GNU Linux-libre 5.10.217-gnu1
[releases.git] / arch / powerpc / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #include <asm/hw_irq.h>
58 #endif
59 #include <asm/code-patching.h>
60 #include <asm/exec.h>
61 #include <asm/livepatch.h>
62 #include <asm/cpu_has_feature.h>
63 #include <asm/asm-prototypes.h>
64 #include <asm/stacktrace.h>
65 #include <asm/hw_breakpoint.h>
66
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76
77 extern unsigned long _get_SP(void);
78
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 /*
81  * Are we running in "Suspend disabled" mode? If so we have to block any
82  * sigreturn that would get us into suspended state, and we also warn in some
83  * other paths that we should never reach with suspend disabled.
84  */
85 bool tm_suspend_disabled __ro_after_init = false;
86
87 static void check_if_tm_restore_required(struct task_struct *tsk)
88 {
89         /*
90          * If we are saving the current thread's registers, and the
91          * thread is in a transactional state, set the TIF_RESTORE_TM
92          * bit so that we know to restore the registers before
93          * returning to userspace.
94          */
95         if (tsk == current && tsk->thread.regs &&
96             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
97             !test_thread_flag(TIF_RESTORE_TM)) {
98                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
99                 set_thread_flag(TIF_RESTORE_TM);
100         }
101 }
102
103 #else
104 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
105 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
106
107 bool strict_msr_control;
108 EXPORT_SYMBOL(strict_msr_control);
109
110 static int __init enable_strict_msr_control(char *str)
111 {
112         strict_msr_control = true;
113         pr_info("Enabling strict facility control\n");
114
115         return 0;
116 }
117 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
118
119 /* notrace because it's called by restore_math */
120 unsigned long notrace msr_check_and_set(unsigned long bits)
121 {
122         unsigned long oldmsr = mfmsr();
123         unsigned long newmsr;
124
125         newmsr = oldmsr | bits;
126
127         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
128                 newmsr |= MSR_VSX;
129
130         if (oldmsr != newmsr)
131                 mtmsr_isync(newmsr);
132
133         return newmsr;
134 }
135 EXPORT_SYMBOL_GPL(msr_check_and_set);
136
137 /* notrace because it's called by restore_math */
138 void notrace __msr_check_and_clear(unsigned long bits)
139 {
140         unsigned long oldmsr = mfmsr();
141         unsigned long newmsr;
142
143         newmsr = oldmsr & ~bits;
144
145         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
146                 newmsr &= ~MSR_VSX;
147
148         if (oldmsr != newmsr)
149                 mtmsr_isync(newmsr);
150 }
151 EXPORT_SYMBOL(__msr_check_and_clear);
152
153 #ifdef CONFIG_PPC_FPU
154 static void __giveup_fpu(struct task_struct *tsk)
155 {
156         unsigned long msr;
157
158         save_fpu(tsk);
159         msr = tsk->thread.regs->msr;
160         msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
161         if (cpu_has_feature(CPU_FTR_VSX))
162                 msr &= ~MSR_VSX;
163         tsk->thread.regs->msr = msr;
164 }
165
166 void giveup_fpu(struct task_struct *tsk)
167 {
168         check_if_tm_restore_required(tsk);
169
170         msr_check_and_set(MSR_FP);
171         __giveup_fpu(tsk);
172         msr_check_and_clear(MSR_FP);
173 }
174 EXPORT_SYMBOL(giveup_fpu);
175
176 /*
177  * Make sure the floating-point register state in the
178  * the thread_struct is up to date for task tsk.
179  */
180 void flush_fp_to_thread(struct task_struct *tsk)
181 {
182         if (tsk->thread.regs) {
183                 /*
184                  * We need to disable preemption here because if we didn't,
185                  * another process could get scheduled after the regs->msr
186                  * test but before we have finished saving the FP registers
187                  * to the thread_struct.  That process could take over the
188                  * FPU, and then when we get scheduled again we would store
189                  * bogus values for the remaining FP registers.
190                  */
191                 preempt_disable();
192                 if (tsk->thread.regs->msr & MSR_FP) {
193                         /*
194                          * This should only ever be called for current or
195                          * for a stopped child process.  Since we save away
196                          * the FP register state on context switch,
197                          * there is something wrong if a stopped child appears
198                          * to still have its FP state in the CPU registers.
199                          */
200                         BUG_ON(tsk != current);
201                         giveup_fpu(tsk);
202                 }
203                 preempt_enable();
204         }
205 }
206 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
207
208 void enable_kernel_fp(void)
209 {
210         unsigned long cpumsr;
211
212         WARN_ON(preemptible());
213
214         cpumsr = msr_check_and_set(MSR_FP);
215
216         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
217                 check_if_tm_restore_required(current);
218                 /*
219                  * If a thread has already been reclaimed then the
220                  * checkpointed registers are on the CPU but have definitely
221                  * been saved by the reclaim code. Don't need to and *cannot*
222                  * giveup as this would save  to the 'live' structure not the
223                  * checkpointed structure.
224                  */
225                 if (!MSR_TM_ACTIVE(cpumsr) &&
226                      MSR_TM_ACTIVE(current->thread.regs->msr))
227                         return;
228                 __giveup_fpu(current);
229         }
230 }
231 EXPORT_SYMBOL(enable_kernel_fp);
232 #else
233 static inline void __giveup_fpu(struct task_struct *tsk) { }
234 #endif /* CONFIG_PPC_FPU */
235
236 #ifdef CONFIG_ALTIVEC
237 static void __giveup_altivec(struct task_struct *tsk)
238 {
239         unsigned long msr;
240
241         save_altivec(tsk);
242         msr = tsk->thread.regs->msr;
243         msr &= ~MSR_VEC;
244         if (cpu_has_feature(CPU_FTR_VSX))
245                 msr &= ~MSR_VSX;
246         tsk->thread.regs->msr = msr;
247 }
248
249 void giveup_altivec(struct task_struct *tsk)
250 {
251         check_if_tm_restore_required(tsk);
252
253         msr_check_and_set(MSR_VEC);
254         __giveup_altivec(tsk);
255         msr_check_and_clear(MSR_VEC);
256 }
257 EXPORT_SYMBOL(giveup_altivec);
258
259 void enable_kernel_altivec(void)
260 {
261         unsigned long cpumsr;
262
263         WARN_ON(preemptible());
264
265         cpumsr = msr_check_and_set(MSR_VEC);
266
267         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
268                 check_if_tm_restore_required(current);
269                 /*
270                  * If a thread has already been reclaimed then the
271                  * checkpointed registers are on the CPU but have definitely
272                  * been saved by the reclaim code. Don't need to and *cannot*
273                  * giveup as this would save  to the 'live' structure not the
274                  * checkpointed structure.
275                  */
276                 if (!MSR_TM_ACTIVE(cpumsr) &&
277                      MSR_TM_ACTIVE(current->thread.regs->msr))
278                         return;
279                 __giveup_altivec(current);
280         }
281 }
282 EXPORT_SYMBOL(enable_kernel_altivec);
283
284 /*
285  * Make sure the VMX/Altivec register state in the
286  * the thread_struct is up to date for task tsk.
287  */
288 void flush_altivec_to_thread(struct task_struct *tsk)
289 {
290         if (tsk->thread.regs) {
291                 preempt_disable();
292                 if (tsk->thread.regs->msr & MSR_VEC) {
293                         BUG_ON(tsk != current);
294                         giveup_altivec(tsk);
295                 }
296                 preempt_enable();
297         }
298 }
299 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
300 #endif /* CONFIG_ALTIVEC */
301
302 #ifdef CONFIG_VSX
303 static void __giveup_vsx(struct task_struct *tsk)
304 {
305         unsigned long msr = tsk->thread.regs->msr;
306
307         /*
308          * We should never be ssetting MSR_VSX without also setting
309          * MSR_FP and MSR_VEC
310          */
311         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
312
313         /* __giveup_fpu will clear MSR_VSX */
314         if (msr & MSR_FP)
315                 __giveup_fpu(tsk);
316         if (msr & MSR_VEC)
317                 __giveup_altivec(tsk);
318 }
319
320 static void giveup_vsx(struct task_struct *tsk)
321 {
322         check_if_tm_restore_required(tsk);
323
324         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
325         __giveup_vsx(tsk);
326         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
327 }
328
329 void enable_kernel_vsx(void)
330 {
331         unsigned long cpumsr;
332
333         WARN_ON(preemptible());
334
335         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
336
337         if (current->thread.regs &&
338             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
339                 check_if_tm_restore_required(current);
340                 /*
341                  * If a thread has already been reclaimed then the
342                  * checkpointed registers are on the CPU but have definitely
343                  * been saved by the reclaim code. Don't need to and *cannot*
344                  * giveup as this would save  to the 'live' structure not the
345                  * checkpointed structure.
346                  */
347                 if (!MSR_TM_ACTIVE(cpumsr) &&
348                      MSR_TM_ACTIVE(current->thread.regs->msr))
349                         return;
350                 __giveup_vsx(current);
351         }
352 }
353 EXPORT_SYMBOL(enable_kernel_vsx);
354
355 void flush_vsx_to_thread(struct task_struct *tsk)
356 {
357         if (tsk->thread.regs) {
358                 preempt_disable();
359                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
360                         BUG_ON(tsk != current);
361                         giveup_vsx(tsk);
362                 }
363                 preempt_enable();
364         }
365 }
366 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
367 #endif /* CONFIG_VSX */
368
369 #ifdef CONFIG_SPE
370 void giveup_spe(struct task_struct *tsk)
371 {
372         check_if_tm_restore_required(tsk);
373
374         msr_check_and_set(MSR_SPE);
375         __giveup_spe(tsk);
376         msr_check_and_clear(MSR_SPE);
377 }
378 EXPORT_SYMBOL(giveup_spe);
379
380 void enable_kernel_spe(void)
381 {
382         WARN_ON(preemptible());
383
384         msr_check_and_set(MSR_SPE);
385
386         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
387                 check_if_tm_restore_required(current);
388                 __giveup_spe(current);
389         }
390 }
391 EXPORT_SYMBOL(enable_kernel_spe);
392
393 void flush_spe_to_thread(struct task_struct *tsk)
394 {
395         if (tsk->thread.regs) {
396                 preempt_disable();
397                 if (tsk->thread.regs->msr & MSR_SPE) {
398                         BUG_ON(tsk != current);
399                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
400                         giveup_spe(tsk);
401                 }
402                 preempt_enable();
403         }
404 }
405 #endif /* CONFIG_SPE */
406
407 static unsigned long msr_all_available;
408
409 static int __init init_msr_all_available(void)
410 {
411         if (IS_ENABLED(CONFIG_PPC_FPU))
412                 msr_all_available |= MSR_FP;
413         if (cpu_has_feature(CPU_FTR_ALTIVEC))
414                 msr_all_available |= MSR_VEC;
415         if (cpu_has_feature(CPU_FTR_VSX))
416                 msr_all_available |= MSR_VSX;
417         if (cpu_has_feature(CPU_FTR_SPE))
418                 msr_all_available |= MSR_SPE;
419
420         return 0;
421 }
422 early_initcall(init_msr_all_available);
423
424 void giveup_all(struct task_struct *tsk)
425 {
426         unsigned long usermsr;
427
428         if (!tsk->thread.regs)
429                 return;
430
431         check_if_tm_restore_required(tsk);
432
433         usermsr = tsk->thread.regs->msr;
434
435         if ((usermsr & msr_all_available) == 0)
436                 return;
437
438         msr_check_and_set(msr_all_available);
439
440         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
441
442         if (usermsr & MSR_FP)
443                 __giveup_fpu(tsk);
444         if (usermsr & MSR_VEC)
445                 __giveup_altivec(tsk);
446         if (usermsr & MSR_SPE)
447                 __giveup_spe(tsk);
448
449         msr_check_and_clear(msr_all_available);
450 }
451 EXPORT_SYMBOL(giveup_all);
452
453 #ifdef CONFIG_PPC_BOOK3S_64
454 #ifdef CONFIG_PPC_FPU
455 static bool should_restore_fp(void)
456 {
457         if (current->thread.load_fp) {
458                 current->thread.load_fp++;
459                 return true;
460         }
461         return false;
462 }
463
464 static void do_restore_fp(void)
465 {
466         load_fp_state(&current->thread.fp_state);
467 }
468 #else
469 static bool should_restore_fp(void) { return false; }
470 static void do_restore_fp(void) { }
471 #endif /* CONFIG_PPC_FPU */
472
473 #ifdef CONFIG_ALTIVEC
474 static bool should_restore_altivec(void)
475 {
476         if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
477                 current->thread.load_vec++;
478                 return true;
479         }
480         return false;
481 }
482
483 static void do_restore_altivec(void)
484 {
485         load_vr_state(&current->thread.vr_state);
486         current->thread.used_vr = 1;
487 }
488 #else
489 static bool should_restore_altivec(void) { return false; }
490 static void do_restore_altivec(void) { }
491 #endif /* CONFIG_ALTIVEC */
492
493 static bool should_restore_vsx(void)
494 {
495         if (cpu_has_feature(CPU_FTR_VSX))
496                 return true;
497         return false;
498 }
499 #ifdef CONFIG_VSX
500 static void do_restore_vsx(void)
501 {
502         current->thread.used_vsr = 1;
503 }
504 #else
505 static void do_restore_vsx(void) { }
506 #endif /* CONFIG_VSX */
507
508 /*
509  * The exception exit path calls restore_math() with interrupts hard disabled
510  * but the soft irq state not "reconciled". ftrace code that calls
511  * local_irq_save/restore causes warnings.
512  *
513  * Rather than complicate the exit path, just don't trace restore_math. This
514  * could be done by having ftrace entry code check for this un-reconciled
515  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
516  * temporarily fix it up for the duration of the ftrace call.
517  */
518 void notrace restore_math(struct pt_regs *regs)
519 {
520         unsigned long msr;
521         unsigned long new_msr = 0;
522
523         msr = regs->msr;
524
525         /*
526          * new_msr tracks the facilities that are to be restored. Only reload
527          * if the bit is not set in the user MSR (if it is set, the registers
528          * are live for the user thread).
529          */
530         if ((!(msr & MSR_FP)) && should_restore_fp())
531                 new_msr |= MSR_FP;
532
533         if ((!(msr & MSR_VEC)) && should_restore_altivec())
534                 new_msr |= MSR_VEC;
535
536         if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
537                 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
538                         new_msr |= MSR_VSX;
539         }
540
541         if (new_msr) {
542                 unsigned long fpexc_mode = 0;
543
544                 msr_check_and_set(new_msr);
545
546                 if (new_msr & MSR_FP) {
547                         do_restore_fp();
548
549                         // This also covers VSX, because VSX implies FP
550                         fpexc_mode = current->thread.fpexc_mode;
551                 }
552
553                 if (new_msr & MSR_VEC)
554                         do_restore_altivec();
555
556                 if (new_msr & MSR_VSX)
557                         do_restore_vsx();
558
559                 msr_check_and_clear(new_msr);
560
561                 regs->msr |= new_msr | fpexc_mode;
562         }
563 }
564 #endif /* CONFIG_PPC_BOOK3S_64 */
565
566 static void save_all(struct task_struct *tsk)
567 {
568         unsigned long usermsr;
569
570         if (!tsk->thread.regs)
571                 return;
572
573         usermsr = tsk->thread.regs->msr;
574
575         if ((usermsr & msr_all_available) == 0)
576                 return;
577
578         msr_check_and_set(msr_all_available);
579
580         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
581
582         if (usermsr & MSR_FP)
583                 save_fpu(tsk);
584
585         if (usermsr & MSR_VEC)
586                 save_altivec(tsk);
587
588         if (usermsr & MSR_SPE)
589                 __giveup_spe(tsk);
590
591         msr_check_and_clear(msr_all_available);
592         thread_pkey_regs_save(&tsk->thread);
593 }
594
595 void flush_all_to_thread(struct task_struct *tsk)
596 {
597         if (tsk->thread.regs) {
598                 preempt_disable();
599                 BUG_ON(tsk != current);
600 #ifdef CONFIG_SPE
601                 if (tsk->thread.regs->msr & MSR_SPE)
602                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
603 #endif
604                 save_all(tsk);
605
606                 preempt_enable();
607         }
608 }
609 EXPORT_SYMBOL(flush_all_to_thread);
610
611 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
612 void do_send_trap(struct pt_regs *regs, unsigned long address,
613                   unsigned long error_code, int breakpt)
614 {
615         current->thread.trap_nr = TRAP_HWBKPT;
616         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
617                         11, SIGSEGV) == NOTIFY_STOP)
618                 return;
619
620         /* Deliver the signal to userspace */
621         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
622                                     (void __user *)address);
623 }
624 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
625
626 static void do_break_handler(struct pt_regs *regs)
627 {
628         struct arch_hw_breakpoint null_brk = {0};
629         struct arch_hw_breakpoint *info;
630         struct ppc_inst instr = ppc_inst(0);
631         int type = 0;
632         int size = 0;
633         unsigned long ea;
634         int i;
635
636         /*
637          * If underneath hw supports only one watchpoint, we know it
638          * caused exception. 8xx also falls into this category.
639          */
640         if (nr_wp_slots() == 1) {
641                 __set_breakpoint(0, &null_brk);
642                 current->thread.hw_brk[0] = null_brk;
643                 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
644                 return;
645         }
646
647         /* Otherwise findout which DAWR caused exception and disable it. */
648         wp_get_instr_detail(regs, &instr, &type, &size, &ea);
649
650         for (i = 0; i < nr_wp_slots(); i++) {
651                 info = &current->thread.hw_brk[i];
652                 if (!info->address)
653                         continue;
654
655                 if (wp_check_constraints(regs, instr, ea, type, size, info)) {
656                         __set_breakpoint(i, &null_brk);
657                         current->thread.hw_brk[i] = null_brk;
658                         current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
659                 }
660         }
661 }
662
663 void do_break (struct pt_regs *regs, unsigned long address,
664                     unsigned long error_code)
665 {
666         current->thread.trap_nr = TRAP_HWBKPT;
667         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
668                         11, SIGSEGV) == NOTIFY_STOP)
669                 return;
670
671         if (debugger_break_match(regs))
672                 return;
673
674         /*
675          * We reach here only when watchpoint exception is generated by ptrace
676          * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
677          * watchpoint is already handled by hw_breakpoint_handler() so we don't
678          * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
679          * we need to manually handle the watchpoint here.
680          */
681         if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
682                 do_break_handler(regs);
683
684         /* Deliver the signal to userspace */
685         force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
686 }
687 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
688
689 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
690
691 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
692 /*
693  * Set the debug registers back to their default "safe" values.
694  */
695 static void set_debug_reg_defaults(struct thread_struct *thread)
696 {
697         thread->debug.iac1 = thread->debug.iac2 = 0;
698 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
699         thread->debug.iac3 = thread->debug.iac4 = 0;
700 #endif
701         thread->debug.dac1 = thread->debug.dac2 = 0;
702 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
703         thread->debug.dvc1 = thread->debug.dvc2 = 0;
704 #endif
705         thread->debug.dbcr0 = 0;
706 #ifdef CONFIG_BOOKE
707         /*
708          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
709          */
710         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
711                         DBCR1_IAC3US | DBCR1_IAC4US;
712         /*
713          * Force Data Address Compare User/Supervisor bits to be User-only
714          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
715          */
716         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
717 #else
718         thread->debug.dbcr1 = 0;
719 #endif
720 }
721
722 static void prime_debug_regs(struct debug_reg *debug)
723 {
724         /*
725          * We could have inherited MSR_DE from userspace, since
726          * it doesn't get cleared on exception entry.  Make sure
727          * MSR_DE is clear before we enable any debug events.
728          */
729         mtmsr(mfmsr() & ~MSR_DE);
730
731         mtspr(SPRN_IAC1, debug->iac1);
732         mtspr(SPRN_IAC2, debug->iac2);
733 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
734         mtspr(SPRN_IAC3, debug->iac3);
735         mtspr(SPRN_IAC4, debug->iac4);
736 #endif
737         mtspr(SPRN_DAC1, debug->dac1);
738         mtspr(SPRN_DAC2, debug->dac2);
739 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
740         mtspr(SPRN_DVC1, debug->dvc1);
741         mtspr(SPRN_DVC2, debug->dvc2);
742 #endif
743         mtspr(SPRN_DBCR0, debug->dbcr0);
744         mtspr(SPRN_DBCR1, debug->dbcr1);
745 #ifdef CONFIG_BOOKE
746         mtspr(SPRN_DBCR2, debug->dbcr2);
747 #endif
748 }
749 /*
750  * Unless neither the old or new thread are making use of the
751  * debug registers, set the debug registers from the values
752  * stored in the new thread.
753  */
754 void switch_booke_debug_regs(struct debug_reg *new_debug)
755 {
756         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
757                 || (new_debug->dbcr0 & DBCR0_IDM))
758                         prime_debug_regs(new_debug);
759 }
760 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
761 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
762 #ifndef CONFIG_HAVE_HW_BREAKPOINT
763 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
764 {
765         preempt_disable();
766         __set_breakpoint(i, brk);
767         preempt_enable();
768 }
769
770 static void set_debug_reg_defaults(struct thread_struct *thread)
771 {
772         int i;
773         struct arch_hw_breakpoint null_brk = {0};
774
775         for (i = 0; i < nr_wp_slots(); i++) {
776                 thread->hw_brk[i] = null_brk;
777                 if (ppc_breakpoint_available())
778                         set_breakpoint(i, &thread->hw_brk[i]);
779         }
780 }
781
782 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
783                                 struct arch_hw_breakpoint *b)
784 {
785         if (a->address != b->address)
786                 return false;
787         if (a->type != b->type)
788                 return false;
789         if (a->len != b->len)
790                 return false;
791         /* no need to check hw_len. it's calculated from address and len */
792         return true;
793 }
794
795 static void switch_hw_breakpoint(struct task_struct *new)
796 {
797         int i;
798
799         for (i = 0; i < nr_wp_slots(); i++) {
800                 if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
801                                         &new->thread.hw_brk[i])))
802                         continue;
803
804                 __set_breakpoint(i, &new->thread.hw_brk[i]);
805         }
806 }
807 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
808 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
809
810 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
811 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
812 {
813         mtspr(SPRN_DAC1, dabr);
814         if (IS_ENABLED(CONFIG_PPC_47x))
815                 isync();
816         return 0;
817 }
818 #elif defined(CONFIG_PPC_BOOK3S)
819 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
820 {
821         mtspr(SPRN_DABR, dabr);
822         if (cpu_has_feature(CPU_FTR_DABRX))
823                 mtspr(SPRN_DABRX, dabrx);
824         return 0;
825 }
826 #else
827 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
828 {
829         return -EINVAL;
830 }
831 #endif
832
833 static inline int set_dabr(struct arch_hw_breakpoint *brk)
834 {
835         unsigned long dabr, dabrx;
836
837         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
838         dabrx = ((brk->type >> 3) & 0x7);
839
840         if (ppc_md.set_dabr)
841                 return ppc_md.set_dabr(dabr, dabrx);
842
843         return __set_dabr(dabr, dabrx);
844 }
845
846 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
847 {
848         unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
849                                LCTRL1_CRWF_RW;
850         unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
851         unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
852         unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
853
854         if (start_addr == 0)
855                 lctrl2 |= LCTRL2_LW0LA_F;
856         else if (end_addr == 0)
857                 lctrl2 |= LCTRL2_LW0LA_E;
858         else
859                 lctrl2 |= LCTRL2_LW0LA_EandF;
860
861         mtspr(SPRN_LCTRL2, 0);
862
863         if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
864                 return 0;
865
866         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
867                 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
868         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
869                 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
870
871         mtspr(SPRN_CMPE, start_addr - 1);
872         mtspr(SPRN_CMPF, end_addr);
873         mtspr(SPRN_LCTRL1, lctrl1);
874         mtspr(SPRN_LCTRL2, lctrl2);
875
876         return 0;
877 }
878
879 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
880 {
881         memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
882
883         if (dawr_enabled())
884                 // Power8 or later
885                 set_dawr(nr, brk);
886         else if (IS_ENABLED(CONFIG_PPC_8xx))
887                 set_breakpoint_8xx(brk);
888         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
889                 // Power7 or earlier
890                 set_dabr(brk);
891         else
892                 // Shouldn't happen due to higher level checks
893                 WARN_ON_ONCE(1);
894 }
895
896 /* Check if we have DAWR or DABR hardware */
897 bool ppc_breakpoint_available(void)
898 {
899         if (dawr_enabled())
900                 return true; /* POWER8 DAWR or POWER9 forced DAWR */
901         if (cpu_has_feature(CPU_FTR_ARCH_207S))
902                 return false; /* POWER9 with DAWR disabled */
903         /* DABR: Everything but POWER8 and POWER9 */
904         return true;
905 }
906 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
907
908 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
909
910 static inline bool tm_enabled(struct task_struct *tsk)
911 {
912         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
913 }
914
915 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
916 {
917         /*
918          * Use the current MSR TM suspended bit to track if we have
919          * checkpointed state outstanding.
920          * On signal delivery, we'd normally reclaim the checkpointed
921          * state to obtain stack pointer (see:get_tm_stackpointer()).
922          * This will then directly return to userspace without going
923          * through __switch_to(). However, if the stack frame is bad,
924          * we need to exit this thread which calls __switch_to() which
925          * will again attempt to reclaim the already saved tm state.
926          * Hence we need to check that we've not already reclaimed
927          * this state.
928          * We do this using the current MSR, rather tracking it in
929          * some specific thread_struct bit, as it has the additional
930          * benefit of checking for a potential TM bad thing exception.
931          */
932         if (!MSR_TM_SUSPENDED(mfmsr()))
933                 return;
934
935         giveup_all(container_of(thr, struct task_struct, thread));
936
937         tm_reclaim(thr, cause);
938
939         /*
940          * If we are in a transaction and FP is off then we can't have
941          * used FP inside that transaction. Hence the checkpointed
942          * state is the same as the live state. We need to copy the
943          * live state to the checkpointed state so that when the
944          * transaction is restored, the checkpointed state is correct
945          * and the aborted transaction sees the correct state. We use
946          * ckpt_regs.msr here as that's what tm_reclaim will use to
947          * determine if it's going to write the checkpointed state or
948          * not. So either this will write the checkpointed registers,
949          * or reclaim will. Similarly for VMX.
950          */
951         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
952                 memcpy(&thr->ckfp_state, &thr->fp_state,
953                        sizeof(struct thread_fp_state));
954         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
955                 memcpy(&thr->ckvr_state, &thr->vr_state,
956                        sizeof(struct thread_vr_state));
957 }
958
959 void tm_reclaim_current(uint8_t cause)
960 {
961         tm_enable();
962         tm_reclaim_thread(&current->thread, cause);
963 }
964
965 static inline void tm_reclaim_task(struct task_struct *tsk)
966 {
967         /* We have to work out if we're switching from/to a task that's in the
968          * middle of a transaction.
969          *
970          * In switching we need to maintain a 2nd register state as
971          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
972          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
973          * ckvr_state
974          *
975          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
976          */
977         struct thread_struct *thr = &tsk->thread;
978
979         if (!thr->regs)
980                 return;
981
982         if (!MSR_TM_ACTIVE(thr->regs->msr))
983                 goto out_and_saveregs;
984
985         WARN_ON(tm_suspend_disabled);
986
987         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
988                  "ccr=%lx, msr=%lx, trap=%lx)\n",
989                  tsk->pid, thr->regs->nip,
990                  thr->regs->ccr, thr->regs->msr,
991                  thr->regs->trap);
992
993         tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
994
995         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
996                  tsk->pid);
997
998 out_and_saveregs:
999         /* Always save the regs here, even if a transaction's not active.
1000          * This context-switches a thread's TM info SPRs.  We do it here to
1001          * be consistent with the restore path (in recheckpoint) which
1002          * cannot happen later in _switch().
1003          */
1004         tm_save_sprs(thr);
1005 }
1006
1007 extern void __tm_recheckpoint(struct thread_struct *thread);
1008
1009 void tm_recheckpoint(struct thread_struct *thread)
1010 {
1011         unsigned long flags;
1012
1013         if (!(thread->regs->msr & MSR_TM))
1014                 return;
1015
1016         /* We really can't be interrupted here as the TEXASR registers can't
1017          * change and later in the trecheckpoint code, we have a userspace R1.
1018          * So let's hard disable over this region.
1019          */
1020         local_irq_save(flags);
1021         hard_irq_disable();
1022
1023         /* The TM SPRs are restored here, so that TEXASR.FS can be set
1024          * before the trecheckpoint and no explosion occurs.
1025          */
1026         tm_restore_sprs(thread);
1027
1028         __tm_recheckpoint(thread);
1029
1030         local_irq_restore(flags);
1031 }
1032
1033 static inline void tm_recheckpoint_new_task(struct task_struct *new)
1034 {
1035         if (!cpu_has_feature(CPU_FTR_TM))
1036                 return;
1037
1038         /* Recheckpoint the registers of the thread we're about to switch to.
1039          *
1040          * If the task was using FP, we non-lazily reload both the original and
1041          * the speculative FP register states.  This is because the kernel
1042          * doesn't see if/when a TM rollback occurs, so if we take an FP
1043          * unavailable later, we are unable to determine which set of FP regs
1044          * need to be restored.
1045          */
1046         if (!tm_enabled(new))
1047                 return;
1048
1049         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1050                 tm_restore_sprs(&new->thread);
1051                 return;
1052         }
1053         /* Recheckpoint to restore original checkpointed register state. */
1054         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1055                  new->pid, new->thread.regs->msr);
1056
1057         tm_recheckpoint(&new->thread);
1058
1059         /*
1060          * The checkpointed state has been restored but the live state has
1061          * not, ensure all the math functionality is turned off to trigger
1062          * restore_math() to reload.
1063          */
1064         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1065
1066         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1067                  "(kernel msr 0x%lx)\n",
1068                  new->pid, mfmsr());
1069 }
1070
1071 static inline void __switch_to_tm(struct task_struct *prev,
1072                 struct task_struct *new)
1073 {
1074         if (cpu_has_feature(CPU_FTR_TM)) {
1075                 if (tm_enabled(prev) || tm_enabled(new))
1076                         tm_enable();
1077
1078                 if (tm_enabled(prev)) {
1079                         prev->thread.load_tm++;
1080                         tm_reclaim_task(prev);
1081                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1082                                 prev->thread.regs->msr &= ~MSR_TM;
1083                 }
1084
1085                 tm_recheckpoint_new_task(new);
1086         }
1087 }
1088
1089 /*
1090  * This is called if we are on the way out to userspace and the
1091  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1092  * FP and/or vector state and does so if necessary.
1093  * If userspace is inside a transaction (whether active or
1094  * suspended) and FP/VMX/VSX instructions have ever been enabled
1095  * inside that transaction, then we have to keep them enabled
1096  * and keep the FP/VMX/VSX state loaded while ever the transaction
1097  * continues.  The reason is that if we didn't, and subsequently
1098  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1099  * we don't know whether it's the same transaction, and thus we
1100  * don't know which of the checkpointed state and the transactional
1101  * state to use.
1102  */
1103 void restore_tm_state(struct pt_regs *regs)
1104 {
1105         unsigned long msr_diff;
1106
1107         /*
1108          * This is the only moment we should clear TIF_RESTORE_TM as
1109          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1110          * again, anything else could lead to an incorrect ckpt_msr being
1111          * saved and therefore incorrect signal contexts.
1112          */
1113         clear_thread_flag(TIF_RESTORE_TM);
1114         if (!MSR_TM_ACTIVE(regs->msr))
1115                 return;
1116
1117         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1118         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1119
1120         /* Ensure that restore_math() will restore */
1121         if (msr_diff & MSR_FP)
1122                 current->thread.load_fp = 1;
1123 #ifdef CONFIG_ALTIVEC
1124         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1125                 current->thread.load_vec = 1;
1126 #endif
1127         restore_math(regs);
1128
1129         regs->msr |= msr_diff;
1130 }
1131
1132 #else
1133 #define tm_recheckpoint_new_task(new)
1134 #define __switch_to_tm(prev, new)
1135 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1136
1137 static inline void save_sprs(struct thread_struct *t)
1138 {
1139 #ifdef CONFIG_ALTIVEC
1140         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1141                 t->vrsave = mfspr(SPRN_VRSAVE);
1142 #endif
1143 #ifdef CONFIG_PPC_BOOK3S_64
1144         if (cpu_has_feature(CPU_FTR_DSCR))
1145                 t->dscr = mfspr(SPRN_DSCR);
1146
1147         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1148                 t->bescr = mfspr(SPRN_BESCR);
1149                 t->ebbhr = mfspr(SPRN_EBBHR);
1150                 t->ebbrr = mfspr(SPRN_EBBRR);
1151
1152                 t->fscr = mfspr(SPRN_FSCR);
1153
1154                 /*
1155                  * Note that the TAR is not available for use in the kernel.
1156                  * (To provide this, the TAR should be backed up/restored on
1157                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1158                  * this should be in pt_regs anyway (for debug).)
1159                  */
1160                 t->tar = mfspr(SPRN_TAR);
1161         }
1162 #endif
1163
1164         thread_pkey_regs_save(t);
1165 }
1166
1167 static inline void restore_sprs(struct thread_struct *old_thread,
1168                                 struct thread_struct *new_thread)
1169 {
1170 #ifdef CONFIG_ALTIVEC
1171         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1172             old_thread->vrsave != new_thread->vrsave)
1173                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1174 #endif
1175 #ifdef CONFIG_PPC_BOOK3S_64
1176         if (cpu_has_feature(CPU_FTR_DSCR)) {
1177                 u64 dscr = get_paca()->dscr_default;
1178                 if (new_thread->dscr_inherit)
1179                         dscr = new_thread->dscr;
1180
1181                 if (old_thread->dscr != dscr)
1182                         mtspr(SPRN_DSCR, dscr);
1183         }
1184
1185         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1186                 if (old_thread->bescr != new_thread->bescr)
1187                         mtspr(SPRN_BESCR, new_thread->bescr);
1188                 if (old_thread->ebbhr != new_thread->ebbhr)
1189                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1190                 if (old_thread->ebbrr != new_thread->ebbrr)
1191                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1192
1193                 if (old_thread->fscr != new_thread->fscr)
1194                         mtspr(SPRN_FSCR, new_thread->fscr);
1195
1196                 if (old_thread->tar != new_thread->tar)
1197                         mtspr(SPRN_TAR, new_thread->tar);
1198         }
1199
1200         if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1201             old_thread->tidr != new_thread->tidr)
1202                 mtspr(SPRN_TIDR, new_thread->tidr);
1203 #endif
1204
1205         thread_pkey_regs_restore(new_thread, old_thread);
1206 }
1207
1208 struct task_struct *__switch_to(struct task_struct *prev,
1209         struct task_struct *new)
1210 {
1211         struct thread_struct *new_thread, *old_thread;
1212         struct task_struct *last;
1213 #ifdef CONFIG_PPC_BOOK3S_64
1214         struct ppc64_tlb_batch *batch;
1215 #endif
1216
1217         new_thread = &new->thread;
1218         old_thread = &current->thread;
1219
1220         WARN_ON(!irqs_disabled());
1221
1222 #ifdef CONFIG_PPC_BOOK3S_64
1223         batch = this_cpu_ptr(&ppc64_tlb_batch);
1224         if (batch->active) {
1225                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1226                 if (batch->index)
1227                         __flush_tlb_pending(batch);
1228                 batch->active = 0;
1229         }
1230
1231         /*
1232          * On POWER9 the copy-paste buffer can only paste into
1233          * foreign real addresses, so unprivileged processes can not
1234          * see the data or use it in any way unless they have
1235          * foreign real mappings. If the new process has the foreign
1236          * real address mappings, we must issue a cp_abort to clear
1237          * any state and prevent snooping, corruption or a covert
1238          * channel. ISA v3.1 supports paste into local memory.
1239          */
1240         if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1241                         atomic_read(&new->mm->context.vas_windows)))
1242                 asm volatile(PPC_CP_ABORT);
1243 #endif /* CONFIG_PPC_BOOK3S_64 */
1244
1245 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1246         switch_booke_debug_regs(&new->thread.debug);
1247 #else
1248 /*
1249  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1250  * schedule DABR
1251  */
1252 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1253         switch_hw_breakpoint(new);
1254 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1255 #endif
1256
1257         /*
1258          * We need to save SPRs before treclaim/trecheckpoint as these will
1259          * change a number of them.
1260          */
1261         save_sprs(&prev->thread);
1262
1263         /* Save FPU, Altivec, VSX and SPE state */
1264         giveup_all(prev);
1265
1266         __switch_to_tm(prev, new);
1267
1268         if (!radix_enabled()) {
1269                 /*
1270                  * We can't take a PMU exception inside _switch() since there
1271                  * is a window where the kernel stack SLB and the kernel stack
1272                  * are out of sync. Hard disable here.
1273                  */
1274                 hard_irq_disable();
1275         }
1276
1277         /*
1278          * Call restore_sprs() before calling _switch(). If we move it after
1279          * _switch() then we miss out on calling it for new tasks. The reason
1280          * for this is we manually create a stack frame for new tasks that
1281          * directly returns through ret_from_fork() or
1282          * ret_from_kernel_thread(). See copy_thread() for details.
1283          */
1284         restore_sprs(old_thread, new_thread);
1285
1286         last = _switch(old_thread, new_thread);
1287
1288         /*
1289          * Nothing after _switch will be run for newly created tasks,
1290          * because they switch directly to ret_from_fork/ret_from_kernel_thread
1291          * etc. Code added here should have a comment explaining why that is
1292          * okay.
1293          */
1294
1295 #ifdef CONFIG_PPC_BOOK3S_64
1296         /*
1297          * This applies to a process that was context switched while inside
1298          * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1299          * deactivated above, before _switch(). This will never be the case
1300          * for new tasks.
1301          */
1302         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1303                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1304                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1305                 batch->active = 1;
1306         }
1307
1308         /*
1309          * Math facilities are masked out of the child MSR in copy_thread.
1310          * A new task does not need to restore_math because it will
1311          * demand fault them.
1312          */
1313         if (current->thread.regs)
1314                 restore_math(current->thread.regs);
1315 #endif /* CONFIG_PPC_BOOK3S_64 */
1316
1317         return last;
1318 }
1319
1320 #define NR_INSN_TO_PRINT        16
1321
1322 static void show_instructions(struct pt_regs *regs)
1323 {
1324         int i;
1325         unsigned long nip = regs->nip;
1326         unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1327
1328         printk("Instruction dump:");
1329
1330         /*
1331          * If we were executing with the MMU off for instructions, adjust pc
1332          * rather than printing XXXXXXXX.
1333          */
1334         if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1335                 pc = (unsigned long)phys_to_virt(pc);
1336                 nip = (unsigned long)phys_to_virt(regs->nip);
1337         }
1338
1339         for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1340                 int instr;
1341
1342                 if (!(i % 8))
1343                         pr_cont("\n");
1344
1345                 if (!__kernel_text_address(pc) ||
1346                     get_kernel_nofault(instr, (const void *)pc)) {
1347                         pr_cont("XXXXXXXX ");
1348                 } else {
1349                         if (nip == pc)
1350                                 pr_cont("<%08x> ", instr);
1351                         else
1352                                 pr_cont("%08x ", instr);
1353                 }
1354
1355                 pc += sizeof(int);
1356         }
1357
1358         pr_cont("\n");
1359 }
1360
1361 void show_user_instructions(struct pt_regs *regs)
1362 {
1363         unsigned long pc;
1364         int n = NR_INSN_TO_PRINT;
1365         struct seq_buf s;
1366         char buf[96]; /* enough for 8 times 9 + 2 chars */
1367
1368         pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1369
1370         seq_buf_init(&s, buf, sizeof(buf));
1371
1372         while (n) {
1373                 int i;
1374
1375                 seq_buf_clear(&s);
1376
1377                 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1378                         int instr;
1379
1380                         if (copy_from_user_nofault(&instr, (void __user *)pc,
1381                                         sizeof(instr))) {
1382                                 seq_buf_printf(&s, "XXXXXXXX ");
1383                                 continue;
1384                         }
1385                         seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1386                 }
1387
1388                 if (!seq_buf_has_overflowed(&s))
1389                         pr_info("%s[%d]: code: %s\n", current->comm,
1390                                 current->pid, s.buffer);
1391         }
1392 }
1393
1394 struct regbit {
1395         unsigned long bit;
1396         const char *name;
1397 };
1398
1399 static struct regbit msr_bits[] = {
1400 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1401         {MSR_SF,        "SF"},
1402         {MSR_HV,        "HV"},
1403 #endif
1404         {MSR_VEC,       "VEC"},
1405         {MSR_VSX,       "VSX"},
1406 #ifdef CONFIG_BOOKE
1407         {MSR_CE,        "CE"},
1408 #endif
1409         {MSR_EE,        "EE"},
1410         {MSR_PR,        "PR"},
1411         {MSR_FP,        "FP"},
1412         {MSR_ME,        "ME"},
1413 #ifdef CONFIG_BOOKE
1414         {MSR_DE,        "DE"},
1415 #else
1416         {MSR_SE,        "SE"},
1417         {MSR_BE,        "BE"},
1418 #endif
1419         {MSR_IR,        "IR"},
1420         {MSR_DR,        "DR"},
1421         {MSR_PMM,       "PMM"},
1422 #ifndef CONFIG_BOOKE
1423         {MSR_RI,        "RI"},
1424         {MSR_LE,        "LE"},
1425 #endif
1426         {0,             NULL}
1427 };
1428
1429 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1430 {
1431         const char *s = "";
1432
1433         for (; bits->bit; ++bits)
1434                 if (val & bits->bit) {
1435                         pr_cont("%s%s", s, bits->name);
1436                         s = sep;
1437                 }
1438 }
1439
1440 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1441 static struct regbit msr_tm_bits[] = {
1442         {MSR_TS_T,      "T"},
1443         {MSR_TS_S,      "S"},
1444         {MSR_TM,        "E"},
1445         {0,             NULL}
1446 };
1447
1448 static void print_tm_bits(unsigned long val)
1449 {
1450 /*
1451  * This only prints something if at least one of the TM bit is set.
1452  * Inside the TM[], the output means:
1453  *   E: Enabled         (bit 32)
1454  *   S: Suspended       (bit 33)
1455  *   T: Transactional   (bit 34)
1456  */
1457         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1458                 pr_cont(",TM[");
1459                 print_bits(val, msr_tm_bits, "");
1460                 pr_cont("]");
1461         }
1462 }
1463 #else
1464 static void print_tm_bits(unsigned long val) {}
1465 #endif
1466
1467 static void print_msr_bits(unsigned long val)
1468 {
1469         pr_cont("<");
1470         print_bits(val, msr_bits, ",");
1471         print_tm_bits(val);
1472         pr_cont(">");
1473 }
1474
1475 #ifdef CONFIG_PPC64
1476 #define REG             "%016lx"
1477 #define REGS_PER_LINE   4
1478 #define LAST_VOLATILE   13
1479 #else
1480 #define REG             "%08lx"
1481 #define REGS_PER_LINE   8
1482 #define LAST_VOLATILE   12
1483 #endif
1484
1485 void show_regs(struct pt_regs * regs)
1486 {
1487         int i, trap;
1488
1489         show_regs_print_info(KERN_DEFAULT);
1490
1491         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1492                regs->nip, regs->link, regs->ctr);
1493         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1494                regs, regs->trap, print_tainted(), init_utsname()->release);
1495         printk("MSR:  "REG" ", regs->msr);
1496         print_msr_bits(regs->msr);
1497         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1498         trap = TRAP(regs);
1499         if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1500                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1501         if (trap == 0x200 || trap == 0x300 || trap == 0x600) {
1502                 if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
1503                         pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1504                 else
1505                         pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1506         }
1507
1508 #ifdef CONFIG_PPC64
1509         pr_cont("IRQMASK: %lx ", regs->softe);
1510 #endif
1511 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1512         if (MSR_TM_ACTIVE(regs->msr))
1513                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1514 #endif
1515
1516         for (i = 0;  i < 32;  i++) {
1517                 if ((i % REGS_PER_LINE) == 0)
1518                         pr_cont("\nGPR%02d: ", i);
1519                 pr_cont(REG " ", regs->gpr[i]);
1520                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1521                         break;
1522         }
1523         pr_cont("\n");
1524         /*
1525          * Lookup NIP late so we have the best change of getting the
1526          * above info out without failing
1527          */
1528         if (IS_ENABLED(CONFIG_KALLSYMS)) {
1529                 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1530                 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1531         }
1532         show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1533         if (!user_mode(regs))
1534                 show_instructions(regs);
1535 }
1536
1537 void flush_thread(void)
1538 {
1539 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1540         flush_ptrace_hw_breakpoint(current);
1541 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1542         set_debug_reg_defaults(&current->thread);
1543 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1544 }
1545
1546 #ifdef CONFIG_PPC_BOOK3S_64
1547 void arch_setup_new_exec(void)
1548 {
1549         if (radix_enabled())
1550                 return;
1551         hash__setup_new_exec();
1552 }
1553 #endif
1554
1555 #ifdef CONFIG_PPC64
1556 /**
1557  * Assign a TIDR (thread ID) for task @t and set it in the thread
1558  * structure. For now, we only support setting TIDR for 'current' task.
1559  *
1560  * Since the TID value is a truncated form of it PID, it is possible
1561  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1562  * that 2 threads share the same TID and are waiting, one of the following
1563  * cases will happen:
1564  *
1565  * 1. The correct thread is running, the wrong thread is not
1566  * In this situation, the correct thread is woken and proceeds to pass it's
1567  * condition check.
1568  *
1569  * 2. Neither threads are running
1570  * In this situation, neither thread will be woken. When scheduled, the waiting
1571  * threads will execute either a wait, which will return immediately, followed
1572  * by a condition check, which will pass for the correct thread and fail
1573  * for the wrong thread, or they will execute the condition check immediately.
1574  *
1575  * 3. The wrong thread is running, the correct thread is not
1576  * The wrong thread will be woken, but will fail it's condition check and
1577  * re-execute wait. The correct thread, when scheduled, will execute either
1578  * it's condition check (which will pass), or wait, which returns immediately
1579  * when called the first time after the thread is scheduled, followed by it's
1580  * condition check (which will pass).
1581  *
1582  * 4. Both threads are running
1583  * Both threads will be woken. The wrong thread will fail it's condition check
1584  * and execute another wait, while the correct thread will pass it's condition
1585  * check.
1586  *
1587  * @t: the task to set the thread ID for
1588  */
1589 int set_thread_tidr(struct task_struct *t)
1590 {
1591         if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1592                 return -EINVAL;
1593
1594         if (t != current)
1595                 return -EINVAL;
1596
1597         if (t->thread.tidr)
1598                 return 0;
1599
1600         t->thread.tidr = (u16)task_pid_nr(t);
1601         mtspr(SPRN_TIDR, t->thread.tidr);
1602
1603         return 0;
1604 }
1605 EXPORT_SYMBOL_GPL(set_thread_tidr);
1606
1607 #endif /* CONFIG_PPC64 */
1608
1609 void
1610 release_thread(struct task_struct *t)
1611 {
1612 }
1613
1614 /*
1615  * this gets called so that we can store coprocessor state into memory and
1616  * copy the current task into the new thread.
1617  */
1618 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1619 {
1620         flush_all_to_thread(src);
1621         /*
1622          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1623          * flush but it removes the checkpointed state from the current CPU and
1624          * transitions the CPU out of TM mode.  Hence we need to call
1625          * tm_recheckpoint_new_task() (on the same task) to restore the
1626          * checkpointed state back and the TM mode.
1627          *
1628          * Can't pass dst because it isn't ready. Doesn't matter, passing
1629          * dst is only important for __switch_to()
1630          */
1631         __switch_to_tm(src, src);
1632
1633         *dst = *src;
1634
1635         clear_task_ebb(dst);
1636
1637         return 0;
1638 }
1639
1640 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1641 {
1642 #ifdef CONFIG_PPC_BOOK3S_64
1643         unsigned long sp_vsid;
1644         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1645
1646         if (radix_enabled())
1647                 return;
1648
1649         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1650                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1651                         << SLB_VSID_SHIFT_1T;
1652         else
1653                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1654                         << SLB_VSID_SHIFT;
1655         sp_vsid |= SLB_VSID_KERNEL | llp;
1656         p->thread.ksp_vsid = sp_vsid;
1657 #endif
1658 }
1659
1660 /*
1661  * Copy a thread..
1662  */
1663
1664 /*
1665  * Copy architecture-specific thread state
1666  */
1667 int copy_thread(unsigned long clone_flags, unsigned long usp,
1668                 unsigned long kthread_arg, struct task_struct *p,
1669                 unsigned long tls)
1670 {
1671         struct pt_regs *childregs, *kregs;
1672         extern void ret_from_fork(void);
1673         extern void ret_from_fork_scv(void);
1674         extern void ret_from_kernel_thread(void);
1675         void (*f)(void);
1676         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1677         struct thread_info *ti = task_thread_info(p);
1678 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1679         int i;
1680 #endif
1681
1682         klp_init_thread_info(p);
1683
1684         /* Copy registers */
1685         sp -= sizeof(struct pt_regs);
1686         childregs = (struct pt_regs *) sp;
1687         if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
1688                 /* kernel thread */
1689                 memset(childregs, 0, sizeof(struct pt_regs));
1690                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1691                 /* function */
1692                 if (usp)
1693                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1694 #ifdef CONFIG_PPC64
1695                 clear_tsk_thread_flag(p, TIF_32BIT);
1696                 childregs->softe = IRQS_ENABLED;
1697 #endif
1698                 childregs->gpr[15] = kthread_arg;
1699                 p->thread.regs = NULL;  /* no user register state */
1700                 ti->flags |= _TIF_RESTOREALL;
1701                 f = ret_from_kernel_thread;
1702         } else {
1703                 /* user thread */
1704                 struct pt_regs *regs = current_pt_regs();
1705                 CHECK_FULL_REGS(regs);
1706                 *childregs = *regs;
1707                 if (usp)
1708                         childregs->gpr[1] = usp;
1709                 p->thread.regs = childregs;
1710                 /* 64s sets this in ret_from_fork */
1711                 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1712                         childregs->gpr[3] = 0;  /* Result from fork() */
1713                 if (clone_flags & CLONE_SETTLS) {
1714                         if (!is_32bit_task())
1715                                 childregs->gpr[13] = tls;
1716                         else
1717                                 childregs->gpr[2] = tls;
1718                 }
1719
1720                 if (trap_is_scv(regs))
1721                         f = ret_from_fork_scv;
1722                 else
1723                         f = ret_from_fork;
1724         }
1725         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1726         sp -= STACK_FRAME_OVERHEAD;
1727
1728         /*
1729          * The way this works is that at some point in the future
1730          * some task will call _switch to switch to the new task.
1731          * That will pop off the stack frame created below and start
1732          * the new task running at ret_from_fork.  The new task will
1733          * do some house keeping and then return from the fork or clone
1734          * system call, using the stack frame created above.
1735          */
1736         ((unsigned long *)sp)[0] = 0;
1737         sp -= sizeof(struct pt_regs);
1738         kregs = (struct pt_regs *) sp;
1739         sp -= STACK_FRAME_OVERHEAD;
1740         p->thread.ksp = sp;
1741 #ifdef CONFIG_PPC32
1742         p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1743 #endif
1744 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1745         for (i = 0; i < nr_wp_slots(); i++)
1746                 p->thread.ptrace_bps[i] = NULL;
1747 #endif
1748
1749         p->thread.fp_save_area = NULL;
1750 #ifdef CONFIG_ALTIVEC
1751         p->thread.vr_save_area = NULL;
1752 #endif
1753
1754         setup_ksp_vsid(p, sp);
1755
1756 #ifdef CONFIG_PPC64 
1757         if (cpu_has_feature(CPU_FTR_DSCR)) {
1758                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1759                 p->thread.dscr = mfspr(SPRN_DSCR);
1760         }
1761         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1762                 childregs->ppr = DEFAULT_PPR;
1763
1764         p->thread.tidr = 0;
1765 #endif
1766         kregs->nip = ppc_function_entry(f);
1767         return 0;
1768 }
1769
1770 void preload_new_slb_context(unsigned long start, unsigned long sp);
1771
1772 /*
1773  * Set up a thread for executing a new program
1774  */
1775 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1776 {
1777 #ifdef CONFIG_PPC64
1778         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1779
1780         if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1781                 preload_new_slb_context(start, sp);
1782 #endif
1783
1784         /*
1785          * If we exec out of a kernel thread then thread.regs will not be
1786          * set.  Do it now.
1787          */
1788         if (!current->thread.regs) {
1789                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1790                 current->thread.regs = regs - 1;
1791         }
1792
1793 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1794         /*
1795          * Clear any transactional state, we're exec()ing. The cause is
1796          * not important as there will never be a recheckpoint so it's not
1797          * user visible.
1798          */
1799         if (MSR_TM_SUSPENDED(mfmsr()))
1800                 tm_reclaim_current(0);
1801 #endif
1802
1803         memset(&regs->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
1804         regs->ctr = 0;
1805         regs->link = 0;
1806         regs->xer = 0;
1807         regs->ccr = 0;
1808         regs->gpr[1] = sp;
1809
1810         /*
1811          * We have just cleared all the nonvolatile GPRs, so make
1812          * FULL_REGS(regs) return true.  This is necessary to allow
1813          * ptrace to examine the thread immediately after exec.
1814          */
1815         SET_FULL_REGS(regs);
1816
1817 #ifdef CONFIG_PPC32
1818         regs->mq = 0;
1819         regs->nip = start;
1820         regs->msr = MSR_USER;
1821 #else
1822         if (!is_32bit_task()) {
1823                 unsigned long entry;
1824
1825                 if (is_elf2_task()) {
1826                         /* Look ma, no function descriptors! */
1827                         entry = start;
1828
1829                         /*
1830                          * Ulrich says:
1831                          *   The latest iteration of the ABI requires that when
1832                          *   calling a function (at its global entry point),
1833                          *   the caller must ensure r12 holds the entry point
1834                          *   address (so that the function can quickly
1835                          *   establish addressability).
1836                          */
1837                         regs->gpr[12] = start;
1838                         /* Make sure that's restored on entry to userspace. */
1839                         set_thread_flag(TIF_RESTOREALL);
1840                 } else {
1841                         unsigned long toc;
1842
1843                         /* start is a relocated pointer to the function
1844                          * descriptor for the elf _start routine.  The first
1845                          * entry in the function descriptor is the entry
1846                          * address of _start and the second entry is the TOC
1847                          * value we need to use.
1848                          */
1849                         __get_user(entry, (unsigned long __user *)start);
1850                         __get_user(toc, (unsigned long __user *)start+1);
1851
1852                         /* Check whether the e_entry function descriptor entries
1853                          * need to be relocated before we can use them.
1854                          */
1855                         if (load_addr != 0) {
1856                                 entry += load_addr;
1857                                 toc   += load_addr;
1858                         }
1859                         regs->gpr[2] = toc;
1860                 }
1861                 regs->nip = entry;
1862                 regs->msr = MSR_USER64;
1863         } else {
1864                 regs->nip = start;
1865                 regs->gpr[2] = 0;
1866                 regs->msr = MSR_USER32;
1867         }
1868 #endif
1869 #ifdef CONFIG_VSX
1870         current->thread.used_vsr = 0;
1871 #endif
1872         current->thread.load_slb = 0;
1873         current->thread.load_fp = 0;
1874         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1875         current->thread.fp_save_area = NULL;
1876 #ifdef CONFIG_ALTIVEC
1877         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1878         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1879         current->thread.vr_save_area = NULL;
1880         current->thread.vrsave = 0;
1881         current->thread.used_vr = 0;
1882         current->thread.load_vec = 0;
1883 #endif /* CONFIG_ALTIVEC */
1884 #ifdef CONFIG_SPE
1885         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1886         current->thread.acc = 0;
1887         current->thread.spefscr = 0;
1888         current->thread.used_spe = 0;
1889 #endif /* CONFIG_SPE */
1890 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1891         current->thread.tm_tfhar = 0;
1892         current->thread.tm_texasr = 0;
1893         current->thread.tm_tfiar = 0;
1894         current->thread.load_tm = 0;
1895 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1896
1897         thread_pkey_regs_init(&current->thread);
1898 }
1899 EXPORT_SYMBOL(start_thread);
1900
1901 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1902                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1903
1904 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1905 {
1906         struct pt_regs *regs = tsk->thread.regs;
1907
1908         /* This is a bit hairy.  If we are an SPE enabled  processor
1909          * (have embedded fp) we store the IEEE exception enable flags in
1910          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1911          * mode (asyn, precise, disabled) for 'Classic' FP. */
1912         if (val & PR_FP_EXC_SW_ENABLE) {
1913                 if (cpu_has_feature(CPU_FTR_SPE)) {
1914                         /*
1915                          * When the sticky exception bits are set
1916                          * directly by userspace, it must call prctl
1917                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1918                          * in the existing prctl settings) or
1919                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1920                          * the bits being set).  <fenv.h> functions
1921                          * saving and restoring the whole
1922                          * floating-point environment need to do so
1923                          * anyway to restore the prctl settings from
1924                          * the saved environment.
1925                          */
1926 #ifdef CONFIG_SPE
1927                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1928                         tsk->thread.fpexc_mode = val &
1929                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1930 #endif
1931                         return 0;
1932                 } else {
1933                         return -EINVAL;
1934                 }
1935         }
1936
1937         /* on a CONFIG_SPE this does not hurt us.  The bits that
1938          * __pack_fe01 use do not overlap with bits used for
1939          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1940          * on CONFIG_SPE implementations are reserved so writing to
1941          * them does not change anything */
1942         if (val > PR_FP_EXC_PRECISE)
1943                 return -EINVAL;
1944         tsk->thread.fpexc_mode = __pack_fe01(val);
1945         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1946                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1947                         | tsk->thread.fpexc_mode;
1948         return 0;
1949 }
1950
1951 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1952 {
1953         unsigned int val = 0;
1954
1955         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
1956                 if (cpu_has_feature(CPU_FTR_SPE)) {
1957                         /*
1958                          * When the sticky exception bits are set
1959                          * directly by userspace, it must call prctl
1960                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1961                          * in the existing prctl settings) or
1962                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1963                          * the bits being set).  <fenv.h> functions
1964                          * saving and restoring the whole
1965                          * floating-point environment need to do so
1966                          * anyway to restore the prctl settings from
1967                          * the saved environment.
1968                          */
1969 #ifdef CONFIG_SPE
1970                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1971                         val = tsk->thread.fpexc_mode;
1972 #endif
1973                 } else
1974                         return -EINVAL;
1975         } else {
1976                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1977         }
1978         return put_user(val, (unsigned int __user *) adr);
1979 }
1980
1981 int set_endian(struct task_struct *tsk, unsigned int val)
1982 {
1983         struct pt_regs *regs = tsk->thread.regs;
1984
1985         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1986             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1987                 return -EINVAL;
1988
1989         if (regs == NULL)
1990                 return -EINVAL;
1991
1992         if (val == PR_ENDIAN_BIG)
1993                 regs->msr &= ~MSR_LE;
1994         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1995                 regs->msr |= MSR_LE;
1996         else
1997                 return -EINVAL;
1998
1999         return 0;
2000 }
2001
2002 int get_endian(struct task_struct *tsk, unsigned long adr)
2003 {
2004         struct pt_regs *regs = tsk->thread.regs;
2005         unsigned int val;
2006
2007         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2008             !cpu_has_feature(CPU_FTR_REAL_LE))
2009                 return -EINVAL;
2010
2011         if (regs == NULL)
2012                 return -EINVAL;
2013
2014         if (regs->msr & MSR_LE) {
2015                 if (cpu_has_feature(CPU_FTR_REAL_LE))
2016                         val = PR_ENDIAN_LITTLE;
2017                 else
2018                         val = PR_ENDIAN_PPC_LITTLE;
2019         } else
2020                 val = PR_ENDIAN_BIG;
2021
2022         return put_user(val, (unsigned int __user *)adr);
2023 }
2024
2025 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2026 {
2027         tsk->thread.align_ctl = val;
2028         return 0;
2029 }
2030
2031 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2032 {
2033         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2034 }
2035
2036 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2037                                   unsigned long nbytes)
2038 {
2039         unsigned long stack_page;
2040         unsigned long cpu = task_cpu(p);
2041
2042         stack_page = (unsigned long)hardirq_ctx[cpu];
2043         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2044                 return 1;
2045
2046         stack_page = (unsigned long)softirq_ctx[cpu];
2047         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2048                 return 1;
2049
2050         return 0;
2051 }
2052
2053 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2054                                         unsigned long nbytes)
2055 {
2056 #ifdef CONFIG_PPC64
2057         unsigned long stack_page;
2058         unsigned long cpu = task_cpu(p);
2059
2060         stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2061         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2062                 return 1;
2063
2064 # ifdef CONFIG_PPC_BOOK3S_64
2065         stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2066         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2067                 return 1;
2068
2069         stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2070         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2071                 return 1;
2072 # endif
2073 #endif
2074
2075         return 0;
2076 }
2077
2078
2079 int validate_sp(unsigned long sp, struct task_struct *p,
2080                        unsigned long nbytes)
2081 {
2082         unsigned long stack_page = (unsigned long)task_stack_page(p);
2083
2084         if (sp < THREAD_SIZE)
2085                 return 0;
2086
2087         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2088                 return 1;
2089
2090         if (valid_irq_stack(sp, p, nbytes))
2091                 return 1;
2092
2093         return valid_emergency_stack(sp, p, nbytes);
2094 }
2095
2096 EXPORT_SYMBOL(validate_sp);
2097
2098 static unsigned long __get_wchan(struct task_struct *p)
2099 {
2100         unsigned long ip, sp;
2101         int count = 0;
2102
2103         if (!p || p == current || p->state == TASK_RUNNING)
2104                 return 0;
2105
2106         sp = p->thread.ksp;
2107         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2108                 return 0;
2109
2110         do {
2111                 sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
2112                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2113                     p->state == TASK_RUNNING)
2114                         return 0;
2115                 if (count > 0) {
2116                         ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
2117                         if (!in_sched_functions(ip))
2118                                 return ip;
2119                 }
2120         } while (count++ < 16);
2121         return 0;
2122 }
2123
2124 unsigned long get_wchan(struct task_struct *p)
2125 {
2126         unsigned long ret;
2127
2128         if (!try_get_task_stack(p))
2129                 return 0;
2130
2131         ret = __get_wchan(p);
2132
2133         put_task_stack(p);
2134
2135         return ret;
2136 }
2137
2138 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2139
2140 void show_stack(struct task_struct *tsk, unsigned long *stack,
2141                 const char *loglvl)
2142 {
2143         unsigned long sp, ip, lr, newsp;
2144         int count = 0;
2145         int firstframe = 1;
2146         unsigned long ret_addr;
2147         int ftrace_idx = 0;
2148
2149         if (tsk == NULL)
2150                 tsk = current;
2151
2152         if (!try_get_task_stack(tsk))
2153                 return;
2154
2155         sp = (unsigned long) stack;
2156         if (sp == 0) {
2157                 if (tsk == current)
2158                         sp = current_stack_frame();
2159                 else
2160                         sp = tsk->thread.ksp;
2161         }
2162
2163         lr = 0;
2164         printk("%sCall Trace:\n", loglvl);
2165         do {
2166                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2167                         break;
2168
2169                 stack = (unsigned long *) sp;
2170                 newsp = stack[0];
2171                 ip = stack[STACK_FRAME_LR_SAVE];
2172                 if (!firstframe || ip != lr) {
2173                         printk("%s["REG"] ["REG"] %pS",
2174                                 loglvl, sp, ip, (void *)ip);
2175                         ret_addr = ftrace_graph_ret_addr(current,
2176                                                 &ftrace_idx, ip, stack);
2177                         if (ret_addr != ip)
2178                                 pr_cont(" (%pS)", (void *)ret_addr);
2179                         if (firstframe)
2180                                 pr_cont(" (unreliable)");
2181                         pr_cont("\n");
2182                 }
2183                 firstframe = 0;
2184
2185                 /*
2186                  * See if this is an exception frame.
2187                  * We look for the "regshere" marker in the current frame.
2188                  */
2189                 if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS)
2190                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2191                         struct pt_regs *regs = (struct pt_regs *)
2192                                 (sp + STACK_FRAME_OVERHEAD);
2193                         lr = regs->link;
2194                         printk("%s--- interrupt: %lx at %pS\n    LR = %pS\n",
2195                                loglvl, regs->trap,
2196                                (void *)regs->nip, (void *)lr);
2197                         firstframe = 1;
2198                 }
2199
2200                 sp = newsp;
2201         } while (count++ < kstack_depth_to_print);
2202
2203         put_task_stack(tsk);
2204 }
2205
2206 #ifdef CONFIG_PPC64
2207 /* Called with hard IRQs off */
2208 void notrace __ppc64_runlatch_on(void)
2209 {
2210         struct thread_info *ti = current_thread_info();
2211
2212         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2213                 /*
2214                  * Least significant bit (RUN) is the only writable bit of
2215                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2216                  * earliest ISA where this is the case, but it's convenient.
2217                  */
2218                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2219         } else {
2220                 unsigned long ctrl;
2221
2222                 /*
2223                  * Some architectures (e.g., Cell) have writable fields other
2224                  * than RUN, so do the read-modify-write.
2225                  */
2226                 ctrl = mfspr(SPRN_CTRLF);
2227                 ctrl |= CTRL_RUNLATCH;
2228                 mtspr(SPRN_CTRLT, ctrl);
2229         }
2230
2231         ti->local_flags |= _TLF_RUNLATCH;
2232 }
2233
2234 /* Called with hard IRQs off */
2235 void notrace __ppc64_runlatch_off(void)
2236 {
2237         struct thread_info *ti = current_thread_info();
2238
2239         ti->local_flags &= ~_TLF_RUNLATCH;
2240
2241         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2242                 mtspr(SPRN_CTRLT, 0);
2243         } else {
2244                 unsigned long ctrl;
2245
2246                 ctrl = mfspr(SPRN_CTRLF);
2247                 ctrl &= ~CTRL_RUNLATCH;
2248                 mtspr(SPRN_CTRLT, ctrl);
2249         }
2250 }
2251 #endif /* CONFIG_PPC64 */
2252
2253 unsigned long arch_align_stack(unsigned long sp)
2254 {
2255         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2256                 sp -= get_random_int() & ~PAGE_MASK;
2257         return sp & ~0xf;
2258 }
2259
2260 static inline unsigned long brk_rnd(void)
2261 {
2262         unsigned long rnd = 0;
2263
2264         /* 8MB for 32bit, 1GB for 64bit */
2265         if (is_32bit_task())
2266                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2267         else
2268                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2269
2270         return rnd << PAGE_SHIFT;
2271 }
2272
2273 unsigned long arch_randomize_brk(struct mm_struct *mm)
2274 {
2275         unsigned long base = mm->brk;
2276         unsigned long ret;
2277
2278 #ifdef CONFIG_PPC_BOOK3S_64
2279         /*
2280          * If we are using 1TB segments and we are allowed to randomise
2281          * the heap, we can put it above 1TB so it is backed by a 1TB
2282          * segment. Otherwise the heap will be in the bottom 1TB
2283          * which always uses 256MB segments and this may result in a
2284          * performance penalty. We don't need to worry about radix. For
2285          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2286          */
2287         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2288                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2289 #endif
2290
2291         ret = PAGE_ALIGN(base + brk_rnd());
2292
2293         if (ret < mm->brk)
2294                 return mm->brk;
2295
2296         return ret;
2297 }
2298