GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / powerpc / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43
44 #include <asm/pgtable.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/runlatch.h>
52 #include <asm/syscalls.h>
53 #include <asm/switch_to.h>
54 #include <asm/tm.h>
55 #include <asm/debug.h>
56 #ifdef CONFIG_PPC64
57 #include <asm/firmware.h>
58 #include <asm/hw_irq.h>
59 #endif
60 #include <asm/code-patching.h>
61 #include <asm/exec.h>
62 #include <asm/livepatch.h>
63 #include <asm/cpu_has_feature.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/stacktrace.h>
66 #include <asm/hw_breakpoint.h>
67
68 #include <linux/kprobes.h>
69 #include <linux/kdebug.h>
70
71 /* Transactional Memory debug */
72 #ifdef TM_DEBUG_SW
73 #define TM_DEBUG(x...) printk(KERN_INFO x)
74 #else
75 #define TM_DEBUG(x...) do { } while(0)
76 #endif
77
78 extern unsigned long _get_SP(void);
79
80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81 /*
82  * Are we running in "Suspend disabled" mode? If so we have to block any
83  * sigreturn that would get us into suspended state, and we also warn in some
84  * other paths that we should never reach with suspend disabled.
85  */
86 bool tm_suspend_disabled __ro_after_init = false;
87
88 static void check_if_tm_restore_required(struct task_struct *tsk)
89 {
90         /*
91          * If we are saving the current thread's registers, and the
92          * thread is in a transactional state, set the TIF_RESTORE_TM
93          * bit so that we know to restore the registers before
94          * returning to userspace.
95          */
96         if (tsk == current && tsk->thread.regs &&
97             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98             !test_thread_flag(TIF_RESTORE_TM)) {
99                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
100                 set_thread_flag(TIF_RESTORE_TM);
101         }
102 }
103
104 #else
105 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
106 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
107
108 bool strict_msr_control;
109 EXPORT_SYMBOL(strict_msr_control);
110
111 static int __init enable_strict_msr_control(char *str)
112 {
113         strict_msr_control = true;
114         pr_info("Enabling strict facility control\n");
115
116         return 0;
117 }
118 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
119
120 /* notrace because it's called by restore_math */
121 unsigned long notrace msr_check_and_set(unsigned long bits)
122 {
123         unsigned long oldmsr = mfmsr();
124         unsigned long newmsr;
125
126         newmsr = oldmsr | bits;
127
128 #ifdef CONFIG_VSX
129         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
130                 newmsr |= MSR_VSX;
131 #endif
132
133         if (oldmsr != newmsr)
134                 mtmsr_isync(newmsr);
135
136         return newmsr;
137 }
138 EXPORT_SYMBOL_GPL(msr_check_and_set);
139
140 /* notrace because it's called by restore_math */
141 void notrace __msr_check_and_clear(unsigned long bits)
142 {
143         unsigned long oldmsr = mfmsr();
144         unsigned long newmsr;
145
146         newmsr = oldmsr & ~bits;
147
148 #ifdef CONFIG_VSX
149         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
150                 newmsr &= ~MSR_VSX;
151 #endif
152
153         if (oldmsr != newmsr)
154                 mtmsr_isync(newmsr);
155 }
156 EXPORT_SYMBOL(__msr_check_and_clear);
157
158 #ifdef CONFIG_PPC_FPU
159 static void __giveup_fpu(struct task_struct *tsk)
160 {
161         unsigned long msr;
162
163         save_fpu(tsk);
164         msr = tsk->thread.regs->msr;
165         msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
166 #ifdef CONFIG_VSX
167         if (cpu_has_feature(CPU_FTR_VSX))
168                 msr &= ~MSR_VSX;
169 #endif
170         tsk->thread.regs->msr = msr;
171 }
172
173 void giveup_fpu(struct task_struct *tsk)
174 {
175         check_if_tm_restore_required(tsk);
176
177         msr_check_and_set(MSR_FP);
178         __giveup_fpu(tsk);
179         msr_check_and_clear(MSR_FP);
180 }
181 EXPORT_SYMBOL(giveup_fpu);
182
183 /*
184  * Make sure the floating-point register state in the
185  * the thread_struct is up to date for task tsk.
186  */
187 void flush_fp_to_thread(struct task_struct *tsk)
188 {
189         if (tsk->thread.regs) {
190                 /*
191                  * We need to disable preemption here because if we didn't,
192                  * another process could get scheduled after the regs->msr
193                  * test but before we have finished saving the FP registers
194                  * to the thread_struct.  That process could take over the
195                  * FPU, and then when we get scheduled again we would store
196                  * bogus values for the remaining FP registers.
197                  */
198                 preempt_disable();
199                 if (tsk->thread.regs->msr & MSR_FP) {
200                         /*
201                          * This should only ever be called for current or
202                          * for a stopped child process.  Since we save away
203                          * the FP register state on context switch,
204                          * there is something wrong if a stopped child appears
205                          * to still have its FP state in the CPU registers.
206                          */
207                         BUG_ON(tsk != current);
208                         giveup_fpu(tsk);
209                 }
210                 preempt_enable();
211         }
212 }
213 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
214
215 void enable_kernel_fp(void)
216 {
217         unsigned long cpumsr;
218
219         WARN_ON(preemptible());
220
221         cpumsr = msr_check_and_set(MSR_FP);
222
223         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
224                 check_if_tm_restore_required(current);
225                 /*
226                  * If a thread has already been reclaimed then the
227                  * checkpointed registers are on the CPU but have definitely
228                  * been saved by the reclaim code. Don't need to and *cannot*
229                  * giveup as this would save  to the 'live' structure not the
230                  * checkpointed structure.
231                  */
232                 if (!MSR_TM_ACTIVE(cpumsr) &&
233                      MSR_TM_ACTIVE(current->thread.regs->msr))
234                         return;
235                 __giveup_fpu(current);
236         }
237 }
238 EXPORT_SYMBOL(enable_kernel_fp);
239
240 static int restore_fp(struct task_struct *tsk)
241 {
242         if (tsk->thread.load_fp) {
243                 load_fp_state(&current->thread.fp_state);
244                 current->thread.load_fp++;
245                 return 1;
246         }
247         return 0;
248 }
249 #else
250 static int restore_fp(struct task_struct *tsk) { return 0; }
251 #endif /* CONFIG_PPC_FPU */
252
253 #ifdef CONFIG_ALTIVEC
254 #define loadvec(thr) ((thr).load_vec)
255
256 static void __giveup_altivec(struct task_struct *tsk)
257 {
258         unsigned long msr;
259
260         save_altivec(tsk);
261         msr = tsk->thread.regs->msr;
262         msr &= ~MSR_VEC;
263 #ifdef CONFIG_VSX
264         if (cpu_has_feature(CPU_FTR_VSX))
265                 msr &= ~MSR_VSX;
266 #endif
267         tsk->thread.regs->msr = msr;
268 }
269
270 void giveup_altivec(struct task_struct *tsk)
271 {
272         check_if_tm_restore_required(tsk);
273
274         msr_check_and_set(MSR_VEC);
275         __giveup_altivec(tsk);
276         msr_check_and_clear(MSR_VEC);
277 }
278 EXPORT_SYMBOL(giveup_altivec);
279
280 void enable_kernel_altivec(void)
281 {
282         unsigned long cpumsr;
283
284         WARN_ON(preemptible());
285
286         cpumsr = msr_check_and_set(MSR_VEC);
287
288         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
289                 check_if_tm_restore_required(current);
290                 /*
291                  * If a thread has already been reclaimed then the
292                  * checkpointed registers are on the CPU but have definitely
293                  * been saved by the reclaim code. Don't need to and *cannot*
294                  * giveup as this would save  to the 'live' structure not the
295                  * checkpointed structure.
296                  */
297                 if (!MSR_TM_ACTIVE(cpumsr) &&
298                      MSR_TM_ACTIVE(current->thread.regs->msr))
299                         return;
300                 __giveup_altivec(current);
301         }
302 }
303 EXPORT_SYMBOL(enable_kernel_altivec);
304
305 /*
306  * Make sure the VMX/Altivec register state in the
307  * the thread_struct is up to date for task tsk.
308  */
309 void flush_altivec_to_thread(struct task_struct *tsk)
310 {
311         if (tsk->thread.regs) {
312                 preempt_disable();
313                 if (tsk->thread.regs->msr & MSR_VEC) {
314                         BUG_ON(tsk != current);
315                         giveup_altivec(tsk);
316                 }
317                 preempt_enable();
318         }
319 }
320 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
321
322 static int restore_altivec(struct task_struct *tsk)
323 {
324         if (cpu_has_feature(CPU_FTR_ALTIVEC) && (tsk->thread.load_vec)) {
325                 load_vr_state(&tsk->thread.vr_state);
326                 tsk->thread.used_vr = 1;
327                 tsk->thread.load_vec++;
328
329                 return 1;
330         }
331         return 0;
332 }
333 #else
334 #define loadvec(thr) 0
335 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
336 #endif /* CONFIG_ALTIVEC */
337
338 #ifdef CONFIG_VSX
339 static void __giveup_vsx(struct task_struct *tsk)
340 {
341         unsigned long msr = tsk->thread.regs->msr;
342
343         /*
344          * We should never be ssetting MSR_VSX without also setting
345          * MSR_FP and MSR_VEC
346          */
347         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
348
349         /* __giveup_fpu will clear MSR_VSX */
350         if (msr & MSR_FP)
351                 __giveup_fpu(tsk);
352         if (msr & MSR_VEC)
353                 __giveup_altivec(tsk);
354 }
355
356 static void giveup_vsx(struct task_struct *tsk)
357 {
358         check_if_tm_restore_required(tsk);
359
360         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
361         __giveup_vsx(tsk);
362         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
363 }
364
365 void enable_kernel_vsx(void)
366 {
367         unsigned long cpumsr;
368
369         WARN_ON(preemptible());
370
371         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
372
373         if (current->thread.regs &&
374             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
375                 check_if_tm_restore_required(current);
376                 /*
377                  * If a thread has already been reclaimed then the
378                  * checkpointed registers are on the CPU but have definitely
379                  * been saved by the reclaim code. Don't need to and *cannot*
380                  * giveup as this would save  to the 'live' structure not the
381                  * checkpointed structure.
382                  */
383                 if (!MSR_TM_ACTIVE(cpumsr) &&
384                      MSR_TM_ACTIVE(current->thread.regs->msr))
385                         return;
386                 __giveup_vsx(current);
387         }
388 }
389 EXPORT_SYMBOL(enable_kernel_vsx);
390
391 void flush_vsx_to_thread(struct task_struct *tsk)
392 {
393         if (tsk->thread.regs) {
394                 preempt_disable();
395                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
396                         BUG_ON(tsk != current);
397                         giveup_vsx(tsk);
398                 }
399                 preempt_enable();
400         }
401 }
402 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
403
404 static int restore_vsx(struct task_struct *tsk)
405 {
406         if (cpu_has_feature(CPU_FTR_VSX)) {
407                 tsk->thread.used_vsr = 1;
408                 return 1;
409         }
410
411         return 0;
412 }
413 #else
414 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
415 #endif /* CONFIG_VSX */
416
417 #ifdef CONFIG_SPE
418 void giveup_spe(struct task_struct *tsk)
419 {
420         check_if_tm_restore_required(tsk);
421
422         msr_check_and_set(MSR_SPE);
423         __giveup_spe(tsk);
424         msr_check_and_clear(MSR_SPE);
425 }
426 EXPORT_SYMBOL(giveup_spe);
427
428 void enable_kernel_spe(void)
429 {
430         WARN_ON(preemptible());
431
432         msr_check_and_set(MSR_SPE);
433
434         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
435                 check_if_tm_restore_required(current);
436                 __giveup_spe(current);
437         }
438 }
439 EXPORT_SYMBOL(enable_kernel_spe);
440
441 void flush_spe_to_thread(struct task_struct *tsk)
442 {
443         if (tsk->thread.regs) {
444                 preempt_disable();
445                 if (tsk->thread.regs->msr & MSR_SPE) {
446                         BUG_ON(tsk != current);
447                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
448                         giveup_spe(tsk);
449                 }
450                 preempt_enable();
451         }
452 }
453 #endif /* CONFIG_SPE */
454
455 static unsigned long msr_all_available;
456
457 static int __init init_msr_all_available(void)
458 {
459 #ifdef CONFIG_PPC_FPU
460         msr_all_available |= MSR_FP;
461 #endif
462 #ifdef CONFIG_ALTIVEC
463         if (cpu_has_feature(CPU_FTR_ALTIVEC))
464                 msr_all_available |= MSR_VEC;
465 #endif
466 #ifdef CONFIG_VSX
467         if (cpu_has_feature(CPU_FTR_VSX))
468                 msr_all_available |= MSR_VSX;
469 #endif
470 #ifdef CONFIG_SPE
471         if (cpu_has_feature(CPU_FTR_SPE))
472                 msr_all_available |= MSR_SPE;
473 #endif
474
475         return 0;
476 }
477 early_initcall(init_msr_all_available);
478
479 void giveup_all(struct task_struct *tsk)
480 {
481         unsigned long usermsr;
482
483         if (!tsk->thread.regs)
484                 return;
485
486         check_if_tm_restore_required(tsk);
487
488         usermsr = tsk->thread.regs->msr;
489
490         if ((usermsr & msr_all_available) == 0)
491                 return;
492
493         msr_check_and_set(msr_all_available);
494
495         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
496
497 #ifdef CONFIG_PPC_FPU
498         if (usermsr & MSR_FP)
499                 __giveup_fpu(tsk);
500 #endif
501 #ifdef CONFIG_ALTIVEC
502         if (usermsr & MSR_VEC)
503                 __giveup_altivec(tsk);
504 #endif
505 #ifdef CONFIG_SPE
506         if (usermsr & MSR_SPE)
507                 __giveup_spe(tsk);
508 #endif
509
510         msr_check_and_clear(msr_all_available);
511 }
512 EXPORT_SYMBOL(giveup_all);
513
514 /*
515  * The exception exit path calls restore_math() with interrupts hard disabled
516  * but the soft irq state not "reconciled". ftrace code that calls
517  * local_irq_save/restore causes warnings.
518  *
519  * Rather than complicate the exit path, just don't trace restore_math. This
520  * could be done by having ftrace entry code check for this un-reconciled
521  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
522  * temporarily fix it up for the duration of the ftrace call.
523  */
524 void notrace restore_math(struct pt_regs *regs)
525 {
526         unsigned long msr;
527
528         if (!MSR_TM_ACTIVE(regs->msr) &&
529                 !current->thread.load_fp && !loadvec(current->thread))
530                 return;
531
532         msr = regs->msr;
533         msr_check_and_set(msr_all_available);
534
535         /*
536          * Only reload if the bit is not set in the user MSR, the bit BEING set
537          * indicates that the registers are hot
538          */
539         if ((!(msr & MSR_FP)) && restore_fp(current))
540                 msr |= MSR_FP | current->thread.fpexc_mode;
541
542         if ((!(msr & MSR_VEC)) && restore_altivec(current))
543                 msr |= MSR_VEC;
544
545         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
546                         restore_vsx(current)) {
547                 msr |= MSR_VSX;
548         }
549
550         msr_check_and_clear(msr_all_available);
551
552         regs->msr = msr;
553 }
554
555 static void save_all(struct task_struct *tsk)
556 {
557         unsigned long usermsr;
558
559         if (!tsk->thread.regs)
560                 return;
561
562         usermsr = tsk->thread.regs->msr;
563
564         if ((usermsr & msr_all_available) == 0)
565                 return;
566
567         msr_check_and_set(msr_all_available);
568
569         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
570
571         if (usermsr & MSR_FP)
572                 save_fpu(tsk);
573
574         if (usermsr & MSR_VEC)
575                 save_altivec(tsk);
576
577         if (usermsr & MSR_SPE)
578                 __giveup_spe(tsk);
579
580         msr_check_and_clear(msr_all_available);
581         thread_pkey_regs_save(&tsk->thread);
582 }
583
584 void flush_all_to_thread(struct task_struct *tsk)
585 {
586         if (tsk->thread.regs) {
587                 preempt_disable();
588                 BUG_ON(tsk != current);
589 #ifdef CONFIG_SPE
590                 if (tsk->thread.regs->msr & MSR_SPE)
591                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
592 #endif
593                 save_all(tsk);
594
595                 preempt_enable();
596         }
597 }
598 EXPORT_SYMBOL(flush_all_to_thread);
599
600 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
601 void do_send_trap(struct pt_regs *regs, unsigned long address,
602                   unsigned long error_code, int breakpt)
603 {
604         current->thread.trap_nr = TRAP_HWBKPT;
605         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
606                         11, SIGSEGV) == NOTIFY_STOP)
607                 return;
608
609         /* Deliver the signal to userspace */
610         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
611                                     (void __user *)address);
612 }
613 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
614 void do_break (struct pt_regs *regs, unsigned long address,
615                     unsigned long error_code)
616 {
617         current->thread.trap_nr = TRAP_HWBKPT;
618         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
619                         11, SIGSEGV) == NOTIFY_STOP)
620                 return;
621
622         if (debugger_break_match(regs))
623                 return;
624
625         /* Clear the breakpoint */
626         hw_breakpoint_disable();
627
628         /* Deliver the signal to userspace */
629         force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
630 }
631 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
632
633 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
634
635 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
636 /*
637  * Set the debug registers back to their default "safe" values.
638  */
639 static void set_debug_reg_defaults(struct thread_struct *thread)
640 {
641         thread->debug.iac1 = thread->debug.iac2 = 0;
642 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
643         thread->debug.iac3 = thread->debug.iac4 = 0;
644 #endif
645         thread->debug.dac1 = thread->debug.dac2 = 0;
646 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
647         thread->debug.dvc1 = thread->debug.dvc2 = 0;
648 #endif
649         thread->debug.dbcr0 = 0;
650 #ifdef CONFIG_BOOKE
651         /*
652          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
653          */
654         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
655                         DBCR1_IAC3US | DBCR1_IAC4US;
656         /*
657          * Force Data Address Compare User/Supervisor bits to be User-only
658          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
659          */
660         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
661 #else
662         thread->debug.dbcr1 = 0;
663 #endif
664 }
665
666 static void prime_debug_regs(struct debug_reg *debug)
667 {
668         /*
669          * We could have inherited MSR_DE from userspace, since
670          * it doesn't get cleared on exception entry.  Make sure
671          * MSR_DE is clear before we enable any debug events.
672          */
673         mtmsr(mfmsr() & ~MSR_DE);
674
675         mtspr(SPRN_IAC1, debug->iac1);
676         mtspr(SPRN_IAC2, debug->iac2);
677 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
678         mtspr(SPRN_IAC3, debug->iac3);
679         mtspr(SPRN_IAC4, debug->iac4);
680 #endif
681         mtspr(SPRN_DAC1, debug->dac1);
682         mtspr(SPRN_DAC2, debug->dac2);
683 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
684         mtspr(SPRN_DVC1, debug->dvc1);
685         mtspr(SPRN_DVC2, debug->dvc2);
686 #endif
687         mtspr(SPRN_DBCR0, debug->dbcr0);
688         mtspr(SPRN_DBCR1, debug->dbcr1);
689 #ifdef CONFIG_BOOKE
690         mtspr(SPRN_DBCR2, debug->dbcr2);
691 #endif
692 }
693 /*
694  * Unless neither the old or new thread are making use of the
695  * debug registers, set the debug registers from the values
696  * stored in the new thread.
697  */
698 void switch_booke_debug_regs(struct debug_reg *new_debug)
699 {
700         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
701                 || (new_debug->dbcr0 & DBCR0_IDM))
702                         prime_debug_regs(new_debug);
703 }
704 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
705 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
706 #ifndef CONFIG_HAVE_HW_BREAKPOINT
707 static void set_breakpoint(struct arch_hw_breakpoint *brk)
708 {
709         preempt_disable();
710         __set_breakpoint(brk);
711         preempt_enable();
712 }
713
714 static void set_debug_reg_defaults(struct thread_struct *thread)
715 {
716         thread->hw_brk.address = 0;
717         thread->hw_brk.type = 0;
718         if (ppc_breakpoint_available())
719                 set_breakpoint(&thread->hw_brk);
720 }
721 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
722 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
723
724 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
725 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
726 {
727         mtspr(SPRN_DAC1, dabr);
728 #ifdef CONFIG_PPC_47x
729         isync();
730 #endif
731         return 0;
732 }
733 #elif defined(CONFIG_PPC_BOOK3S)
734 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
735 {
736         mtspr(SPRN_DABR, dabr);
737         if (cpu_has_feature(CPU_FTR_DABRX))
738                 mtspr(SPRN_DABRX, dabrx);
739         return 0;
740 }
741 #elif defined(CONFIG_PPC_8xx)
742 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
743 {
744         unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
745         unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
746         unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
747
748         if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
749                 lctrl1 |= 0xa0000;
750         else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
751                 lctrl1 |= 0xf0000;
752         else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
753                 lctrl2 = 0;
754
755         mtspr(SPRN_LCTRL2, 0);
756         mtspr(SPRN_CMPE, addr);
757         mtspr(SPRN_CMPF, addr + 4);
758         mtspr(SPRN_LCTRL1, lctrl1);
759         mtspr(SPRN_LCTRL2, lctrl2);
760
761         return 0;
762 }
763 #else
764 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
765 {
766         return -EINVAL;
767 }
768 #endif
769
770 static inline int set_dabr(struct arch_hw_breakpoint *brk)
771 {
772         unsigned long dabr, dabrx;
773
774         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
775         dabrx = ((brk->type >> 3) & 0x7);
776
777         if (ppc_md.set_dabr)
778                 return ppc_md.set_dabr(dabr, dabrx);
779
780         return __set_dabr(dabr, dabrx);
781 }
782
783 void __set_breakpoint(struct arch_hw_breakpoint *brk)
784 {
785         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
786
787         if (dawr_enabled())
788                 // Power8 or later
789                 set_dawr(brk);
790         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
791                 // Power7 or earlier
792                 set_dabr(brk);
793         else
794                 // Shouldn't happen due to higher level checks
795                 WARN_ON_ONCE(1);
796 }
797
798 /* Check if we have DAWR or DABR hardware */
799 bool ppc_breakpoint_available(void)
800 {
801         if (dawr_enabled())
802                 return true; /* POWER8 DAWR or POWER9 forced DAWR */
803         if (cpu_has_feature(CPU_FTR_ARCH_207S))
804                 return false; /* POWER9 with DAWR disabled */
805         /* DABR: Everything but POWER8 and POWER9 */
806         return true;
807 }
808 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
809
810 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
811                               struct arch_hw_breakpoint *b)
812 {
813         if (a->address != b->address)
814                 return false;
815         if (a->type != b->type)
816                 return false;
817         if (a->len != b->len)
818                 return false;
819         return true;
820 }
821
822 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
823
824 static inline bool tm_enabled(struct task_struct *tsk)
825 {
826         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
827 }
828
829 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
830 {
831         /*
832          * Use the current MSR TM suspended bit to track if we have
833          * checkpointed state outstanding.
834          * On signal delivery, we'd normally reclaim the checkpointed
835          * state to obtain stack pointer (see:get_tm_stackpointer()).
836          * This will then directly return to userspace without going
837          * through __switch_to(). However, if the stack frame is bad,
838          * we need to exit this thread which calls __switch_to() which
839          * will again attempt to reclaim the already saved tm state.
840          * Hence we need to check that we've not already reclaimed
841          * this state.
842          * We do this using the current MSR, rather tracking it in
843          * some specific thread_struct bit, as it has the additional
844          * benefit of checking for a potential TM bad thing exception.
845          */
846         if (!MSR_TM_SUSPENDED(mfmsr()))
847                 return;
848
849         giveup_all(container_of(thr, struct task_struct, thread));
850
851         tm_reclaim(thr, cause);
852
853         /*
854          * If we are in a transaction and FP is off then we can't have
855          * used FP inside that transaction. Hence the checkpointed
856          * state is the same as the live state. We need to copy the
857          * live state to the checkpointed state so that when the
858          * transaction is restored, the checkpointed state is correct
859          * and the aborted transaction sees the correct state. We use
860          * ckpt_regs.msr here as that's what tm_reclaim will use to
861          * determine if it's going to write the checkpointed state or
862          * not. So either this will write the checkpointed registers,
863          * or reclaim will. Similarly for VMX.
864          */
865         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
866                 memcpy(&thr->ckfp_state, &thr->fp_state,
867                        sizeof(struct thread_fp_state));
868         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
869                 memcpy(&thr->ckvr_state, &thr->vr_state,
870                        sizeof(struct thread_vr_state));
871 }
872
873 void tm_reclaim_current(uint8_t cause)
874 {
875         tm_enable();
876         tm_reclaim_thread(&current->thread, cause);
877 }
878
879 static inline void tm_reclaim_task(struct task_struct *tsk)
880 {
881         /* We have to work out if we're switching from/to a task that's in the
882          * middle of a transaction.
883          *
884          * In switching we need to maintain a 2nd register state as
885          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
886          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
887          * ckvr_state
888          *
889          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
890          */
891         struct thread_struct *thr = &tsk->thread;
892
893         if (!thr->regs)
894                 return;
895
896         if (!MSR_TM_ACTIVE(thr->regs->msr))
897                 goto out_and_saveregs;
898
899         WARN_ON(tm_suspend_disabled);
900
901         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
902                  "ccr=%lx, msr=%lx, trap=%lx)\n",
903                  tsk->pid, thr->regs->nip,
904                  thr->regs->ccr, thr->regs->msr,
905                  thr->regs->trap);
906
907         tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
908
909         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
910                  tsk->pid);
911
912 out_and_saveregs:
913         /* Always save the regs here, even if a transaction's not active.
914          * This context-switches a thread's TM info SPRs.  We do it here to
915          * be consistent with the restore path (in recheckpoint) which
916          * cannot happen later in _switch().
917          */
918         tm_save_sprs(thr);
919 }
920
921 extern void __tm_recheckpoint(struct thread_struct *thread);
922
923 void tm_recheckpoint(struct thread_struct *thread)
924 {
925         unsigned long flags;
926
927         if (!(thread->regs->msr & MSR_TM))
928                 return;
929
930         /* We really can't be interrupted here as the TEXASR registers can't
931          * change and later in the trecheckpoint code, we have a userspace R1.
932          * So let's hard disable over this region.
933          */
934         local_irq_save(flags);
935         hard_irq_disable();
936
937         /* The TM SPRs are restored here, so that TEXASR.FS can be set
938          * before the trecheckpoint and no explosion occurs.
939          */
940         tm_restore_sprs(thread);
941
942         __tm_recheckpoint(thread);
943
944         local_irq_restore(flags);
945 }
946
947 static inline void tm_recheckpoint_new_task(struct task_struct *new)
948 {
949         if (!cpu_has_feature(CPU_FTR_TM))
950                 return;
951
952         /* Recheckpoint the registers of the thread we're about to switch to.
953          *
954          * If the task was using FP, we non-lazily reload both the original and
955          * the speculative FP register states.  This is because the kernel
956          * doesn't see if/when a TM rollback occurs, so if we take an FP
957          * unavailable later, we are unable to determine which set of FP regs
958          * need to be restored.
959          */
960         if (!tm_enabled(new))
961                 return;
962
963         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
964                 tm_restore_sprs(&new->thread);
965                 return;
966         }
967         /* Recheckpoint to restore original checkpointed register state. */
968         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
969                  new->pid, new->thread.regs->msr);
970
971         tm_recheckpoint(&new->thread);
972
973         /*
974          * The checkpointed state has been restored but the live state has
975          * not, ensure all the math functionality is turned off to trigger
976          * restore_math() to reload.
977          */
978         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
979
980         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
981                  "(kernel msr 0x%lx)\n",
982                  new->pid, mfmsr());
983 }
984
985 static inline void __switch_to_tm(struct task_struct *prev,
986                 struct task_struct *new)
987 {
988         if (cpu_has_feature(CPU_FTR_TM)) {
989                 if (tm_enabled(prev) || tm_enabled(new))
990                         tm_enable();
991
992                 if (tm_enabled(prev)) {
993                         prev->thread.load_tm++;
994                         tm_reclaim_task(prev);
995                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
996                                 prev->thread.regs->msr &= ~MSR_TM;
997                 }
998
999                 tm_recheckpoint_new_task(new);
1000         }
1001 }
1002
1003 /*
1004  * This is called if we are on the way out to userspace and the
1005  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1006  * FP and/or vector state and does so if necessary.
1007  * If userspace is inside a transaction (whether active or
1008  * suspended) and FP/VMX/VSX instructions have ever been enabled
1009  * inside that transaction, then we have to keep them enabled
1010  * and keep the FP/VMX/VSX state loaded while ever the transaction
1011  * continues.  The reason is that if we didn't, and subsequently
1012  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1013  * we don't know whether it's the same transaction, and thus we
1014  * don't know which of the checkpointed state and the transactional
1015  * state to use.
1016  */
1017 void restore_tm_state(struct pt_regs *regs)
1018 {
1019         unsigned long msr_diff;
1020
1021         /*
1022          * This is the only moment we should clear TIF_RESTORE_TM as
1023          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1024          * again, anything else could lead to an incorrect ckpt_msr being
1025          * saved and therefore incorrect signal contexts.
1026          */
1027         clear_thread_flag(TIF_RESTORE_TM);
1028         if (!MSR_TM_ACTIVE(regs->msr))
1029                 return;
1030
1031         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1032         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1033
1034         /* Ensure that restore_math() will restore */
1035         if (msr_diff & MSR_FP)
1036                 current->thread.load_fp = 1;
1037 #ifdef CONFIG_ALTIVEC
1038         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1039                 current->thread.load_vec = 1;
1040 #endif
1041         restore_math(regs);
1042
1043         regs->msr |= msr_diff;
1044 }
1045
1046 #else
1047 #define tm_recheckpoint_new_task(new)
1048 #define __switch_to_tm(prev, new)
1049 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1050
1051 static inline void save_sprs(struct thread_struct *t)
1052 {
1053 #ifdef CONFIG_ALTIVEC
1054         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1055                 t->vrsave = mfspr(SPRN_VRSAVE);
1056 #endif
1057 #ifdef CONFIG_PPC_BOOK3S_64
1058         if (cpu_has_feature(CPU_FTR_DSCR))
1059                 t->dscr = mfspr(SPRN_DSCR);
1060
1061         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1062                 t->bescr = mfspr(SPRN_BESCR);
1063                 t->ebbhr = mfspr(SPRN_EBBHR);
1064                 t->ebbrr = mfspr(SPRN_EBBRR);
1065
1066                 t->fscr = mfspr(SPRN_FSCR);
1067
1068                 /*
1069                  * Note that the TAR is not available for use in the kernel.
1070                  * (To provide this, the TAR should be backed up/restored on
1071                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1072                  * this should be in pt_regs anyway (for debug).)
1073                  */
1074                 t->tar = mfspr(SPRN_TAR);
1075         }
1076 #endif
1077
1078         thread_pkey_regs_save(t);
1079 }
1080
1081 static inline void restore_sprs(struct thread_struct *old_thread,
1082                                 struct thread_struct *new_thread)
1083 {
1084 #ifdef CONFIG_ALTIVEC
1085         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1086             old_thread->vrsave != new_thread->vrsave)
1087                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1088 #endif
1089 #ifdef CONFIG_PPC_BOOK3S_64
1090         if (cpu_has_feature(CPU_FTR_DSCR)) {
1091                 u64 dscr = get_paca()->dscr_default;
1092                 if (new_thread->dscr_inherit)
1093                         dscr = new_thread->dscr;
1094
1095                 if (old_thread->dscr != dscr)
1096                         mtspr(SPRN_DSCR, dscr);
1097         }
1098
1099         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1100                 if (old_thread->bescr != new_thread->bescr)
1101                         mtspr(SPRN_BESCR, new_thread->bescr);
1102                 if (old_thread->ebbhr != new_thread->ebbhr)
1103                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1104                 if (old_thread->ebbrr != new_thread->ebbrr)
1105                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1106
1107                 if (old_thread->fscr != new_thread->fscr)
1108                         mtspr(SPRN_FSCR, new_thread->fscr);
1109
1110                 if (old_thread->tar != new_thread->tar)
1111                         mtspr(SPRN_TAR, new_thread->tar);
1112         }
1113
1114         if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1115             old_thread->tidr != new_thread->tidr)
1116                 mtspr(SPRN_TIDR, new_thread->tidr);
1117 #endif
1118
1119         thread_pkey_regs_restore(new_thread, old_thread);
1120 }
1121
1122 struct task_struct *__switch_to(struct task_struct *prev,
1123         struct task_struct *new)
1124 {
1125         struct thread_struct *new_thread, *old_thread;
1126         struct task_struct *last;
1127 #ifdef CONFIG_PPC_BOOK3S_64
1128         struct ppc64_tlb_batch *batch;
1129 #endif
1130
1131         new_thread = &new->thread;
1132         old_thread = &current->thread;
1133
1134         WARN_ON(!irqs_disabled());
1135
1136 #ifdef CONFIG_PPC_BOOK3S_64
1137         batch = this_cpu_ptr(&ppc64_tlb_batch);
1138         if (batch->active) {
1139                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1140                 if (batch->index)
1141                         __flush_tlb_pending(batch);
1142                 batch->active = 0;
1143         }
1144 #endif /* CONFIG_PPC_BOOK3S_64 */
1145
1146 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1147         switch_booke_debug_regs(&new->thread.debug);
1148 #else
1149 /*
1150  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1151  * schedule DABR
1152  */
1153 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1154         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1155                 __set_breakpoint(&new->thread.hw_brk);
1156 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1157 #endif
1158
1159         /*
1160          * We need to save SPRs before treclaim/trecheckpoint as these will
1161          * change a number of them.
1162          */
1163         save_sprs(&prev->thread);
1164
1165         /* Save FPU, Altivec, VSX and SPE state */
1166         giveup_all(prev);
1167
1168         __switch_to_tm(prev, new);
1169
1170         if (!radix_enabled()) {
1171                 /*
1172                  * We can't take a PMU exception inside _switch() since there
1173                  * is a window where the kernel stack SLB and the kernel stack
1174                  * are out of sync. Hard disable here.
1175                  */
1176                 hard_irq_disable();
1177         }
1178
1179         /*
1180          * Call restore_sprs() before calling _switch(). If we move it after
1181          * _switch() then we miss out on calling it for new tasks. The reason
1182          * for this is we manually create a stack frame for new tasks that
1183          * directly returns through ret_from_fork() or
1184          * ret_from_kernel_thread(). See copy_thread() for details.
1185          */
1186         restore_sprs(old_thread, new_thread);
1187
1188         last = _switch(old_thread, new_thread);
1189
1190 #ifdef CONFIG_PPC_BOOK3S_64
1191         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1192                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1193                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1194                 batch->active = 1;
1195         }
1196
1197         if (current->thread.regs) {
1198                 restore_math(current->thread.regs);
1199
1200                 /*
1201                  * The copy-paste buffer can only store into foreign real
1202                  * addresses, so unprivileged processes can not see the
1203                  * data or use it in any way unless they have foreign real
1204                  * mappings. If the new process has the foreign real address
1205                  * mappings, we must issue a cp_abort to clear any state and
1206                  * prevent snooping, corruption or a covert channel.
1207                  */
1208                 if (current->thread.used_vas)
1209                         asm volatile(PPC_CP_ABORT);
1210         }
1211 #endif /* CONFIG_PPC_BOOK3S_64 */
1212
1213         return last;
1214 }
1215
1216 #define NR_INSN_TO_PRINT        16
1217
1218 static void show_instructions(struct pt_regs *regs)
1219 {
1220         int i;
1221         unsigned long nip = regs->nip;
1222         unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1223
1224         printk("Instruction dump:");
1225
1226         /*
1227          * If we were executing with the MMU off for instructions, adjust pc
1228          * rather than printing XXXXXXXX.
1229          */
1230         if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1231                 pc = (unsigned long)phys_to_virt(pc);
1232                 nip = (unsigned long)phys_to_virt(regs->nip);
1233         }
1234
1235         for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1236                 int instr;
1237
1238                 if (!(i % 8))
1239                         pr_cont("\n");
1240
1241                 if (!__kernel_text_address(pc) ||
1242                     probe_kernel_address((const void *)pc, instr)) {
1243                         pr_cont("XXXXXXXX ");
1244                 } else {
1245                         if (nip == pc)
1246                                 pr_cont("<%08x> ", instr);
1247                         else
1248                                 pr_cont("%08x ", instr);
1249                 }
1250
1251                 pc += sizeof(int);
1252         }
1253
1254         pr_cont("\n");
1255 }
1256
1257 void show_user_instructions(struct pt_regs *regs)
1258 {
1259         unsigned long pc;
1260         int n = NR_INSN_TO_PRINT;
1261         struct seq_buf s;
1262         char buf[96]; /* enough for 8 times 9 + 2 chars */
1263
1264         pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1265
1266         /*
1267          * Make sure the NIP points at userspace, not kernel text/data or
1268          * elsewhere.
1269          */
1270         if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
1271                 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1272                         current->comm, current->pid);
1273                 return;
1274         }
1275
1276         seq_buf_init(&s, buf, sizeof(buf));
1277
1278         while (n) {
1279                 int i;
1280
1281                 seq_buf_clear(&s);
1282
1283                 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1284                         int instr;
1285
1286                         if (probe_kernel_address((const void *)pc, instr)) {
1287                                 seq_buf_printf(&s, "XXXXXXXX ");
1288                                 continue;
1289                         }
1290                         seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1291                 }
1292
1293                 if (!seq_buf_has_overflowed(&s))
1294                         pr_info("%s[%d]: code: %s\n", current->comm,
1295                                 current->pid, s.buffer);
1296         }
1297 }
1298
1299 struct regbit {
1300         unsigned long bit;
1301         const char *name;
1302 };
1303
1304 static struct regbit msr_bits[] = {
1305 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1306         {MSR_SF,        "SF"},
1307         {MSR_HV,        "HV"},
1308 #endif
1309         {MSR_VEC,       "VEC"},
1310         {MSR_VSX,       "VSX"},
1311 #ifdef CONFIG_BOOKE
1312         {MSR_CE,        "CE"},
1313 #endif
1314         {MSR_EE,        "EE"},
1315         {MSR_PR,        "PR"},
1316         {MSR_FP,        "FP"},
1317         {MSR_ME,        "ME"},
1318 #ifdef CONFIG_BOOKE
1319         {MSR_DE,        "DE"},
1320 #else
1321         {MSR_SE,        "SE"},
1322         {MSR_BE,        "BE"},
1323 #endif
1324         {MSR_IR,        "IR"},
1325         {MSR_DR,        "DR"},
1326         {MSR_PMM,       "PMM"},
1327 #ifndef CONFIG_BOOKE
1328         {MSR_RI,        "RI"},
1329         {MSR_LE,        "LE"},
1330 #endif
1331         {0,             NULL}
1332 };
1333
1334 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1335 {
1336         const char *s = "";
1337
1338         for (; bits->bit; ++bits)
1339                 if (val & bits->bit) {
1340                         pr_cont("%s%s", s, bits->name);
1341                         s = sep;
1342                 }
1343 }
1344
1345 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1346 static struct regbit msr_tm_bits[] = {
1347         {MSR_TS_T,      "T"},
1348         {MSR_TS_S,      "S"},
1349         {MSR_TM,        "E"},
1350         {0,             NULL}
1351 };
1352
1353 static void print_tm_bits(unsigned long val)
1354 {
1355 /*
1356  * This only prints something if at least one of the TM bit is set.
1357  * Inside the TM[], the output means:
1358  *   E: Enabled         (bit 32)
1359  *   S: Suspended       (bit 33)
1360  *   T: Transactional   (bit 34)
1361  */
1362         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1363                 pr_cont(",TM[");
1364                 print_bits(val, msr_tm_bits, "");
1365                 pr_cont("]");
1366         }
1367 }
1368 #else
1369 static void print_tm_bits(unsigned long val) {}
1370 #endif
1371
1372 static void print_msr_bits(unsigned long val)
1373 {
1374         pr_cont("<");
1375         print_bits(val, msr_bits, ",");
1376         print_tm_bits(val);
1377         pr_cont(">");
1378 }
1379
1380 #ifdef CONFIG_PPC64
1381 #define REG             "%016lx"
1382 #define REGS_PER_LINE   4
1383 #define LAST_VOLATILE   13
1384 #else
1385 #define REG             "%08lx"
1386 #define REGS_PER_LINE   8
1387 #define LAST_VOLATILE   12
1388 #endif
1389
1390 void show_regs(struct pt_regs * regs)
1391 {
1392         int i, trap;
1393
1394         show_regs_print_info(KERN_DEFAULT);
1395
1396         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1397                regs->nip, regs->link, regs->ctr);
1398         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1399                regs, regs->trap, print_tainted(), init_utsname()->release);
1400         printk("MSR:  "REG" ", regs->msr);
1401         print_msr_bits(regs->msr);
1402         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1403         trap = TRAP(regs);
1404         if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1405                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1406         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1407 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1408                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1409 #else
1410                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1411 #endif
1412 #ifdef CONFIG_PPC64
1413         pr_cont("IRQMASK: %lx ", regs->softe);
1414 #endif
1415 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1416         if (MSR_TM_ACTIVE(regs->msr))
1417                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1418 #endif
1419
1420         for (i = 0;  i < 32;  i++) {
1421                 if ((i % REGS_PER_LINE) == 0)
1422                         pr_cont("\nGPR%02d: ", i);
1423                 pr_cont(REG " ", regs->gpr[i]);
1424                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1425                         break;
1426         }
1427         pr_cont("\n");
1428 #ifdef CONFIG_KALLSYMS
1429         /*
1430          * Lookup NIP late so we have the best change of getting the
1431          * above info out without failing
1432          */
1433         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1434         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1435 #endif
1436         show_stack(current, (unsigned long *) regs->gpr[1]);
1437         if (!user_mode(regs))
1438                 show_instructions(regs);
1439 }
1440
1441 void flush_thread(void)
1442 {
1443 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1444         flush_ptrace_hw_breakpoint(current);
1445 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1446         set_debug_reg_defaults(&current->thread);
1447 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1448 }
1449
1450 #ifdef CONFIG_PPC_BOOK3S_64
1451 void arch_setup_new_exec(void)
1452 {
1453         if (radix_enabled())
1454                 return;
1455         hash__setup_new_exec();
1456 }
1457 #endif
1458
1459 int set_thread_uses_vas(void)
1460 {
1461 #ifdef CONFIG_PPC_BOOK3S_64
1462         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1463                 return -EINVAL;
1464
1465         current->thread.used_vas = 1;
1466
1467         /*
1468          * Even a process that has no foreign real address mapping can use
1469          * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1470          * to clear any pending COPY and prevent a covert channel.
1471          *
1472          * __switch_to() will issue CP_ABORT on future context switches.
1473          */
1474         asm volatile(PPC_CP_ABORT);
1475
1476 #endif /* CONFIG_PPC_BOOK3S_64 */
1477         return 0;
1478 }
1479
1480 #ifdef CONFIG_PPC64
1481 /**
1482  * Assign a TIDR (thread ID) for task @t and set it in the thread
1483  * structure. For now, we only support setting TIDR for 'current' task.
1484  *
1485  * Since the TID value is a truncated form of it PID, it is possible
1486  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1487  * that 2 threads share the same TID and are waiting, one of the following
1488  * cases will happen:
1489  *
1490  * 1. The correct thread is running, the wrong thread is not
1491  * In this situation, the correct thread is woken and proceeds to pass it's
1492  * condition check.
1493  *
1494  * 2. Neither threads are running
1495  * In this situation, neither thread will be woken. When scheduled, the waiting
1496  * threads will execute either a wait, which will return immediately, followed
1497  * by a condition check, which will pass for the correct thread and fail
1498  * for the wrong thread, or they will execute the condition check immediately.
1499  *
1500  * 3. The wrong thread is running, the correct thread is not
1501  * The wrong thread will be woken, but will fail it's condition check and
1502  * re-execute wait. The correct thread, when scheduled, will execute either
1503  * it's condition check (which will pass), or wait, which returns immediately
1504  * when called the first time after the thread is scheduled, followed by it's
1505  * condition check (which will pass).
1506  *
1507  * 4. Both threads are running
1508  * Both threads will be woken. The wrong thread will fail it's condition check
1509  * and execute another wait, while the correct thread will pass it's condition
1510  * check.
1511  *
1512  * @t: the task to set the thread ID for
1513  */
1514 int set_thread_tidr(struct task_struct *t)
1515 {
1516         if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1517                 return -EINVAL;
1518
1519         if (t != current)
1520                 return -EINVAL;
1521
1522         if (t->thread.tidr)
1523                 return 0;
1524
1525         t->thread.tidr = (u16)task_pid_nr(t);
1526         mtspr(SPRN_TIDR, t->thread.tidr);
1527
1528         return 0;
1529 }
1530 EXPORT_SYMBOL_GPL(set_thread_tidr);
1531
1532 #endif /* CONFIG_PPC64 */
1533
1534 void
1535 release_thread(struct task_struct *t)
1536 {
1537 }
1538
1539 /*
1540  * this gets called so that we can store coprocessor state into memory and
1541  * copy the current task into the new thread.
1542  */
1543 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1544 {
1545         flush_all_to_thread(src);
1546         /*
1547          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1548          * flush but it removes the checkpointed state from the current CPU and
1549          * transitions the CPU out of TM mode.  Hence we need to call
1550          * tm_recheckpoint_new_task() (on the same task) to restore the
1551          * checkpointed state back and the TM mode.
1552          *
1553          * Can't pass dst because it isn't ready. Doesn't matter, passing
1554          * dst is only important for __switch_to()
1555          */
1556         __switch_to_tm(src, src);
1557
1558         *dst = *src;
1559
1560         clear_task_ebb(dst);
1561
1562         return 0;
1563 }
1564
1565 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1566 {
1567 #ifdef CONFIG_PPC_BOOK3S_64
1568         unsigned long sp_vsid;
1569         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1570
1571         if (radix_enabled())
1572                 return;
1573
1574         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1575                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1576                         << SLB_VSID_SHIFT_1T;
1577         else
1578                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1579                         << SLB_VSID_SHIFT;
1580         sp_vsid |= SLB_VSID_KERNEL | llp;
1581         p->thread.ksp_vsid = sp_vsid;
1582 #endif
1583 }
1584
1585 /*
1586  * Copy a thread..
1587  */
1588
1589 /*
1590  * Copy architecture-specific thread state
1591  */
1592 int copy_thread_tls(unsigned long clone_flags, unsigned long usp,
1593                 unsigned long kthread_arg, struct task_struct *p,
1594                 unsigned long tls)
1595 {
1596         struct pt_regs *childregs, *kregs;
1597         extern void ret_from_fork(void);
1598         extern void ret_from_kernel_thread(void);
1599         void (*f)(void);
1600         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1601         struct thread_info *ti = task_thread_info(p);
1602
1603         klp_init_thread_info(p);
1604
1605         /* Copy registers */
1606         sp -= sizeof(struct pt_regs);
1607         childregs = (struct pt_regs *) sp;
1608         if (unlikely(p->flags & PF_KTHREAD)) {
1609                 /* kernel thread */
1610                 memset(childregs, 0, sizeof(struct pt_regs));
1611                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1612                 /* function */
1613                 if (usp)
1614                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1615 #ifdef CONFIG_PPC64
1616                 clear_tsk_thread_flag(p, TIF_32BIT);
1617                 childregs->softe = IRQS_ENABLED;
1618 #endif
1619                 childregs->gpr[15] = kthread_arg;
1620                 p->thread.regs = NULL;  /* no user register state */
1621                 ti->flags |= _TIF_RESTOREALL;
1622                 f = ret_from_kernel_thread;
1623         } else {
1624                 /* user thread */
1625                 struct pt_regs *regs = current_pt_regs();
1626                 CHECK_FULL_REGS(regs);
1627                 *childregs = *regs;
1628                 if (usp)
1629                         childregs->gpr[1] = usp;
1630                 p->thread.regs = childregs;
1631                 childregs->gpr[3] = 0;  /* Result from fork() */
1632                 if (clone_flags & CLONE_SETTLS) {
1633 #ifdef CONFIG_PPC64
1634                         if (!is_32bit_task())
1635                                 childregs->gpr[13] = tls;
1636                         else
1637 #endif
1638                                 childregs->gpr[2] = tls;
1639                 }
1640
1641                 f = ret_from_fork;
1642         }
1643         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1644         sp -= STACK_FRAME_OVERHEAD;
1645
1646         /*
1647          * The way this works is that at some point in the future
1648          * some task will call _switch to switch to the new task.
1649          * That will pop off the stack frame created below and start
1650          * the new task running at ret_from_fork.  The new task will
1651          * do some house keeping and then return from the fork or clone
1652          * system call, using the stack frame created above.
1653          */
1654         ((unsigned long *)sp)[0] = 0;
1655         sp -= sizeof(struct pt_regs);
1656         kregs = (struct pt_regs *) sp;
1657         sp -= STACK_FRAME_OVERHEAD;
1658         p->thread.ksp = sp;
1659 #ifdef CONFIG_PPC32
1660         p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1661 #endif
1662 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1663         p->thread.ptrace_bps[0] = NULL;
1664 #endif
1665
1666         p->thread.fp_save_area = NULL;
1667 #ifdef CONFIG_ALTIVEC
1668         p->thread.vr_save_area = NULL;
1669 #endif
1670
1671         setup_ksp_vsid(p, sp);
1672
1673 #ifdef CONFIG_PPC64 
1674         if (cpu_has_feature(CPU_FTR_DSCR)) {
1675                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1676                 p->thread.dscr = mfspr(SPRN_DSCR);
1677         }
1678         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1679                 childregs->ppr = DEFAULT_PPR;
1680
1681         p->thread.tidr = 0;
1682 #endif
1683         kregs->nip = ppc_function_entry(f);
1684         return 0;
1685 }
1686
1687 void preload_new_slb_context(unsigned long start, unsigned long sp);
1688
1689 /*
1690  * Set up a thread for executing a new program
1691  */
1692 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1693 {
1694 #ifdef CONFIG_PPC64
1695         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1696
1697 #ifdef CONFIG_PPC_BOOK3S_64
1698         if (!radix_enabled())
1699                 preload_new_slb_context(start, sp);
1700 #endif
1701 #endif
1702
1703         /*
1704          * If we exec out of a kernel thread then thread.regs will not be
1705          * set.  Do it now.
1706          */
1707         if (!current->thread.regs) {
1708                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1709                 current->thread.regs = regs - 1;
1710         }
1711
1712 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1713         /*
1714          * Clear any transactional state, we're exec()ing. The cause is
1715          * not important as there will never be a recheckpoint so it's not
1716          * user visible.
1717          */
1718         if (MSR_TM_SUSPENDED(mfmsr()))
1719                 tm_reclaim_current(0);
1720 #endif
1721
1722         memset(&regs->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
1723         regs->ctr = 0;
1724         regs->link = 0;
1725         regs->xer = 0;
1726         regs->ccr = 0;
1727         regs->gpr[1] = sp;
1728
1729         /*
1730          * We have just cleared all the nonvolatile GPRs, so make
1731          * FULL_REGS(regs) return true.  This is necessary to allow
1732          * ptrace to examine the thread immediately after exec.
1733          */
1734         regs->trap &= ~1UL;
1735
1736 #ifdef CONFIG_PPC32
1737         regs->mq = 0;
1738         regs->nip = start;
1739         regs->msr = MSR_USER;
1740 #else
1741         if (!is_32bit_task()) {
1742                 unsigned long entry;
1743
1744                 if (is_elf2_task()) {
1745                         /* Look ma, no function descriptors! */
1746                         entry = start;
1747
1748                         /*
1749                          * Ulrich says:
1750                          *   The latest iteration of the ABI requires that when
1751                          *   calling a function (at its global entry point),
1752                          *   the caller must ensure r12 holds the entry point
1753                          *   address (so that the function can quickly
1754                          *   establish addressability).
1755                          */
1756                         regs->gpr[12] = start;
1757                         /* Make sure that's restored on entry to userspace. */
1758                         set_thread_flag(TIF_RESTOREALL);
1759                 } else {
1760                         unsigned long toc;
1761
1762                         /* start is a relocated pointer to the function
1763                          * descriptor for the elf _start routine.  The first
1764                          * entry in the function descriptor is the entry
1765                          * address of _start and the second entry is the TOC
1766                          * value we need to use.
1767                          */
1768                         __get_user(entry, (unsigned long __user *)start);
1769                         __get_user(toc, (unsigned long __user *)start+1);
1770
1771                         /* Check whether the e_entry function descriptor entries
1772                          * need to be relocated before we can use them.
1773                          */
1774                         if (load_addr != 0) {
1775                                 entry += load_addr;
1776                                 toc   += load_addr;
1777                         }
1778                         regs->gpr[2] = toc;
1779                 }
1780                 regs->nip = entry;
1781                 regs->msr = MSR_USER64;
1782         } else {
1783                 regs->nip = start;
1784                 regs->gpr[2] = 0;
1785                 regs->msr = MSR_USER32;
1786         }
1787 #endif
1788 #ifdef CONFIG_VSX
1789         current->thread.used_vsr = 0;
1790 #endif
1791         current->thread.load_slb = 0;
1792         current->thread.load_fp = 0;
1793         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1794         current->thread.fp_save_area = NULL;
1795 #ifdef CONFIG_ALTIVEC
1796         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1797         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1798         current->thread.vr_save_area = NULL;
1799         current->thread.vrsave = 0;
1800         current->thread.used_vr = 0;
1801         current->thread.load_vec = 0;
1802 #endif /* CONFIG_ALTIVEC */
1803 #ifdef CONFIG_SPE
1804         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1805         current->thread.acc = 0;
1806         current->thread.spefscr = 0;
1807         current->thread.used_spe = 0;
1808 #endif /* CONFIG_SPE */
1809 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1810         current->thread.tm_tfhar = 0;
1811         current->thread.tm_texasr = 0;
1812         current->thread.tm_tfiar = 0;
1813         current->thread.load_tm = 0;
1814 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1815
1816         thread_pkey_regs_init(&current->thread);
1817 }
1818 EXPORT_SYMBOL(start_thread);
1819
1820 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1821                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1822
1823 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1824 {
1825         struct pt_regs *regs = tsk->thread.regs;
1826
1827         /* This is a bit hairy.  If we are an SPE enabled  processor
1828          * (have embedded fp) we store the IEEE exception enable flags in
1829          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1830          * mode (asyn, precise, disabled) for 'Classic' FP. */
1831         if (val & PR_FP_EXC_SW_ENABLE) {
1832 #ifdef CONFIG_SPE
1833                 if (cpu_has_feature(CPU_FTR_SPE)) {
1834                         /*
1835                          * When the sticky exception bits are set
1836                          * directly by userspace, it must call prctl
1837                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1838                          * in the existing prctl settings) or
1839                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1840                          * the bits being set).  <fenv.h> functions
1841                          * saving and restoring the whole
1842                          * floating-point environment need to do so
1843                          * anyway to restore the prctl settings from
1844                          * the saved environment.
1845                          */
1846                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1847                         tsk->thread.fpexc_mode = val &
1848                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1849                         return 0;
1850                 } else {
1851                         return -EINVAL;
1852                 }
1853 #else
1854                 return -EINVAL;
1855 #endif
1856         }
1857
1858         /* on a CONFIG_SPE this does not hurt us.  The bits that
1859          * __pack_fe01 use do not overlap with bits used for
1860          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1861          * on CONFIG_SPE implementations are reserved so writing to
1862          * them does not change anything */
1863         if (val > PR_FP_EXC_PRECISE)
1864                 return -EINVAL;
1865         tsk->thread.fpexc_mode = __pack_fe01(val);
1866         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1867                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1868                         | tsk->thread.fpexc_mode;
1869         return 0;
1870 }
1871
1872 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1873 {
1874         unsigned int val;
1875
1876         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1877 #ifdef CONFIG_SPE
1878                 if (cpu_has_feature(CPU_FTR_SPE)) {
1879                         /*
1880                          * When the sticky exception bits are set
1881                          * directly by userspace, it must call prctl
1882                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1883                          * in the existing prctl settings) or
1884                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1885                          * the bits being set).  <fenv.h> functions
1886                          * saving and restoring the whole
1887                          * floating-point environment need to do so
1888                          * anyway to restore the prctl settings from
1889                          * the saved environment.
1890                          */
1891                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1892                         val = tsk->thread.fpexc_mode;
1893                 } else
1894                         return -EINVAL;
1895 #else
1896                 return -EINVAL;
1897 #endif
1898         else
1899                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1900         return put_user(val, (unsigned int __user *) adr);
1901 }
1902
1903 int set_endian(struct task_struct *tsk, unsigned int val)
1904 {
1905         struct pt_regs *regs = tsk->thread.regs;
1906
1907         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1908             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1909                 return -EINVAL;
1910
1911         if (regs == NULL)
1912                 return -EINVAL;
1913
1914         if (val == PR_ENDIAN_BIG)
1915                 regs->msr &= ~MSR_LE;
1916         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1917                 regs->msr |= MSR_LE;
1918         else
1919                 return -EINVAL;
1920
1921         return 0;
1922 }
1923
1924 int get_endian(struct task_struct *tsk, unsigned long adr)
1925 {
1926         struct pt_regs *regs = tsk->thread.regs;
1927         unsigned int val;
1928
1929         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1930             !cpu_has_feature(CPU_FTR_REAL_LE))
1931                 return -EINVAL;
1932
1933         if (regs == NULL)
1934                 return -EINVAL;
1935
1936         if (regs->msr & MSR_LE) {
1937                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1938                         val = PR_ENDIAN_LITTLE;
1939                 else
1940                         val = PR_ENDIAN_PPC_LITTLE;
1941         } else
1942                 val = PR_ENDIAN_BIG;
1943
1944         return put_user(val, (unsigned int __user *)adr);
1945 }
1946
1947 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1948 {
1949         tsk->thread.align_ctl = val;
1950         return 0;
1951 }
1952
1953 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1954 {
1955         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1956 }
1957
1958 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1959                                   unsigned long nbytes)
1960 {
1961         unsigned long stack_page;
1962         unsigned long cpu = task_cpu(p);
1963
1964         stack_page = (unsigned long)hardirq_ctx[cpu];
1965         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1966                 return 1;
1967
1968         stack_page = (unsigned long)softirq_ctx[cpu];
1969         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1970                 return 1;
1971
1972         return 0;
1973 }
1974
1975 int validate_sp(unsigned long sp, struct task_struct *p,
1976                        unsigned long nbytes)
1977 {
1978         unsigned long stack_page = (unsigned long)task_stack_page(p);
1979
1980         if (sp < THREAD_SIZE)
1981                 return 0;
1982
1983         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1984                 return 1;
1985
1986         return valid_irq_stack(sp, p, nbytes);
1987 }
1988
1989 EXPORT_SYMBOL(validate_sp);
1990
1991 static unsigned long __get_wchan(struct task_struct *p)
1992 {
1993         unsigned long ip, sp;
1994         int count = 0;
1995
1996         if (!p || p == current || p->state == TASK_RUNNING)
1997                 return 0;
1998
1999         sp = p->thread.ksp;
2000         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2001                 return 0;
2002
2003         do {
2004                 sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
2005                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2006                     p->state == TASK_RUNNING)
2007                         return 0;
2008                 if (count > 0) {
2009                         ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
2010                         if (!in_sched_functions(ip))
2011                                 return ip;
2012                 }
2013         } while (count++ < 16);
2014         return 0;
2015 }
2016
2017 unsigned long get_wchan(struct task_struct *p)
2018 {
2019         unsigned long ret;
2020
2021         if (!try_get_task_stack(p))
2022                 return 0;
2023
2024         ret = __get_wchan(p);
2025
2026         put_task_stack(p);
2027
2028         return ret;
2029 }
2030
2031 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2032
2033 void show_stack(struct task_struct *tsk, unsigned long *stack)
2034 {
2035         unsigned long sp, ip, lr, newsp;
2036         int count = 0;
2037         int firstframe = 1;
2038 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2039         unsigned long ret_addr;
2040         int ftrace_idx = 0;
2041 #endif
2042
2043         if (tsk == NULL)
2044                 tsk = current;
2045
2046         if (!try_get_task_stack(tsk))
2047                 return;
2048
2049         sp = (unsigned long) stack;
2050         if (sp == 0) {
2051                 if (tsk == current)
2052                         sp = current_stack_pointer();
2053                 else
2054                         sp = tsk->thread.ksp;
2055         }
2056
2057         lr = 0;
2058         printk("Call Trace:\n");
2059         do {
2060                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2061                         break;
2062
2063                 stack = (unsigned long *) sp;
2064                 newsp = stack[0];
2065                 ip = stack[STACK_FRAME_LR_SAVE];
2066                 if (!firstframe || ip != lr) {
2067                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2068 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2069                         ret_addr = ftrace_graph_ret_addr(current,
2070                                                 &ftrace_idx, ip, stack);
2071                         if (ret_addr != ip)
2072                                 pr_cont(" (%pS)", (void *)ret_addr);
2073 #endif
2074                         if (firstframe)
2075                                 pr_cont(" (unreliable)");
2076                         pr_cont("\n");
2077                 }
2078                 firstframe = 0;
2079
2080                 /*
2081                  * See if this is an exception frame.
2082                  * We look for the "regshere" marker in the current frame.
2083                  */
2084                 if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS)
2085                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2086                         struct pt_regs *regs = (struct pt_regs *)
2087                                 (sp + STACK_FRAME_OVERHEAD);
2088                         lr = regs->link;
2089                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2090                                regs->trap, (void *)regs->nip, (void *)lr);
2091                         firstframe = 1;
2092                 }
2093
2094                 sp = newsp;
2095         } while (count++ < kstack_depth_to_print);
2096
2097         put_task_stack(tsk);
2098 }
2099
2100 #ifdef CONFIG_PPC64
2101 /* Called with hard IRQs off */
2102 void notrace __ppc64_runlatch_on(void)
2103 {
2104         struct thread_info *ti = current_thread_info();
2105
2106         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2107                 /*
2108                  * Least significant bit (RUN) is the only writable bit of
2109                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2110                  * earliest ISA where this is the case, but it's convenient.
2111                  */
2112                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2113         } else {
2114                 unsigned long ctrl;
2115
2116                 /*
2117                  * Some architectures (e.g., Cell) have writable fields other
2118                  * than RUN, so do the read-modify-write.
2119                  */
2120                 ctrl = mfspr(SPRN_CTRLF);
2121                 ctrl |= CTRL_RUNLATCH;
2122                 mtspr(SPRN_CTRLT, ctrl);
2123         }
2124
2125         ti->local_flags |= _TLF_RUNLATCH;
2126 }
2127
2128 /* Called with hard IRQs off */
2129 void notrace __ppc64_runlatch_off(void)
2130 {
2131         struct thread_info *ti = current_thread_info();
2132
2133         ti->local_flags &= ~_TLF_RUNLATCH;
2134
2135         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2136                 mtspr(SPRN_CTRLT, 0);
2137         } else {
2138                 unsigned long ctrl;
2139
2140                 ctrl = mfspr(SPRN_CTRLF);
2141                 ctrl &= ~CTRL_RUNLATCH;
2142                 mtspr(SPRN_CTRLT, ctrl);
2143         }
2144 }
2145 #endif /* CONFIG_PPC64 */
2146
2147 unsigned long arch_align_stack(unsigned long sp)
2148 {
2149         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2150                 sp -= get_random_int() & ~PAGE_MASK;
2151         return sp & ~0xf;
2152 }
2153
2154 static inline unsigned long brk_rnd(void)
2155 {
2156         unsigned long rnd = 0;
2157
2158         /* 8MB for 32bit, 1GB for 64bit */
2159         if (is_32bit_task())
2160                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2161         else
2162                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2163
2164         return rnd << PAGE_SHIFT;
2165 }
2166
2167 unsigned long arch_randomize_brk(struct mm_struct *mm)
2168 {
2169         unsigned long base = mm->brk;
2170         unsigned long ret;
2171
2172 #ifdef CONFIG_PPC_BOOK3S_64
2173         /*
2174          * If we are using 1TB segments and we are allowed to randomise
2175          * the heap, we can put it above 1TB so it is backed by a 1TB
2176          * segment. Otherwise the heap will be in the bottom 1TB
2177          * which always uses 256MB segments and this may result in a
2178          * performance penalty. We don't need to worry about radix. For
2179          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2180          */
2181         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2182                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2183 #endif
2184
2185         ret = PAGE_ALIGN(base + brk_rnd());
2186
2187         if (ret < mm->brk)
2188                 return mm->brk;
2189
2190         return ret;
2191 }
2192