GNU Linux-libre 6.5.10-gnu
[releases.git] / arch / powerpc / kernel / rtas-proc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *   Copyright (C) 2000 Tilmann Bitterberg
4  *   (tilmann@bitterberg.de)
5  *
6  *   RTAS (Runtime Abstraction Services) stuff
7  *   Intention is to provide a clean user interface
8  *   to use the RTAS.
9  *
10  *   TODO:
11  *   Split off a header file and maybe move it to a different
12  *   location. Write Documentation on what the /proc/rtas/ entries
13  *   actually do.
14  */
15
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/proc_fs.h>
19 #include <linux/stat.h>
20 #include <linux/ctype.h>
21 #include <linux/time.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/seq_file.h>
25 #include <linux/bitops.h>
26 #include <linux/rtc.h>
27 #include <linux/of.h>
28
29 #include <linux/uaccess.h>
30 #include <asm/processor.h>
31 #include <asm/io.h>
32 #include <asm/rtas.h>
33 #include <asm/machdep.h> /* for ppc_md */
34 #include <asm/time.h>
35
36 /* Token for Sensors */
37 #define KEY_SWITCH              0x0001
38 #define ENCLOSURE_SWITCH        0x0002
39 #define THERMAL_SENSOR          0x0003
40 #define LID_STATUS              0x0004
41 #define POWER_SOURCE            0x0005
42 #define BATTERY_VOLTAGE         0x0006
43 #define BATTERY_REMAINING       0x0007
44 #define BATTERY_PERCENTAGE      0x0008
45 #define EPOW_SENSOR             0x0009
46 #define BATTERY_CYCLESTATE      0x000a
47 #define BATTERY_CHARGING        0x000b
48
49 /* IBM specific sensors */
50 #define IBM_SURVEILLANCE        0x2328 /* 9000 */
51 #define IBM_FANRPM              0x2329 /* 9001 */
52 #define IBM_VOLTAGE             0x232a /* 9002 */
53 #define IBM_DRCONNECTOR         0x232b /* 9003 */
54 #define IBM_POWERSUPPLY         0x232c /* 9004 */
55
56 /* Status return values */
57 #define SENSOR_CRITICAL_HIGH    13
58 #define SENSOR_WARNING_HIGH     12
59 #define SENSOR_NORMAL           11
60 #define SENSOR_WARNING_LOW      10
61 #define SENSOR_CRITICAL_LOW      9
62 #define SENSOR_SUCCESS           0
63 #define SENSOR_HW_ERROR         -1
64 #define SENSOR_BUSY             -2
65 #define SENSOR_NOT_EXIST        -3
66 #define SENSOR_DR_ENTITY        -9000
67
68 /* Location Codes */
69 #define LOC_SCSI_DEV_ADDR       'A'
70 #define LOC_SCSI_DEV_LOC        'B'
71 #define LOC_CPU                 'C'
72 #define LOC_DISKETTE            'D'
73 #define LOC_ETHERNET            'E'
74 #define LOC_FAN                 'F'
75 #define LOC_GRAPHICS            'G'
76 /* reserved / not used          'H' */
77 #define LOC_IO_ADAPTER          'I'
78 /* reserved / not used          'J' */
79 #define LOC_KEYBOARD            'K'
80 #define LOC_LCD                 'L'
81 #define LOC_MEMORY              'M'
82 #define LOC_NV_MEMORY           'N'
83 #define LOC_MOUSE               'O'
84 #define LOC_PLANAR              'P'
85 #define LOC_OTHER_IO            'Q'
86 #define LOC_PARALLEL            'R'
87 #define LOC_SERIAL              'S'
88 #define LOC_DEAD_RING           'T'
89 #define LOC_RACKMOUNTED         'U' /* for _u_nit is rack mounted */
90 #define LOC_VOLTAGE             'V'
91 #define LOC_SWITCH_ADAPTER      'W'
92 #define LOC_OTHER               'X'
93 #define LOC_FIRMWARE            'Y'
94 #define LOC_SCSI                'Z'
95
96 /* Tokens for indicators */
97 #define TONE_FREQUENCY          0x0001 /* 0 - 1000 (HZ)*/
98 #define TONE_VOLUME             0x0002 /* 0 - 100 (%) */
99 #define SYSTEM_POWER_STATE      0x0003 
100 #define WARNING_LIGHT           0x0004
101 #define DISK_ACTIVITY_LIGHT     0x0005
102 #define HEX_DISPLAY_UNIT        0x0006
103 #define BATTERY_WARNING_TIME    0x0007
104 #define CONDITION_CYCLE_REQUEST 0x0008
105 #define SURVEILLANCE_INDICATOR  0x2328 /* 9000 */
106 #define DR_ACTION               0x2329 /* 9001 */
107 #define DR_INDICATOR            0x232a /* 9002 */
108 /* 9003 - 9004: Vendor specific */
109 /* 9006 - 9999: Vendor specific */
110
111 /* other */
112 #define MAX_SENSORS              17  /* I only know of 17 sensors */    
113 #define MAX_LINELENGTH          256
114 #define SENSOR_PREFIX           "ibm,sensor-"
115 #define cel_to_fahr(x)          ((x*9/5)+32)
116
117 struct individual_sensor {
118         unsigned int token;
119         unsigned int quant;
120 };
121
122 struct rtas_sensors {
123         struct individual_sensor sensor[MAX_SENSORS];
124         unsigned int quant;
125 };
126
127 /* Globals */
128 static struct rtas_sensors sensors;
129 static struct device_node *rtas_node = NULL;
130 static unsigned long power_on_time = 0; /* Save the time the user set */
131 static char progress_led[MAX_LINELENGTH];
132
133 static unsigned long rtas_tone_frequency = 1000;
134 static unsigned long rtas_tone_volume = 0;
135
136 /* ****************************************************************** */
137 /* Declarations */
138 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
139 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
140 static ssize_t ppc_rtas_clock_write(struct file *file,
141                 const char __user *buf, size_t count, loff_t *ppos);
142 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
143 static ssize_t ppc_rtas_progress_write(struct file *file,
144                 const char __user *buf, size_t count, loff_t *ppos);
145 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
146 static ssize_t ppc_rtas_poweron_write(struct file *file,
147                 const char __user *buf, size_t count, loff_t *ppos);
148
149 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
150                 const char __user *buf, size_t count, loff_t *ppos);
151 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
152 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
153                 const char __user *buf, size_t count, loff_t *ppos);
154 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
155 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
156
157 static int poweron_open(struct inode *inode, struct file *file)
158 {
159         return single_open(file, ppc_rtas_poweron_show, NULL);
160 }
161
162 static const struct proc_ops ppc_rtas_poweron_proc_ops = {
163         .proc_open      = poweron_open,
164         .proc_read      = seq_read,
165         .proc_lseek     = seq_lseek,
166         .proc_write     = ppc_rtas_poweron_write,
167         .proc_release   = single_release,
168 };
169
170 static int progress_open(struct inode *inode, struct file *file)
171 {
172         return single_open(file, ppc_rtas_progress_show, NULL);
173 }
174
175 static const struct proc_ops ppc_rtas_progress_proc_ops = {
176         .proc_open      = progress_open,
177         .proc_read      = seq_read,
178         .proc_lseek     = seq_lseek,
179         .proc_write     = ppc_rtas_progress_write,
180         .proc_release   = single_release,
181 };
182
183 static int clock_open(struct inode *inode, struct file *file)
184 {
185         return single_open(file, ppc_rtas_clock_show, NULL);
186 }
187
188 static const struct proc_ops ppc_rtas_clock_proc_ops = {
189         .proc_open      = clock_open,
190         .proc_read      = seq_read,
191         .proc_lseek     = seq_lseek,
192         .proc_write     = ppc_rtas_clock_write,
193         .proc_release   = single_release,
194 };
195
196 static int tone_freq_open(struct inode *inode, struct file *file)
197 {
198         return single_open(file, ppc_rtas_tone_freq_show, NULL);
199 }
200
201 static const struct proc_ops ppc_rtas_tone_freq_proc_ops = {
202         .proc_open      = tone_freq_open,
203         .proc_read      = seq_read,
204         .proc_lseek     = seq_lseek,
205         .proc_write     = ppc_rtas_tone_freq_write,
206         .proc_release   = single_release,
207 };
208
209 static int tone_volume_open(struct inode *inode, struct file *file)
210 {
211         return single_open(file, ppc_rtas_tone_volume_show, NULL);
212 }
213
214 static const struct proc_ops ppc_rtas_tone_volume_proc_ops = {
215         .proc_open      = tone_volume_open,
216         .proc_read      = seq_read,
217         .proc_lseek     = seq_lseek,
218         .proc_write     = ppc_rtas_tone_volume_write,
219         .proc_release   = single_release,
220 };
221
222 static int ppc_rtas_find_all_sensors(void);
223 static void ppc_rtas_process_sensor(struct seq_file *m,
224         struct individual_sensor *s, int state, int error, const char *loc);
225 static char *ppc_rtas_process_error(int error);
226 static void get_location_code(struct seq_file *m,
227         struct individual_sensor *s, const char *loc);
228 static void check_location_string(struct seq_file *m, const char *c);
229 static void check_location(struct seq_file *m, const char *c);
230
231 static int __init proc_rtas_init(void)
232 {
233         if (!machine_is(pseries))
234                 return -ENODEV;
235
236         rtas_node = of_find_node_by_name(NULL, "rtas");
237         if (rtas_node == NULL)
238                 return -ENODEV;
239
240         proc_create("powerpc/rtas/progress", 0644, NULL,
241                     &ppc_rtas_progress_proc_ops);
242         proc_create("powerpc/rtas/clock", 0644, NULL,
243                     &ppc_rtas_clock_proc_ops);
244         proc_create("powerpc/rtas/poweron", 0644, NULL,
245                     &ppc_rtas_poweron_proc_ops);
246         proc_create_single("powerpc/rtas/sensors", 0444, NULL,
247                         ppc_rtas_sensors_show);
248         proc_create("powerpc/rtas/frequency", 0644, NULL,
249                     &ppc_rtas_tone_freq_proc_ops);
250         proc_create("powerpc/rtas/volume", 0644, NULL,
251                     &ppc_rtas_tone_volume_proc_ops);
252         proc_create_single("powerpc/rtas/rmo_buffer", 0400, NULL,
253                         ppc_rtas_rmo_buf_show);
254         return 0;
255 }
256
257 __initcall(proc_rtas_init);
258
259 static int parse_number(const char __user *p, size_t count, u64 *val)
260 {
261         char buf[40];
262
263         if (count > 39)
264                 return -EINVAL;
265
266         if (copy_from_user(buf, p, count))
267                 return -EFAULT;
268
269         buf[count] = 0;
270
271         return kstrtoull(buf, 10, val);
272 }
273
274 /* ****************************************************************** */
275 /* POWER-ON-TIME                                                      */
276 /* ****************************************************************** */
277 static ssize_t ppc_rtas_poweron_write(struct file *file,
278                 const char __user *buf, size_t count, loff_t *ppos)
279 {
280         struct rtc_time tm;
281         time64_t nowtime;
282         int error = parse_number(buf, count, &nowtime);
283         if (error)
284                 return error;
285
286         power_on_time = nowtime; /* save the time */
287
288         rtc_time64_to_tm(nowtime, &tm);
289
290         error = rtas_call(rtas_function_token(RTAS_FN_SET_TIME_FOR_POWER_ON), 7, 1, NULL,
291                           tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
292                           tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
293         if (error)
294                 printk(KERN_WARNING "error: setting poweron time returned: %s\n", 
295                                 ppc_rtas_process_error(error));
296         return count;
297 }
298 /* ****************************************************************** */
299 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
300 {
301         if (power_on_time == 0)
302                 seq_printf(m, "Power on time not set\n");
303         else
304                 seq_printf(m, "%lu\n",power_on_time);
305         return 0;
306 }
307
308 /* ****************************************************************** */
309 /* PROGRESS                                                           */
310 /* ****************************************************************** */
311 static ssize_t ppc_rtas_progress_write(struct file *file,
312                 const char __user *buf, size_t count, loff_t *ppos)
313 {
314         unsigned long hex;
315
316         if (count >= MAX_LINELENGTH)
317                 count = MAX_LINELENGTH -1;
318         if (copy_from_user(progress_led, buf, count)) { /* save the string */
319                 return -EFAULT;
320         }
321         progress_led[count] = 0;
322
323         /* Lets see if the user passed hexdigits */
324         hex = simple_strtoul(progress_led, NULL, 10);
325
326         rtas_progress ((char *)progress_led, hex);
327         return count;
328
329         /* clear the line */
330         /* rtas_progress("                   ", 0xffff);*/
331 }
332 /* ****************************************************************** */
333 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
334 {
335         if (progress_led[0])
336                 seq_printf(m, "%s\n", progress_led);
337         return 0;
338 }
339
340 /* ****************************************************************** */
341 /* CLOCK                                                              */
342 /* ****************************************************************** */
343 static ssize_t ppc_rtas_clock_write(struct file *file,
344                 const char __user *buf, size_t count, loff_t *ppos)
345 {
346         struct rtc_time tm;
347         time64_t nowtime;
348         int error = parse_number(buf, count, &nowtime);
349         if (error)
350                 return error;
351
352         rtc_time64_to_tm(nowtime, &tm);
353         error = rtas_call(rtas_function_token(RTAS_FN_SET_TIME_OF_DAY), 7, 1, NULL,
354                           tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
355                           tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
356         if (error)
357                 printk(KERN_WARNING "error: setting the clock returned: %s\n", 
358                                 ppc_rtas_process_error(error));
359         return count;
360 }
361 /* ****************************************************************** */
362 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
363 {
364         int ret[8];
365         int error = rtas_call(rtas_function_token(RTAS_FN_GET_TIME_OF_DAY), 0, 8, ret);
366
367         if (error) {
368                 printk(KERN_WARNING "error: reading the clock returned: %s\n", 
369                                 ppc_rtas_process_error(error));
370                 seq_printf(m, "0");
371         } else { 
372                 unsigned int year, mon, day, hour, min, sec;
373                 year = ret[0]; mon  = ret[1]; day  = ret[2];
374                 hour = ret[3]; min  = ret[4]; sec  = ret[5];
375                 seq_printf(m, "%lld\n",
376                                 mktime64(year, mon, day, hour, min, sec));
377         }
378         return 0;
379 }
380
381 /* ****************************************************************** */
382 /* SENSOR STUFF                                                       */
383 /* ****************************************************************** */
384 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
385 {
386         int i,j;
387         int state, error;
388         int get_sensor_state = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
389
390         seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
391         seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
392         seq_printf(m, "********************************************************\n");
393
394         if (ppc_rtas_find_all_sensors() != 0) {
395                 seq_printf(m, "\nNo sensors are available\n");
396                 return 0;
397         }
398
399         for (i=0; i<sensors.quant; i++) {
400                 struct individual_sensor *p = &sensors.sensor[i];
401                 char rstr[64];
402                 const char *loc;
403                 int llen, offs;
404
405                 sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
406                 loc = of_get_property(rtas_node, rstr, &llen);
407
408                 /* A sensor may have multiple instances */
409                 for (j = 0, offs = 0; j <= p->quant; j++) {
410                         error = rtas_call(get_sensor_state, 2, 2, &state, 
411                                           p->token, j);
412
413                         ppc_rtas_process_sensor(m, p, state, error, loc);
414                         seq_putc(m, '\n');
415                         if (loc) {
416                                 offs += strlen(loc) + 1;
417                                 loc += strlen(loc) + 1;
418                                 if (offs >= llen)
419                                         loc = NULL;
420                         }
421                 }
422         }
423         return 0;
424 }
425
426 /* ****************************************************************** */
427
428 static int ppc_rtas_find_all_sensors(void)
429 {
430         const unsigned int *utmp;
431         int len, i;
432
433         utmp = of_get_property(rtas_node, "rtas-sensors", &len);
434         if (utmp == NULL) {
435                 printk (KERN_ERR "error: could not get rtas-sensors\n");
436                 return 1;
437         }
438
439         sensors.quant = len / 8;      /* int + int */
440
441         for (i=0; i<sensors.quant; i++) {
442                 sensors.sensor[i].token = *utmp++;
443                 sensors.sensor[i].quant = *utmp++;
444         }
445         return 0;
446 }
447
448 /* ****************************************************************** */
449 /*
450  * Builds a string of what rtas returned
451  */
452 static char *ppc_rtas_process_error(int error)
453 {
454         switch (error) {
455                 case SENSOR_CRITICAL_HIGH:
456                         return "(critical high)";
457                 case SENSOR_WARNING_HIGH:
458                         return "(warning high)";
459                 case SENSOR_NORMAL:
460                         return "(normal)";
461                 case SENSOR_WARNING_LOW:
462                         return "(warning low)";
463                 case SENSOR_CRITICAL_LOW:
464                         return "(critical low)";
465                 case SENSOR_SUCCESS:
466                         return "(read ok)";
467                 case SENSOR_HW_ERROR:
468                         return "(hardware error)";
469                 case SENSOR_BUSY:
470                         return "(busy)";
471                 case SENSOR_NOT_EXIST:
472                         return "(non existent)";
473                 case SENSOR_DR_ENTITY:
474                         return "(dr entity removed)";
475                 default:
476                         return "(UNKNOWN)";
477         }
478 }
479
480 /* ****************************************************************** */
481 /*
482  * Builds a string out of what the sensor said
483  */
484
485 static void ppc_rtas_process_sensor(struct seq_file *m,
486         struct individual_sensor *s, int state, int error, const char *loc)
487 {
488         /* Defined return vales */
489         const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t", 
490                                                 "Maintenance" };
491         const char * enclosure_switch[]  = { "Closed", "Open" };
492         const char * lid_status[]        = { " ", "Open", "Closed" };
493         const char * power_source[]      = { "AC\t", "Battery", 
494                                                 "AC & Battery" };
495         const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
496         const char * epow_sensor[]       = { 
497                 "EPOW Reset", "Cooling warning", "Power warning",
498                 "System shutdown", "System halt", "EPOW main enclosure",
499                 "EPOW power off" };
500         const char * battery_cyclestate[]  = { "None", "In progress", 
501                                                 "Requested" };
502         const char * battery_charging[]    = { "Charging", "Discharging",
503                                                 "No current flow" };
504         const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable", 
505                                                 "Exchange" };
506
507         int have_strings = 0;
508         int num_states = 0;
509         int temperature = 0;
510         int unknown = 0;
511
512         /* What kind of sensor do we have here? */
513         
514         switch (s->token) {
515                 case KEY_SWITCH:
516                         seq_printf(m, "Key switch:\t");
517                         num_states = sizeof(key_switch) / sizeof(char *);
518                         if (state < num_states) {
519                                 seq_printf(m, "%s\t", key_switch[state]);
520                                 have_strings = 1;
521                         }
522                         break;
523                 case ENCLOSURE_SWITCH:
524                         seq_printf(m, "Enclosure switch:\t");
525                         num_states = sizeof(enclosure_switch) / sizeof(char *);
526                         if (state < num_states) {
527                                 seq_printf(m, "%s\t", 
528                                                 enclosure_switch[state]);
529                                 have_strings = 1;
530                         }
531                         break;
532                 case THERMAL_SENSOR:
533                         seq_printf(m, "Temp. (C/F):\t");
534                         temperature = 1;
535                         break;
536                 case LID_STATUS:
537                         seq_printf(m, "Lid status:\t");
538                         num_states = sizeof(lid_status) / sizeof(char *);
539                         if (state < num_states) {
540                                 seq_printf(m, "%s\t", lid_status[state]);
541                                 have_strings = 1;
542                         }
543                         break;
544                 case POWER_SOURCE:
545                         seq_printf(m, "Power source:\t");
546                         num_states = sizeof(power_source) / sizeof(char *);
547                         if (state < num_states) {
548                                 seq_printf(m, "%s\t", 
549                                                 power_source[state]);
550                                 have_strings = 1;
551                         }
552                         break;
553                 case BATTERY_VOLTAGE:
554                         seq_printf(m, "Battery voltage:\t");
555                         break;
556                 case BATTERY_REMAINING:
557                         seq_printf(m, "Battery remaining:\t");
558                         num_states = sizeof(battery_remaining) / sizeof(char *);
559                         if (state < num_states)
560                         {
561                                 seq_printf(m, "%s\t", 
562                                                 battery_remaining[state]);
563                                 have_strings = 1;
564                         }
565                         break;
566                 case BATTERY_PERCENTAGE:
567                         seq_printf(m, "Battery percentage:\t");
568                         break;
569                 case EPOW_SENSOR:
570                         seq_printf(m, "EPOW Sensor:\t");
571                         num_states = sizeof(epow_sensor) / sizeof(char *);
572                         if (state < num_states) {
573                                 seq_printf(m, "%s\t", epow_sensor[state]);
574                                 have_strings = 1;
575                         }
576                         break;
577                 case BATTERY_CYCLESTATE:
578                         seq_printf(m, "Battery cyclestate:\t");
579                         num_states = sizeof(battery_cyclestate) / 
580                                         sizeof(char *);
581                         if (state < num_states) {
582                                 seq_printf(m, "%s\t", 
583                                                 battery_cyclestate[state]);
584                                 have_strings = 1;
585                         }
586                         break;
587                 case BATTERY_CHARGING:
588                         seq_printf(m, "Battery Charging:\t");
589                         num_states = sizeof(battery_charging) / sizeof(char *);
590                         if (state < num_states) {
591                                 seq_printf(m, "%s\t", 
592                                                 battery_charging[state]);
593                                 have_strings = 1;
594                         }
595                         break;
596                 case IBM_SURVEILLANCE:
597                         seq_printf(m, "Surveillance:\t");
598                         break;
599                 case IBM_FANRPM:
600                         seq_printf(m, "Fan (rpm):\t");
601                         break;
602                 case IBM_VOLTAGE:
603                         seq_printf(m, "Voltage (mv):\t");
604                         break;
605                 case IBM_DRCONNECTOR:
606                         seq_printf(m, "DR connector:\t");
607                         num_states = sizeof(ibm_drconnector) / sizeof(char *);
608                         if (state < num_states) {
609                                 seq_printf(m, "%s\t", 
610                                                 ibm_drconnector[state]);
611                                 have_strings = 1;
612                         }
613                         break;
614                 case IBM_POWERSUPPLY:
615                         seq_printf(m, "Powersupply:\t");
616                         break;
617                 default:
618                         seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
619                                         s->token);
620                         unknown = 1;
621                         have_strings = 1;
622                         break;
623         }
624         if (have_strings == 0) {
625                 if (temperature) {
626                         seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
627                 } else
628                         seq_printf(m, "%10d\t", state);
629         }
630         if (unknown == 0) {
631                 seq_printf(m, "%s\t", ppc_rtas_process_error(error));
632                 get_location_code(m, s, loc);
633         }
634 }
635
636 /* ****************************************************************** */
637
638 static void check_location(struct seq_file *m, const char *c)
639 {
640         switch (c[0]) {
641                 case LOC_PLANAR:
642                         seq_printf(m, "Planar #%c", c[1]);
643                         break;
644                 case LOC_CPU:
645                         seq_printf(m, "CPU #%c", c[1]);
646                         break;
647                 case LOC_FAN:
648                         seq_printf(m, "Fan #%c", c[1]);
649                         break;
650                 case LOC_RACKMOUNTED:
651                         seq_printf(m, "Rack #%c", c[1]);
652                         break;
653                 case LOC_VOLTAGE:
654                         seq_printf(m, "Voltage #%c", c[1]);
655                         break;
656                 case LOC_LCD:
657                         seq_printf(m, "LCD #%c", c[1]);
658                         break;
659                 case '.':
660                         seq_printf(m, "- %c", c[1]);
661                         break;
662                 default:
663                         seq_printf(m, "Unknown location");
664                         break;
665         }
666 }
667
668
669 /* ****************************************************************** */
670 /* 
671  * Format: 
672  * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
673  * the '.' may be an abbreviation
674  */
675 static void check_location_string(struct seq_file *m, const char *c)
676 {
677         while (*c) {
678                 if (isalpha(*c) || *c == '.')
679                         check_location(m, c);
680                 else if (*c == '/' || *c == '-')
681                         seq_printf(m, " at ");
682                 c++;
683         }
684 }
685
686
687 /* ****************************************************************** */
688
689 static void get_location_code(struct seq_file *m, struct individual_sensor *s,
690                 const char *loc)
691 {
692         if (!loc || !*loc) {
693                 seq_printf(m, "---");/* does not have a location */
694         } else {
695                 check_location_string(m, loc);
696         }
697         seq_putc(m, ' ');
698 }
699 /* ****************************************************************** */
700 /* INDICATORS - Tone Frequency                                        */
701 /* ****************************************************************** */
702 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
703                 const char __user *buf, size_t count, loff_t *ppos)
704 {
705         u64 freq;
706         int error = parse_number(buf, count, &freq);
707         if (error)
708                 return error;
709
710         rtas_tone_frequency = freq; /* save it for later */
711         error = rtas_call(rtas_function_token(RTAS_FN_SET_INDICATOR), 3, 1, NULL,
712                           TONE_FREQUENCY, 0, freq);
713         if (error)
714                 printk(KERN_WARNING "error: setting tone frequency returned: %s\n", 
715                                 ppc_rtas_process_error(error));
716         return count;
717 }
718 /* ****************************************************************** */
719 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
720 {
721         seq_printf(m, "%lu\n", rtas_tone_frequency);
722         return 0;
723 }
724 /* ****************************************************************** */
725 /* INDICATORS - Tone Volume                                           */
726 /* ****************************************************************** */
727 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
728                 const char __user *buf, size_t count, loff_t *ppos)
729 {
730         u64 volume;
731         int error = parse_number(buf, count, &volume);
732         if (error)
733                 return error;
734
735         if (volume > 100)
736                 volume = 100;
737         
738         rtas_tone_volume = volume; /* save it for later */
739         error = rtas_call(rtas_function_token(RTAS_FN_SET_INDICATOR), 3, 1, NULL,
740                           TONE_VOLUME, 0, volume);
741         if (error)
742                 printk(KERN_WARNING "error: setting tone volume returned: %s\n", 
743                                 ppc_rtas_process_error(error));
744         return count;
745 }
746 /* ****************************************************************** */
747 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
748 {
749         seq_printf(m, "%lu\n", rtas_tone_volume);
750         return 0;
751 }
752
753 /**
754  * ppc_rtas_rmo_buf_show() - Describe RTAS-addressable region for user space.
755  *
756  * Base + size description of a range of RTAS-addressable memory set
757  * aside for user space to use as work area(s) for certain RTAS
758  * functions. User space accesses this region via /dev/mem. Apart from
759  * security policies, the kernel does not arbitrate or serialize
760  * access to this region, and user space must ensure that concurrent
761  * users do not interfere with each other.
762  */
763 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
764 {
765         seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_USER_REGION_SIZE);
766         return 0;
767 }