_area = l1d_flush_fallback_area;
961                 paca[cpu].l1d_flush_size = l1d_size;
962         }
963 }
964
965 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
966 {
967         if (types & L1D_FLUSH_FALLBACK) {
968                 pr_info("rfi-flush: fallback displacement flush available\n");
969                 init_fallback_flush();
970         }
971
972         if (types & L1D_FLUSH_ORI)
973                 pr_info("rfi-flush: ori type flush available\n");
974
975         if (types & L1D_FLUSH_MTTRIG)
976                 pr_info("rfi-flush: mttrig type flush available\n");
977
978         enabled_flush_types = types;
979
980         if (!no_rfi_flush)
981                 rfi_flush_enable(enable);
982 }
983
984 void setup_entry_flush(bool enable)
985 {
986         if (cpu_mitigations_off())
987                 return;
988
989         if (!no_entry_flush)
990                 entry_flush_enable(enable);
991 }
992
993 void setup_uaccess_flush(bool enable)
994 {
995         if (cpu_mitigations_off())
996                 return;
997
998         if (!no_uaccess_flush)
999                 uaccess_flush_enable(enable);
1000 }
1001
1002 #ifdef CONFIG_DEBUG_FS
1003 static int rfi_flush_set(void *data, u64 val)
1004 {
1005         bool enable;
1006
1007         if (val == 1)
1008                 enable = true;
1009         else if (val == 0)
1010                 enable = false;
1011         else
1012                 return -EINVAL;
1013
1014         /* Only do anything if we're changing state */
1015         if (enable != rfi_flush)
1016                 rfi_flush_enable(enable);
1017
1018         return 0;
1019 }
1020
1021 static int rfi_flush_get(void *data, u64 *val)
1022 {
1023         *val = rfi_flush ? 1 : 0;
1024         return 0;
1025 }
1026
1027 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
1028
1029 static int entry_flush_set(void *data, u64 val)
1030 {
1031         bool enable;
1032
1033         if (val == 1)
1034                 enable = true;
1035         else if (val == 0)
1036                 enable = false;
1037         else
1038                 return -EINVAL;
1039
1040         /* Only do anything if we're changing state */
1041         if (enable != entry_flush)
1042                 entry_flush_enable(enable);
1043
1044         return 0;
1045 }
1046
1047 static int entry_flush_get(void *data, u64 *val)
1048 {
1049         *val = entry_flush ? 1 : 0;
1050         return 0;
1051 }
1052
1053 DEFINE_SIMPLE_ATTRIBUTE(fops_entry_flush, entry_flush_get, entry_flush_set, "%llu\n");
1054
1055 static int uaccess_flush_set(void *data, u64 val)
1056 {
1057         bool enable;
1058
1059         if (val == 1)
1060                 enable = true;
1061         else if (val == 0)
1062                 enable = false;
1063         else
1064                 return -EINVAL;
1065
1066         /* Only do anything if we're changing state */
1067         if (enable != uaccess_flush)
1068                 uaccess_flush_enable(enable);
1069
1070         return 0;
1071 }
1072
1073 static int uaccess_flush_get(void *data, u64 *val)
1074 {
1075         *val = uaccess_flush ? 1 : 0;
1076         return 0;
1077 }
1078
1079 DEFINE_SIMPLE_ATTRIBUTE(fops_uaccess_flush, uaccess_flush_get, uaccess_flush_set, "%llu\n");
1080
1081
1082 static __init int rfi_flush_debugfs_init(void)
1083 {
1084         debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
1085         debugfs_create_file("entry_flush", 0600, powerpc_debugfs_root, NULL, &fops_entry_flush);
1086         debugfs_create_file("uaccess_flush", 0600, powerpc_debugfs_root, NULL, &fops_uaccess_flush);
1087         return 0;
1088 }
1089 device_initcall(rfi_flush_debugfs_init);
1090 #endif
1091
1092 /*
1093  * setup_uaccess_flush runs before jump_label_init, so we can't do the setup
1094  * there. Do it now instead.
1095  */
1096 static __init int uaccess_flush_static_key_init(void)
1097 {
1098         if (uaccess_flush) {
1099                 printk(KERN_DEBUG "uaccess-flush: switching on static key\n");
1100                 static_branch_enable(&uaccess_flush_key);
1101         }
1102         return 0;
1103 }
1104 early_initcall(uaccess_flush_static_key_init);
1105 #endif /* CONFIG_PPC_BOOK3S_64 */