GNU Linux-libre 5.15.72-gnu
[releases.git] / arch / powerpc / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43
44 #include <asm/interrupt.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/runlatch.h>
52 #include <asm/syscalls.h>
53 #include <asm/switch_to.h>
54 #include <asm/tm.h>
55 #include <asm/debug.h>
56 #ifdef CONFIG_PPC64
57 #include <asm/firmware.h>
58 #include <asm/hw_irq.h>
59 #endif
60 #include <asm/code-patching.h>
61 #include <asm/exec.h>
62 #include <asm/livepatch.h>
63 #include <asm/cpu_has_feature.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/stacktrace.h>
66 #include <asm/hw_breakpoint.h>
67
68 #include <linux/kprobes.h>
69 #include <linux/kdebug.h>
70
71 /* Transactional Memory debug */
72 #ifdef TM_DEBUG_SW
73 #define TM_DEBUG(x...) printk(KERN_INFO x)
74 #else
75 #define TM_DEBUG(x...) do { } while(0)
76 #endif
77
78 extern unsigned long _get_SP(void);
79
80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81 /*
82  * Are we running in "Suspend disabled" mode? If so we have to block any
83  * sigreturn that would get us into suspended state, and we also warn in some
84  * other paths that we should never reach with suspend disabled.
85  */
86 bool tm_suspend_disabled __ro_after_init = false;
87
88 static void check_if_tm_restore_required(struct task_struct *tsk)
89 {
90         /*
91          * If we are saving the current thread's registers, and the
92          * thread is in a transactional state, set the TIF_RESTORE_TM
93          * bit so that we know to restore the registers before
94          * returning to userspace.
95          */
96         if (tsk == current && tsk->thread.regs &&
97             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98             !test_thread_flag(TIF_RESTORE_TM)) {
99                 regs_set_return_msr(&tsk->thread.ckpt_regs,
100                                                 tsk->thread.regs->msr);
101                 set_thread_flag(TIF_RESTORE_TM);
102         }
103 }
104
105 #else
106 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
107 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
108
109 bool strict_msr_control;
110 EXPORT_SYMBOL(strict_msr_control);
111
112 static int __init enable_strict_msr_control(char *str)
113 {
114         strict_msr_control = true;
115         pr_info("Enabling strict facility control\n");
116
117         return 0;
118 }
119 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
120
121 /* notrace because it's called by restore_math */
122 unsigned long notrace msr_check_and_set(unsigned long bits)
123 {
124         unsigned long oldmsr = mfmsr();
125         unsigned long newmsr;
126
127         newmsr = oldmsr | bits;
128
129         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
130                 newmsr |= MSR_VSX;
131
132         if (oldmsr != newmsr)
133                 mtmsr_isync(newmsr);
134
135         return newmsr;
136 }
137 EXPORT_SYMBOL_GPL(msr_check_and_set);
138
139 /* notrace because it's called by restore_math */
140 void notrace __msr_check_and_clear(unsigned long bits)
141 {
142         unsigned long oldmsr = mfmsr();
143         unsigned long newmsr;
144
145         newmsr = oldmsr & ~bits;
146
147         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
148                 newmsr &= ~MSR_VSX;
149
150         if (oldmsr != newmsr)
151                 mtmsr_isync(newmsr);
152 }
153 EXPORT_SYMBOL(__msr_check_and_clear);
154
155 #ifdef CONFIG_PPC_FPU
156 static void __giveup_fpu(struct task_struct *tsk)
157 {
158         unsigned long msr;
159
160         save_fpu(tsk);
161         msr = tsk->thread.regs->msr;
162         msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
163         if (cpu_has_feature(CPU_FTR_VSX))
164                 msr &= ~MSR_VSX;
165         regs_set_return_msr(tsk->thread.regs, msr);
166 }
167
168 void giveup_fpu(struct task_struct *tsk)
169 {
170         check_if_tm_restore_required(tsk);
171
172         msr_check_and_set(MSR_FP);
173         __giveup_fpu(tsk);
174         msr_check_and_clear(MSR_FP);
175 }
176 EXPORT_SYMBOL(giveup_fpu);
177
178 /*
179  * Make sure the floating-point register state in the
180  * the thread_struct is up to date for task tsk.
181  */
182 void flush_fp_to_thread(struct task_struct *tsk)
183 {
184         if (tsk->thread.regs) {
185                 /*
186                  * We need to disable preemption here because if we didn't,
187                  * another process could get scheduled after the regs->msr
188                  * test but before we have finished saving the FP registers
189                  * to the thread_struct.  That process could take over the
190                  * FPU, and then when we get scheduled again we would store
191                  * bogus values for the remaining FP registers.
192                  */
193                 preempt_disable();
194                 if (tsk->thread.regs->msr & MSR_FP) {
195                         /*
196                          * This should only ever be called for current or
197                          * for a stopped child process.  Since we save away
198                          * the FP register state on context switch,
199                          * there is something wrong if a stopped child appears
200                          * to still have its FP state in the CPU registers.
201                          */
202                         BUG_ON(tsk != current);
203                         giveup_fpu(tsk);
204                 }
205                 preempt_enable();
206         }
207 }
208 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
209
210 void enable_kernel_fp(void)
211 {
212         unsigned long cpumsr;
213
214         WARN_ON(preemptible());
215
216         cpumsr = msr_check_and_set(MSR_FP);
217
218         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
219                 check_if_tm_restore_required(current);
220                 /*
221                  * If a thread has already been reclaimed then the
222                  * checkpointed registers are on the CPU but have definitely
223                  * been saved by the reclaim code. Don't need to and *cannot*
224                  * giveup as this would save  to the 'live' structure not the
225                  * checkpointed structure.
226                  */
227                 if (!MSR_TM_ACTIVE(cpumsr) &&
228                      MSR_TM_ACTIVE(current->thread.regs->msr))
229                         return;
230                 __giveup_fpu(current);
231         }
232 }
233 EXPORT_SYMBOL(enable_kernel_fp);
234 #else
235 static inline void __giveup_fpu(struct task_struct *tsk) { }
236 #endif /* CONFIG_PPC_FPU */
237
238 #ifdef CONFIG_ALTIVEC
239 static void __giveup_altivec(struct task_struct *tsk)
240 {
241         unsigned long msr;
242
243         save_altivec(tsk);
244         msr = tsk->thread.regs->msr;
245         msr &= ~MSR_VEC;
246         if (cpu_has_feature(CPU_FTR_VSX))
247                 msr &= ~MSR_VSX;
248         regs_set_return_msr(tsk->thread.regs, msr);
249 }
250
251 void giveup_altivec(struct task_struct *tsk)
252 {
253         check_if_tm_restore_required(tsk);
254
255         msr_check_and_set(MSR_VEC);
256         __giveup_altivec(tsk);
257         msr_check_and_clear(MSR_VEC);
258 }
259 EXPORT_SYMBOL(giveup_altivec);
260
261 void enable_kernel_altivec(void)
262 {
263         unsigned long cpumsr;
264
265         WARN_ON(preemptible());
266
267         cpumsr = msr_check_and_set(MSR_VEC);
268
269         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
270                 check_if_tm_restore_required(current);
271                 /*
272                  * If a thread has already been reclaimed then the
273                  * checkpointed registers are on the CPU but have definitely
274                  * been saved by the reclaim code. Don't need to and *cannot*
275                  * giveup as this would save  to the 'live' structure not the
276                  * checkpointed structure.
277                  */
278                 if (!MSR_TM_ACTIVE(cpumsr) &&
279                      MSR_TM_ACTIVE(current->thread.regs->msr))
280                         return;
281                 __giveup_altivec(current);
282         }
283 }
284 EXPORT_SYMBOL(enable_kernel_altivec);
285
286 /*
287  * Make sure the VMX/Altivec register state in the
288  * the thread_struct is up to date for task tsk.
289  */
290 void flush_altivec_to_thread(struct task_struct *tsk)
291 {
292         if (tsk->thread.regs) {
293                 preempt_disable();
294                 if (tsk->thread.regs->msr & MSR_VEC) {
295                         BUG_ON(tsk != current);
296                         giveup_altivec(tsk);
297                 }
298                 preempt_enable();
299         }
300 }
301 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
302 #endif /* CONFIG_ALTIVEC */
303
304 #ifdef CONFIG_VSX
305 static void __giveup_vsx(struct task_struct *tsk)
306 {
307         unsigned long msr = tsk->thread.regs->msr;
308
309         /*
310          * We should never be ssetting MSR_VSX without also setting
311          * MSR_FP and MSR_VEC
312          */
313         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
314
315         /* __giveup_fpu will clear MSR_VSX */
316         if (msr & MSR_FP)
317                 __giveup_fpu(tsk);
318         if (msr & MSR_VEC)
319                 __giveup_altivec(tsk);
320 }
321
322 static void giveup_vsx(struct task_struct *tsk)
323 {
324         check_if_tm_restore_required(tsk);
325
326         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
327         __giveup_vsx(tsk);
328         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
329 }
330
331 void enable_kernel_vsx(void)
332 {
333         unsigned long cpumsr;
334
335         WARN_ON(preemptible());
336
337         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
338
339         if (current->thread.regs &&
340             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
341                 check_if_tm_restore_required(current);
342                 /*
343                  * If a thread has already been reclaimed then the
344                  * checkpointed registers are on the CPU but have definitely
345                  * been saved by the reclaim code. Don't need to and *cannot*
346                  * giveup as this would save  to the 'live' structure not the
347                  * checkpointed structure.
348                  */
349                 if (!MSR_TM_ACTIVE(cpumsr) &&
350                      MSR_TM_ACTIVE(current->thread.regs->msr))
351                         return;
352                 __giveup_vsx(current);
353         }
354 }
355 EXPORT_SYMBOL(enable_kernel_vsx);
356
357 void flush_vsx_to_thread(struct task_struct *tsk)
358 {
359         if (tsk->thread.regs) {
360                 preempt_disable();
361                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
362                         BUG_ON(tsk != current);
363                         giveup_vsx(tsk);
364                 }
365                 preempt_enable();
366         }
367 }
368 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
369 #endif /* CONFIG_VSX */
370
371 #ifdef CONFIG_SPE
372 void giveup_spe(struct task_struct *tsk)
373 {
374         check_if_tm_restore_required(tsk);
375
376         msr_check_and_set(MSR_SPE);
377         __giveup_spe(tsk);
378         msr_check_and_clear(MSR_SPE);
379 }
380 EXPORT_SYMBOL(giveup_spe);
381
382 void enable_kernel_spe(void)
383 {
384         WARN_ON(preemptible());
385
386         msr_check_and_set(MSR_SPE);
387
388         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
389                 check_if_tm_restore_required(current);
390                 __giveup_spe(current);
391         }
392 }
393 EXPORT_SYMBOL(enable_kernel_spe);
394
395 void flush_spe_to_thread(struct task_struct *tsk)
396 {
397         if (tsk->thread.regs) {
398                 preempt_disable();
399                 if (tsk->thread.regs->msr & MSR_SPE) {
400                         BUG_ON(tsk != current);
401                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
402                         giveup_spe(tsk);
403                 }
404                 preempt_enable();
405         }
406 }
407 #endif /* CONFIG_SPE */
408
409 static unsigned long msr_all_available;
410
411 static int __init init_msr_all_available(void)
412 {
413         if (IS_ENABLED(CONFIG_PPC_FPU))
414                 msr_all_available |= MSR_FP;
415         if (cpu_has_feature(CPU_FTR_ALTIVEC))
416                 msr_all_available |= MSR_VEC;
417         if (cpu_has_feature(CPU_FTR_VSX))
418                 msr_all_available |= MSR_VSX;
419         if (cpu_has_feature(CPU_FTR_SPE))
420                 msr_all_available |= MSR_SPE;
421
422         return 0;
423 }
424 early_initcall(init_msr_all_available);
425
426 void giveup_all(struct task_struct *tsk)
427 {
428         unsigned long usermsr;
429
430         if (!tsk->thread.regs)
431                 return;
432
433         check_if_tm_restore_required(tsk);
434
435         usermsr = tsk->thread.regs->msr;
436
437         if ((usermsr & msr_all_available) == 0)
438                 return;
439
440         msr_check_and_set(msr_all_available);
441
442         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
443
444         if (usermsr & MSR_FP)
445                 __giveup_fpu(tsk);
446         if (usermsr & MSR_VEC)
447                 __giveup_altivec(tsk);
448         if (usermsr & MSR_SPE)
449                 __giveup_spe(tsk);
450
451         msr_check_and_clear(msr_all_available);
452 }
453 EXPORT_SYMBOL(giveup_all);
454
455 #ifdef CONFIG_PPC_BOOK3S_64
456 #ifdef CONFIG_PPC_FPU
457 static bool should_restore_fp(void)
458 {
459         if (current->thread.load_fp) {
460                 current->thread.load_fp++;
461                 return true;
462         }
463         return false;
464 }
465
466 static void do_restore_fp(void)
467 {
468         load_fp_state(&current->thread.fp_state);
469 }
470 #else
471 static bool should_restore_fp(void) { return false; }
472 static void do_restore_fp(void) { }
473 #endif /* CONFIG_PPC_FPU */
474
475 #ifdef CONFIG_ALTIVEC
476 static bool should_restore_altivec(void)
477 {
478         if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
479                 current->thread.load_vec++;
480                 return true;
481         }
482         return false;
483 }
484
485 static void do_restore_altivec(void)
486 {
487         load_vr_state(&current->thread.vr_state);
488         current->thread.used_vr = 1;
489 }
490 #else
491 static bool should_restore_altivec(void) { return false; }
492 static void do_restore_altivec(void) { }
493 #endif /* CONFIG_ALTIVEC */
494
495 static bool should_restore_vsx(void)
496 {
497         if (cpu_has_feature(CPU_FTR_VSX))
498                 return true;
499         return false;
500 }
501 #ifdef CONFIG_VSX
502 static void do_restore_vsx(void)
503 {
504         current->thread.used_vsr = 1;
505 }
506 #else
507 static void do_restore_vsx(void) { }
508 #endif /* CONFIG_VSX */
509
510 /*
511  * The exception exit path calls restore_math() with interrupts hard disabled
512  * but the soft irq state not "reconciled". ftrace code that calls
513  * local_irq_save/restore causes warnings.
514  *
515  * Rather than complicate the exit path, just don't trace restore_math. This
516  * could be done by having ftrace entry code check for this un-reconciled
517  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
518  * temporarily fix it up for the duration of the ftrace call.
519  */
520 void notrace restore_math(struct pt_regs *regs)
521 {
522         unsigned long msr;
523         unsigned long new_msr = 0;
524
525         msr = regs->msr;
526
527         /*
528          * new_msr tracks the facilities that are to be restored. Only reload
529          * if the bit is not set in the user MSR (if it is set, the registers
530          * are live for the user thread).
531          */
532         if ((!(msr & MSR_FP)) && should_restore_fp())
533                 new_msr |= MSR_FP;
534
535         if ((!(msr & MSR_VEC)) && should_restore_altivec())
536                 new_msr |= MSR_VEC;
537
538         if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
539                 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
540                         new_msr |= MSR_VSX;
541         }
542
543         if (new_msr) {
544                 unsigned long fpexc_mode = 0;
545
546                 msr_check_and_set(new_msr);
547
548                 if (new_msr & MSR_FP) {
549                         do_restore_fp();
550
551                         // This also covers VSX, because VSX implies FP
552                         fpexc_mode = current->thread.fpexc_mode;
553                 }
554
555                 if (new_msr & MSR_VEC)
556                         do_restore_altivec();
557
558                 if (new_msr & MSR_VSX)
559                         do_restore_vsx();
560
561                 msr_check_and_clear(new_msr);
562
563                 regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
564         }
565 }
566 #endif /* CONFIG_PPC_BOOK3S_64 */
567
568 static void save_all(struct task_struct *tsk)
569 {
570         unsigned long usermsr;
571
572         if (!tsk->thread.regs)
573                 return;
574
575         usermsr = tsk->thread.regs->msr;
576
577         if ((usermsr & msr_all_available) == 0)
578                 return;
579
580         msr_check_and_set(msr_all_available);
581
582         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
583
584         if (usermsr & MSR_FP)
585                 save_fpu(tsk);
586
587         if (usermsr & MSR_VEC)
588                 save_altivec(tsk);
589
590         if (usermsr & MSR_SPE)
591                 __giveup_spe(tsk);
592
593         msr_check_and_clear(msr_all_available);
594 }
595
596 void flush_all_to_thread(struct task_struct *tsk)
597 {
598         if (tsk->thread.regs) {
599                 preempt_disable();
600                 BUG_ON(tsk != current);
601 #ifdef CONFIG_SPE
602                 if (tsk->thread.regs->msr & MSR_SPE)
603                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
604 #endif
605                 save_all(tsk);
606
607                 preempt_enable();
608         }
609 }
610 EXPORT_SYMBOL(flush_all_to_thread);
611
612 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
613 void do_send_trap(struct pt_regs *regs, unsigned long address,
614                   unsigned long error_code, int breakpt)
615 {
616         current->thread.trap_nr = TRAP_HWBKPT;
617         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
618                         11, SIGSEGV) == NOTIFY_STOP)
619                 return;
620
621         /* Deliver the signal to userspace */
622         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
623                                     (void __user *)address);
624 }
625 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
626
627 static void do_break_handler(struct pt_regs *regs)
628 {
629         struct arch_hw_breakpoint null_brk = {0};
630         struct arch_hw_breakpoint *info;
631         struct ppc_inst instr = ppc_inst(0);
632         int type = 0;
633         int size = 0;
634         unsigned long ea;
635         int i;
636
637         /*
638          * If underneath hw supports only one watchpoint, we know it
639          * caused exception. 8xx also falls into this category.
640          */
641         if (nr_wp_slots() == 1) {
642                 __set_breakpoint(0, &null_brk);
643                 current->thread.hw_brk[0] = null_brk;
644                 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
645                 return;
646         }
647
648         /* Otherwise findout which DAWR caused exception and disable it. */
649         wp_get_instr_detail(regs, &instr, &type, &size, &ea);
650
651         for (i = 0; i < nr_wp_slots(); i++) {
652                 info = &current->thread.hw_brk[i];
653                 if (!info->address)
654                         continue;
655
656                 if (wp_check_constraints(regs, instr, ea, type, size, info)) {
657                         __set_breakpoint(i, &null_brk);
658                         current->thread.hw_brk[i] = null_brk;
659                         current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
660                 }
661         }
662 }
663
664 DEFINE_INTERRUPT_HANDLER(do_break)
665 {
666         current->thread.trap_nr = TRAP_HWBKPT;
667         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
668                         11, SIGSEGV) == NOTIFY_STOP)
669                 return;
670
671         if (debugger_break_match(regs))
672                 return;
673
674         /*
675          * We reach here only when watchpoint exception is generated by ptrace
676          * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
677          * watchpoint is already handled by hw_breakpoint_handler() so we don't
678          * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
679          * we need to manually handle the watchpoint here.
680          */
681         if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
682                 do_break_handler(regs);
683
684         /* Deliver the signal to userspace */
685         force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
686 }
687 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
688
689 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
690
691 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
692 /*
693  * Set the debug registers back to their default "safe" values.
694  */
695 static void set_debug_reg_defaults(struct thread_struct *thread)
696 {
697         thread->debug.iac1 = thread->debug.iac2 = 0;
698 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
699         thread->debug.iac3 = thread->debug.iac4 = 0;
700 #endif
701         thread->debug.dac1 = thread->debug.dac2 = 0;
702 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
703         thread->debug.dvc1 = thread->debug.dvc2 = 0;
704 #endif
705         thread->debug.dbcr0 = 0;
706 #ifdef CONFIG_BOOKE
707         /*
708          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
709          */
710         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
711                         DBCR1_IAC3US | DBCR1_IAC4US;
712         /*
713          * Force Data Address Compare User/Supervisor bits to be User-only
714          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
715          */
716         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
717 #else
718         thread->debug.dbcr1 = 0;
719 #endif
720 }
721
722 static void prime_debug_regs(struct debug_reg *debug)
723 {
724         /*
725          * We could have inherited MSR_DE from userspace, since
726          * it doesn't get cleared on exception entry.  Make sure
727          * MSR_DE is clear before we enable any debug events.
728          */
729         mtmsr(mfmsr() & ~MSR_DE);
730
731         mtspr(SPRN_IAC1, debug->iac1);
732         mtspr(SPRN_IAC2, debug->iac2);
733 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
734         mtspr(SPRN_IAC3, debug->iac3);
735         mtspr(SPRN_IAC4, debug->iac4);
736 #endif
737         mtspr(SPRN_DAC1, debug->dac1);
738         mtspr(SPRN_DAC2, debug->dac2);
739 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
740         mtspr(SPRN_DVC1, debug->dvc1);
741         mtspr(SPRN_DVC2, debug->dvc2);
742 #endif
743         mtspr(SPRN_DBCR0, debug->dbcr0);
744         mtspr(SPRN_DBCR1, debug->dbcr1);
745 #ifdef CONFIG_BOOKE
746         mtspr(SPRN_DBCR2, debug->dbcr2);
747 #endif
748 }
749 /*
750  * Unless neither the old or new thread are making use of the
751  * debug registers, set the debug registers from the values
752  * stored in the new thread.
753  */
754 void switch_booke_debug_regs(struct debug_reg *new_debug)
755 {
756         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
757                 || (new_debug->dbcr0 & DBCR0_IDM))
758                         prime_debug_regs(new_debug);
759 }
760 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
761 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
762 #ifndef CONFIG_HAVE_HW_BREAKPOINT
763 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
764 {
765         preempt_disable();
766         __set_breakpoint(i, brk);
767         preempt_enable();
768 }
769
770 static void set_debug_reg_defaults(struct thread_struct *thread)
771 {
772         int i;
773         struct arch_hw_breakpoint null_brk = {0};
774
775         for (i = 0; i < nr_wp_slots(); i++) {
776                 thread->hw_brk[i] = null_brk;
777                 if (ppc_breakpoint_available())
778                         set_breakpoint(i, &thread->hw_brk[i]);
779         }
780 }
781
782 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
783                                 struct arch_hw_breakpoint *b)
784 {
785         if (a->address != b->address)
786                 return false;
787         if (a->type != b->type)
788                 return false;
789         if (a->len != b->len)
790                 return false;
791         /* no need to check hw_len. it's calculated from address and len */
792         return true;
793 }
794
795 static void switch_hw_breakpoint(struct task_struct *new)
796 {
797         int i;
798
799         for (i = 0; i < nr_wp_slots(); i++) {
800                 if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
801                                         &new->thread.hw_brk[i])))
802                         continue;
803
804                 __set_breakpoint(i, &new->thread.hw_brk[i]);
805         }
806 }
807 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
808 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
809
810 static inline int set_dabr(struct arch_hw_breakpoint *brk)
811 {
812         unsigned long dabr, dabrx;
813
814         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
815         dabrx = ((brk->type >> 3) & 0x7);
816
817         if (ppc_md.set_dabr)
818                 return ppc_md.set_dabr(dabr, dabrx);
819
820         if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
821                 mtspr(SPRN_DAC1, dabr);
822                 if (IS_ENABLED(CONFIG_PPC_47x))
823                         isync();
824                 return 0;
825         } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
826                 mtspr(SPRN_DABR, dabr);
827                 if (cpu_has_feature(CPU_FTR_DABRX))
828                         mtspr(SPRN_DABRX, dabrx);
829                 return 0;
830         } else {
831                 return -EINVAL;
832         }
833 }
834
835 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
836 {
837         unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
838                                LCTRL1_CRWF_RW;
839         unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
840         unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
841         unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
842
843         if (start_addr == 0)
844                 lctrl2 |= LCTRL2_LW0LA_F;
845         else if (end_addr == 0)
846                 lctrl2 |= LCTRL2_LW0LA_E;
847         else
848                 lctrl2 |= LCTRL2_LW0LA_EandF;
849
850         mtspr(SPRN_LCTRL2, 0);
851
852         if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
853                 return 0;
854
855         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
856                 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
857         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
858                 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
859
860         mtspr(SPRN_CMPE, start_addr - 1);
861         mtspr(SPRN_CMPF, end_addr);
862         mtspr(SPRN_LCTRL1, lctrl1);
863         mtspr(SPRN_LCTRL2, lctrl2);
864
865         return 0;
866 }
867
868 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
869 {
870         memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
871
872         if (dawr_enabled())
873                 // Power8 or later
874                 set_dawr(nr, brk);
875         else if (IS_ENABLED(CONFIG_PPC_8xx))
876                 set_breakpoint_8xx(brk);
877         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
878                 // Power7 or earlier
879                 set_dabr(brk);
880         else
881                 // Shouldn't happen due to higher level checks
882                 WARN_ON_ONCE(1);
883 }
884
885 /* Check if we have DAWR or DABR hardware */
886 bool ppc_breakpoint_available(void)
887 {
888         if (dawr_enabled())
889                 return true; /* POWER8 DAWR or POWER9 forced DAWR */
890         if (cpu_has_feature(CPU_FTR_ARCH_207S))
891                 return false; /* POWER9 with DAWR disabled */
892         /* DABR: Everything but POWER8 and POWER9 */
893         return true;
894 }
895 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
896
897 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
898
899 static inline bool tm_enabled(struct task_struct *tsk)
900 {
901         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
902 }
903
904 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
905 {
906         /*
907          * Use the current MSR TM suspended bit to track if we have
908          * checkpointed state outstanding.
909          * On signal delivery, we'd normally reclaim the checkpointed
910          * state to obtain stack pointer (see:get_tm_stackpointer()).
911          * This will then directly return to userspace without going
912          * through __switch_to(). However, if the stack frame is bad,
913          * we need to exit this thread which calls __switch_to() which
914          * will again attempt to reclaim the already saved tm state.
915          * Hence we need to check that we've not already reclaimed
916          * this state.
917          * We do this using the current MSR, rather tracking it in
918          * some specific thread_struct bit, as it has the additional
919          * benefit of checking for a potential TM bad thing exception.
920          */
921         if (!MSR_TM_SUSPENDED(mfmsr()))
922                 return;
923
924         giveup_all(container_of(thr, struct task_struct, thread));
925
926         tm_reclaim(thr, cause);
927
928         /*
929          * If we are in a transaction and FP is off then we can't have
930          * used FP inside that transaction. Hence the checkpointed
931          * state is the same as the live state. We need to copy the
932          * live state to the checkpointed state so that when the
933          * transaction is restored, the checkpointed state is correct
934          * and the aborted transaction sees the correct state. We use
935          * ckpt_regs.msr here as that's what tm_reclaim will use to
936          * determine if it's going to write the checkpointed state or
937          * not. So either this will write the checkpointed registers,
938          * or reclaim will. Similarly for VMX.
939          */
940         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
941                 memcpy(&thr->ckfp_state, &thr->fp_state,
942                        sizeof(struct thread_fp_state));
943         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
944                 memcpy(&thr->ckvr_state, &thr->vr_state,
945                        sizeof(struct thread_vr_state));
946 }
947
948 void tm_reclaim_current(uint8_t cause)
949 {
950         tm_enable();
951         tm_reclaim_thread(&current->thread, cause);
952 }
953
954 static inline void tm_reclaim_task(struct task_struct *tsk)
955 {
956         /* We have to work out if we're switching from/to a task that's in the
957          * middle of a transaction.
958          *
959          * In switching we need to maintain a 2nd register state as
960          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
961          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
962          * ckvr_state
963          *
964          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
965          */
966         struct thread_struct *thr = &tsk->thread;
967
968         if (!thr->regs)
969                 return;
970
971         if (!MSR_TM_ACTIVE(thr->regs->msr))
972                 goto out_and_saveregs;
973
974         WARN_ON(tm_suspend_disabled);
975
976         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
977                  "ccr=%lx, msr=%lx, trap=%lx)\n",
978                  tsk->pid, thr->regs->nip,
979                  thr->regs->ccr, thr->regs->msr,
980                  thr->regs->trap);
981
982         tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
983
984         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
985                  tsk->pid);
986
987 out_and_saveregs:
988         /* Always save the regs here, even if a transaction's not active.
989          * This context-switches a thread's TM info SPRs.  We do it here to
990          * be consistent with the restore path (in recheckpoint) which
991          * cannot happen later in _switch().
992          */
993         tm_save_sprs(thr);
994 }
995
996 extern void __tm_recheckpoint(struct thread_struct *thread);
997
998 void tm_recheckpoint(struct thread_struct *thread)
999 {
1000         unsigned long flags;
1001
1002         if (!(thread->regs->msr & MSR_TM))
1003                 return;
1004
1005         /* We really can't be interrupted here as the TEXASR registers can't
1006          * change and later in the trecheckpoint code, we have a userspace R1.
1007          * So let's hard disable over this region.
1008          */
1009         local_irq_save(flags);
1010         hard_irq_disable();
1011
1012         /* The TM SPRs are restored here, so that TEXASR.FS can be set
1013          * before the trecheckpoint and no explosion occurs.
1014          */
1015         tm_restore_sprs(thread);
1016
1017         __tm_recheckpoint(thread);
1018
1019         local_irq_restore(flags);
1020 }
1021
1022 static inline void tm_recheckpoint_new_task(struct task_struct *new)
1023 {
1024         if (!cpu_has_feature(CPU_FTR_TM))
1025                 return;
1026
1027         /* Recheckpoint the registers of the thread we're about to switch to.
1028          *
1029          * If the task was using FP, we non-lazily reload both the original and
1030          * the speculative FP register states.  This is because the kernel
1031          * doesn't see if/when a TM rollback occurs, so if we take an FP
1032          * unavailable later, we are unable to determine which set of FP regs
1033          * need to be restored.
1034          */
1035         if (!tm_enabled(new))
1036                 return;
1037
1038         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1039                 tm_restore_sprs(&new->thread);
1040                 return;
1041         }
1042         /* Recheckpoint to restore original checkpointed register state. */
1043         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1044                  new->pid, new->thread.regs->msr);
1045
1046         tm_recheckpoint(&new->thread);
1047
1048         /*
1049          * The checkpointed state has been restored but the live state has
1050          * not, ensure all the math functionality is turned off to trigger
1051          * restore_math() to reload.
1052          */
1053         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1054
1055         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1056                  "(kernel msr 0x%lx)\n",
1057                  new->pid, mfmsr());
1058 }
1059
1060 static inline void __switch_to_tm(struct task_struct *prev,
1061                 struct task_struct *new)
1062 {
1063         if (cpu_has_feature(CPU_FTR_TM)) {
1064                 if (tm_enabled(prev) || tm_enabled(new))
1065                         tm_enable();
1066
1067                 if (tm_enabled(prev)) {
1068                         prev->thread.load_tm++;
1069                         tm_reclaim_task(prev);
1070                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1071                                 prev->thread.regs->msr &= ~MSR_TM;
1072                 }
1073
1074                 tm_recheckpoint_new_task(new);
1075         }
1076 }
1077
1078 /*
1079  * This is called if we are on the way out to userspace and the
1080  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1081  * FP and/or vector state and does so if necessary.
1082  * If userspace is inside a transaction (whether active or
1083  * suspended) and FP/VMX/VSX instructions have ever been enabled
1084  * inside that transaction, then we have to keep them enabled
1085  * and keep the FP/VMX/VSX state loaded while ever the transaction
1086  * continues.  The reason is that if we didn't, and subsequently
1087  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1088  * we don't know whether it's the same transaction, and thus we
1089  * don't know which of the checkpointed state and the transactional
1090  * state to use.
1091  */
1092 void restore_tm_state(struct pt_regs *regs)
1093 {
1094         unsigned long msr_diff;
1095
1096         /*
1097          * This is the only moment we should clear TIF_RESTORE_TM as
1098          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1099          * again, anything else could lead to an incorrect ckpt_msr being
1100          * saved and therefore incorrect signal contexts.
1101          */
1102         clear_thread_flag(TIF_RESTORE_TM);
1103         if (!MSR_TM_ACTIVE(regs->msr))
1104                 return;
1105
1106         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1107         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1108
1109         /* Ensure that restore_math() will restore */
1110         if (msr_diff & MSR_FP)
1111                 current->thread.load_fp = 1;
1112 #ifdef CONFIG_ALTIVEC
1113         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1114                 current->thread.load_vec = 1;
1115 #endif
1116         restore_math(regs);
1117
1118         regs_set_return_msr(regs, regs->msr | msr_diff);
1119 }
1120
1121 #else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
1122 #define tm_recheckpoint_new_task(new)
1123 #define __switch_to_tm(prev, new)
1124 void tm_reclaim_current(uint8_t cause) {}
1125 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1126
1127 static inline void save_sprs(struct thread_struct *t)
1128 {
1129 #ifdef CONFIG_ALTIVEC
1130         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1131                 t->vrsave = mfspr(SPRN_VRSAVE);
1132 #endif
1133 #ifdef CONFIG_SPE
1134         if (cpu_has_feature(CPU_FTR_SPE))
1135                 t->spefscr = mfspr(SPRN_SPEFSCR);
1136 #endif
1137 #ifdef CONFIG_PPC_BOOK3S_64
1138         if (cpu_has_feature(CPU_FTR_DSCR))
1139                 t->dscr = mfspr(SPRN_DSCR);
1140
1141         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1142                 t->bescr = mfspr(SPRN_BESCR);
1143                 t->ebbhr = mfspr(SPRN_EBBHR);
1144                 t->ebbrr = mfspr(SPRN_EBBRR);
1145
1146                 t->fscr = mfspr(SPRN_FSCR);
1147
1148                 /*
1149                  * Note that the TAR is not available for use in the kernel.
1150                  * (To provide this, the TAR should be backed up/restored on
1151                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1152                  * this should be in pt_regs anyway (for debug).)
1153                  */
1154                 t->tar = mfspr(SPRN_TAR);
1155         }
1156 #endif
1157 }
1158
1159 static inline void restore_sprs(struct thread_struct *old_thread,
1160                                 struct thread_struct *new_thread)
1161 {
1162 #ifdef CONFIG_ALTIVEC
1163         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1164             old_thread->vrsave != new_thread->vrsave)
1165                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1166 #endif
1167 #ifdef CONFIG_SPE
1168         if (cpu_has_feature(CPU_FTR_SPE) &&
1169             old_thread->spefscr != new_thread->spefscr)
1170                 mtspr(SPRN_SPEFSCR, new_thread->spefscr);
1171 #endif
1172 #ifdef CONFIG_PPC_BOOK3S_64
1173         if (cpu_has_feature(CPU_FTR_DSCR)) {
1174                 u64 dscr = get_paca()->dscr_default;
1175                 if (new_thread->dscr_inherit)
1176                         dscr = new_thread->dscr;
1177
1178                 if (old_thread->dscr != dscr)
1179                         mtspr(SPRN_DSCR, dscr);
1180         }
1181
1182         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1183                 if (old_thread->bescr != new_thread->bescr)
1184                         mtspr(SPRN_BESCR, new_thread->bescr);
1185                 if (old_thread->ebbhr != new_thread->ebbhr)
1186                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1187                 if (old_thread->ebbrr != new_thread->ebbrr)
1188                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1189
1190                 if (old_thread->fscr != new_thread->fscr)
1191                         mtspr(SPRN_FSCR, new_thread->fscr);
1192
1193                 if (old_thread->tar != new_thread->tar)
1194                         mtspr(SPRN_TAR, new_thread->tar);
1195         }
1196
1197         if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1198             old_thread->tidr != new_thread->tidr)
1199                 mtspr(SPRN_TIDR, new_thread->tidr);
1200 #endif
1201
1202 }
1203
1204 struct task_struct *__switch_to(struct task_struct *prev,
1205         struct task_struct *new)
1206 {
1207         struct thread_struct *new_thread, *old_thread;
1208         struct task_struct *last;
1209 #ifdef CONFIG_PPC_BOOK3S_64
1210         struct ppc64_tlb_batch *batch;
1211 #endif
1212
1213         new_thread = &new->thread;
1214         old_thread = &current->thread;
1215
1216         WARN_ON(!irqs_disabled());
1217
1218 #ifdef CONFIG_PPC_BOOK3S_64
1219         batch = this_cpu_ptr(&ppc64_tlb_batch);
1220         if (batch->active) {
1221                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1222                 if (batch->index)
1223                         __flush_tlb_pending(batch);
1224                 batch->active = 0;
1225         }
1226
1227         /*
1228          * On POWER9 the copy-paste buffer can only paste into
1229          * foreign real addresses, so unprivileged processes can not
1230          * see the data or use it in any way unless they have
1231          * foreign real mappings. If the new process has the foreign
1232          * real address mappings, we must issue a cp_abort to clear
1233          * any state and prevent snooping, corruption or a covert
1234          * channel. ISA v3.1 supports paste into local memory.
1235          */
1236         if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1237                         atomic_read(&new->mm->context.vas_windows)))
1238                 asm volatile(PPC_CP_ABORT);
1239 #endif /* CONFIG_PPC_BOOK3S_64 */
1240
1241 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1242         switch_booke_debug_regs(&new->thread.debug);
1243 #else
1244 /*
1245  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1246  * schedule DABR
1247  */
1248 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1249         switch_hw_breakpoint(new);
1250 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1251 #endif
1252
1253         /*
1254          * We need to save SPRs before treclaim/trecheckpoint as these will
1255          * change a number of them.
1256          */
1257         save_sprs(&prev->thread);
1258
1259         /* Save FPU, Altivec, VSX and SPE state */
1260         giveup_all(prev);
1261
1262         __switch_to_tm(prev, new);
1263
1264         if (!radix_enabled()) {
1265                 /*
1266                  * We can't take a PMU exception inside _switch() since there
1267                  * is a window where the kernel stack SLB and the kernel stack
1268                  * are out of sync. Hard disable here.
1269                  */
1270                 hard_irq_disable();
1271         }
1272
1273         /*
1274          * Call restore_sprs() and set_return_regs_changed() before calling
1275          * _switch(). If we move it after _switch() then we miss out on calling
1276          * it for new tasks. The reason for this is we manually create a stack
1277          * frame for new tasks that directly returns through ret_from_fork() or
1278          * ret_from_kernel_thread(). See copy_thread() for details.
1279          */
1280         restore_sprs(old_thread, new_thread);
1281
1282         set_return_regs_changed(); /* _switch changes stack (and regs) */
1283
1284 #ifdef CONFIG_PPC32
1285         kuap_assert_locked();
1286 #endif
1287         last = _switch(old_thread, new_thread);
1288
1289         /*
1290          * Nothing after _switch will be run for newly created tasks,
1291          * because they switch directly to ret_from_fork/ret_from_kernel_thread
1292          * etc. Code added here should have a comment explaining why that is
1293          * okay.
1294          */
1295
1296 #ifdef CONFIG_PPC_BOOK3S_64
1297         /*
1298          * This applies to a process that was context switched while inside
1299          * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1300          * deactivated above, before _switch(). This will never be the case
1301          * for new tasks.
1302          */
1303         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1304                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1305                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1306                 batch->active = 1;
1307         }
1308
1309         /*
1310          * Math facilities are masked out of the child MSR in copy_thread.
1311          * A new task does not need to restore_math because it will
1312          * demand fault them.
1313          */
1314         if (current->thread.regs)
1315                 restore_math(current->thread.regs);
1316 #endif /* CONFIG_PPC_BOOK3S_64 */
1317
1318         return last;
1319 }
1320
1321 #define NR_INSN_TO_PRINT        16
1322
1323 static void show_instructions(struct pt_regs *regs)
1324 {
1325         int i;
1326         unsigned long nip = regs->nip;
1327         unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1328
1329         printk("Instruction dump:");
1330
1331         /*
1332          * If we were executing with the MMU off for instructions, adjust pc
1333          * rather than printing XXXXXXXX.
1334          */
1335         if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1336                 pc = (unsigned long)phys_to_virt(pc);
1337                 nip = (unsigned long)phys_to_virt(regs->nip);
1338         }
1339
1340         for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1341                 int instr;
1342
1343                 if (!(i % 8))
1344                         pr_cont("\n");
1345
1346                 if (!__kernel_text_address(pc) ||
1347                     get_kernel_nofault(instr, (const void *)pc)) {
1348                         pr_cont("XXXXXXXX ");
1349                 } else {
1350                         if (nip == pc)
1351                                 pr_cont("<%08x> ", instr);
1352                         else
1353                                 pr_cont("%08x ", instr);
1354                 }
1355
1356                 pc += sizeof(int);
1357         }
1358
1359         pr_cont("\n");
1360 }
1361
1362 void show_user_instructions(struct pt_regs *regs)
1363 {
1364         unsigned long pc;
1365         int n = NR_INSN_TO_PRINT;
1366         struct seq_buf s;
1367         char buf[96]; /* enough for 8 times 9 + 2 chars */
1368
1369         pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1370
1371         seq_buf_init(&s, buf, sizeof(buf));
1372
1373         while (n) {
1374                 int i;
1375
1376                 seq_buf_clear(&s);
1377
1378                 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1379                         int instr;
1380
1381                         if (copy_from_user_nofault(&instr, (void __user *)pc,
1382                                         sizeof(instr))) {
1383                                 seq_buf_printf(&s, "XXXXXXXX ");
1384                                 continue;
1385                         }
1386                         seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1387                 }
1388
1389                 if (!seq_buf_has_overflowed(&s))
1390                         pr_info("%s[%d]: code: %s\n", current->comm,
1391                                 current->pid, s.buffer);
1392         }
1393 }
1394
1395 struct regbit {
1396         unsigned long bit;
1397         const char *name;
1398 };
1399
1400 static struct regbit msr_bits[] = {
1401 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1402         {MSR_SF,        "SF"},
1403         {MSR_HV,        "HV"},
1404 #endif
1405         {MSR_VEC,       "VEC"},
1406         {MSR_VSX,       "VSX"},
1407 #ifdef CONFIG_BOOKE
1408         {MSR_CE,        "CE"},
1409 #endif
1410         {MSR_EE,        "EE"},
1411         {MSR_PR,        "PR"},
1412         {MSR_FP,        "FP"},
1413         {MSR_ME,        "ME"},
1414 #ifdef CONFIG_BOOKE
1415         {MSR_DE,        "DE"},
1416 #else
1417         {MSR_SE,        "SE"},
1418         {MSR_BE,        "BE"},
1419 #endif
1420         {MSR_IR,        "IR"},
1421         {MSR_DR,        "DR"},
1422         {MSR_PMM,       "PMM"},
1423 #ifndef CONFIG_BOOKE
1424         {MSR_RI,        "RI"},
1425         {MSR_LE,        "LE"},
1426 #endif
1427         {0,             NULL}
1428 };
1429
1430 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1431 {
1432         const char *s = "";
1433
1434         for (; bits->bit; ++bits)
1435                 if (val & bits->bit) {
1436                         pr_cont("%s%s", s, bits->name);
1437                         s = sep;
1438                 }
1439 }
1440
1441 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1442 static struct regbit msr_tm_bits[] = {
1443         {MSR_TS_T,      "T"},
1444         {MSR_TS_S,      "S"},
1445         {MSR_TM,        "E"},
1446         {0,             NULL}
1447 };
1448
1449 static void print_tm_bits(unsigned long val)
1450 {
1451 /*
1452  * This only prints something if at least one of the TM bit is set.
1453  * Inside the TM[], the output means:
1454  *   E: Enabled         (bit 32)
1455  *   S: Suspended       (bit 33)
1456  *   T: Transactional   (bit 34)
1457  */
1458         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1459                 pr_cont(",TM[");
1460                 print_bits(val, msr_tm_bits, "");
1461                 pr_cont("]");
1462         }
1463 }
1464 #else
1465 static void print_tm_bits(unsigned long val) {}
1466 #endif
1467
1468 static void print_msr_bits(unsigned long val)
1469 {
1470         pr_cont("<");
1471         print_bits(val, msr_bits, ",");
1472         print_tm_bits(val);
1473         pr_cont(">");
1474 }
1475
1476 #ifdef CONFIG_PPC64
1477 #define REG             "%016lx"
1478 #define REGS_PER_LINE   4
1479 #else
1480 #define REG             "%08lx"
1481 #define REGS_PER_LINE   8
1482 #endif
1483
1484 static void __show_regs(struct pt_regs *regs)
1485 {
1486         int i, trap;
1487
1488         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1489                regs->nip, regs->link, regs->ctr);
1490         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1491                regs, regs->trap, print_tainted(), init_utsname()->release);
1492         printk("MSR:  "REG" ", regs->msr);
1493         print_msr_bits(regs->msr);
1494         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1495         trap = TRAP(regs);
1496         if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1497                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1498         if (trap == INTERRUPT_MACHINE_CHECK ||
1499             trap == INTERRUPT_DATA_STORAGE ||
1500             trap == INTERRUPT_ALIGNMENT) {
1501                 if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
1502                         pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
1503                 else
1504                         pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1505         }
1506
1507 #ifdef CONFIG_PPC64
1508         pr_cont("IRQMASK: %lx ", regs->softe);
1509 #endif
1510 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1511         if (MSR_TM_ACTIVE(regs->msr))
1512                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1513 #endif
1514
1515         for (i = 0;  i < 32;  i++) {
1516                 if ((i % REGS_PER_LINE) == 0)
1517                         pr_cont("\nGPR%02d: ", i);
1518                 pr_cont(REG " ", regs->gpr[i]);
1519         }
1520         pr_cont("\n");
1521         /*
1522          * Lookup NIP late so we have the best change of getting the
1523          * above info out without failing
1524          */
1525         if (IS_ENABLED(CONFIG_KALLSYMS)) {
1526                 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1527                 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1528         }
1529 }
1530
1531 void show_regs(struct pt_regs *regs)
1532 {
1533         show_regs_print_info(KERN_DEFAULT);
1534         __show_regs(regs);
1535         show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1536         if (!user_mode(regs))
1537                 show_instructions(regs);
1538 }
1539
1540 void flush_thread(void)
1541 {
1542 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1543         flush_ptrace_hw_breakpoint(current);
1544 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1545         set_debug_reg_defaults(&current->thread);
1546 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1547 }
1548
1549 void arch_setup_new_exec(void)
1550 {
1551
1552 #ifdef CONFIG_PPC_BOOK3S_64
1553         if (!radix_enabled())
1554                 hash__setup_new_exec();
1555 #endif
1556         /*
1557          * If we exec out of a kernel thread then thread.regs will not be
1558          * set.  Do it now.
1559          */
1560         if (!current->thread.regs) {
1561                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1562                 current->thread.regs = regs - 1;
1563         }
1564
1565 #ifdef CONFIG_PPC_MEM_KEYS
1566         current->thread.regs->amr  = default_amr;
1567         current->thread.regs->iamr  = default_iamr;
1568 #endif
1569 }
1570
1571 #ifdef CONFIG_PPC64
1572 /**
1573  * Assign a TIDR (thread ID) for task @t and set it in the thread
1574  * structure. For now, we only support setting TIDR for 'current' task.
1575  *
1576  * Since the TID value is a truncated form of it PID, it is possible
1577  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1578  * that 2 threads share the same TID and are waiting, one of the following
1579  * cases will happen:
1580  *
1581  * 1. The correct thread is running, the wrong thread is not
1582  * In this situation, the correct thread is woken and proceeds to pass it's
1583  * condition check.
1584  *
1585  * 2. Neither threads are running
1586  * In this situation, neither thread will be woken. When scheduled, the waiting
1587  * threads will execute either a wait, which will return immediately, followed
1588  * by a condition check, which will pass for the correct thread and fail
1589  * for the wrong thread, or they will execute the condition check immediately.
1590  *
1591  * 3. The wrong thread is running, the correct thread is not
1592  * The wrong thread will be woken, but will fail it's condition check and
1593  * re-execute wait. The correct thread, when scheduled, will execute either
1594  * it's condition check (which will pass), or wait, which returns immediately
1595  * when called the first time after the thread is scheduled, followed by it's
1596  * condition check (which will pass).
1597  *
1598  * 4. Both threads are running
1599  * Both threads will be woken. The wrong thread will fail it's condition check
1600  * and execute another wait, while the correct thread will pass it's condition
1601  * check.
1602  *
1603  * @t: the task to set the thread ID for
1604  */
1605 int set_thread_tidr(struct task_struct *t)
1606 {
1607         if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1608                 return -EINVAL;
1609
1610         if (t != current)
1611                 return -EINVAL;
1612
1613         if (t->thread.tidr)
1614                 return 0;
1615
1616         t->thread.tidr = (u16)task_pid_nr(t);
1617         mtspr(SPRN_TIDR, t->thread.tidr);
1618
1619         return 0;
1620 }
1621 EXPORT_SYMBOL_GPL(set_thread_tidr);
1622
1623 #endif /* CONFIG_PPC64 */
1624
1625 void
1626 release_thread(struct task_struct *t)
1627 {
1628 }
1629
1630 /*
1631  * this gets called so that we can store coprocessor state into memory and
1632  * copy the current task into the new thread.
1633  */
1634 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1635 {
1636         flush_all_to_thread(src);
1637         /*
1638          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1639          * flush but it removes the checkpointed state from the current CPU and
1640          * transitions the CPU out of TM mode.  Hence we need to call
1641          * tm_recheckpoint_new_task() (on the same task) to restore the
1642          * checkpointed state back and the TM mode.
1643          *
1644          * Can't pass dst because it isn't ready. Doesn't matter, passing
1645          * dst is only important for __switch_to()
1646          */
1647         __switch_to_tm(src, src);
1648
1649         *dst = *src;
1650
1651         clear_task_ebb(dst);
1652
1653         return 0;
1654 }
1655
1656 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1657 {
1658 #ifdef CONFIG_PPC_BOOK3S_64
1659         unsigned long sp_vsid;
1660         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1661
1662         if (radix_enabled())
1663                 return;
1664
1665         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1666                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1667                         << SLB_VSID_SHIFT_1T;
1668         else
1669                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1670                         << SLB_VSID_SHIFT;
1671         sp_vsid |= SLB_VSID_KERNEL | llp;
1672         p->thread.ksp_vsid = sp_vsid;
1673 #endif
1674 }
1675
1676 /*
1677  * Copy a thread..
1678  */
1679
1680 /*
1681  * Copy architecture-specific thread state
1682  */
1683 int copy_thread(unsigned long clone_flags, unsigned long usp,
1684                 unsigned long kthread_arg, struct task_struct *p,
1685                 unsigned long tls)
1686 {
1687         struct pt_regs *childregs, *kregs;
1688         extern void ret_from_fork(void);
1689         extern void ret_from_fork_scv(void);
1690         extern void ret_from_kernel_thread(void);
1691         void (*f)(void);
1692         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1693         struct thread_info *ti = task_thread_info(p);
1694 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1695         int i;
1696 #endif
1697
1698         klp_init_thread_info(p);
1699
1700         /* Copy registers */
1701         sp -= sizeof(struct pt_regs);
1702         childregs = (struct pt_regs *) sp;
1703         if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
1704                 /* kernel thread */
1705                 memset(childregs, 0, sizeof(struct pt_regs));
1706                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1707                 /* function */
1708                 if (usp)
1709                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1710 #ifdef CONFIG_PPC64
1711                 clear_tsk_thread_flag(p, TIF_32BIT);
1712                 childregs->softe = IRQS_ENABLED;
1713 #endif
1714                 childregs->gpr[15] = kthread_arg;
1715                 p->thread.regs = NULL;  /* no user register state */
1716                 ti->flags |= _TIF_RESTOREALL;
1717                 f = ret_from_kernel_thread;
1718         } else {
1719                 /* user thread */
1720                 struct pt_regs *regs = current_pt_regs();
1721                 *childregs = *regs;
1722                 if (usp)
1723                         childregs->gpr[1] = usp;
1724                 p->thread.regs = childregs;
1725                 /* 64s sets this in ret_from_fork */
1726                 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1727                         childregs->gpr[3] = 0;  /* Result from fork() */
1728                 if (clone_flags & CLONE_SETTLS) {
1729                         if (!is_32bit_task())
1730                                 childregs->gpr[13] = tls;
1731                         else
1732                                 childregs->gpr[2] = tls;
1733                 }
1734
1735                 if (trap_is_scv(regs))
1736                         f = ret_from_fork_scv;
1737                 else
1738                         f = ret_from_fork;
1739         }
1740         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1741         sp -= STACK_FRAME_OVERHEAD;
1742
1743         /*
1744          * The way this works is that at some point in the future
1745          * some task will call _switch to switch to the new task.
1746          * That will pop off the stack frame created below and start
1747          * the new task running at ret_from_fork.  The new task will
1748          * do some house keeping and then return from the fork or clone
1749          * system call, using the stack frame created above.
1750          */
1751         ((unsigned long *)sp)[0] = 0;
1752         sp -= sizeof(struct pt_regs);
1753         kregs = (struct pt_regs *) sp;
1754         sp -= STACK_FRAME_OVERHEAD;
1755         p->thread.ksp = sp;
1756 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1757         for (i = 0; i < nr_wp_slots(); i++)
1758                 p->thread.ptrace_bps[i] = NULL;
1759 #endif
1760
1761 #ifdef CONFIG_PPC_FPU_REGS
1762         p->thread.fp_save_area = NULL;
1763 #endif
1764 #ifdef CONFIG_ALTIVEC
1765         p->thread.vr_save_area = NULL;
1766 #endif
1767 #if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1768         p->thread.kuap = KUAP_NONE;
1769 #endif
1770
1771         setup_ksp_vsid(p, sp);
1772
1773 #ifdef CONFIG_PPC64 
1774         if (cpu_has_feature(CPU_FTR_DSCR)) {
1775                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1776                 p->thread.dscr = mfspr(SPRN_DSCR);
1777         }
1778         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1779                 childregs->ppr = DEFAULT_PPR;
1780
1781         p->thread.tidr = 0;
1782 #endif
1783         /*
1784          * Run with the current AMR value of the kernel
1785          */
1786 #ifdef CONFIG_PPC_PKEY
1787         if (mmu_has_feature(MMU_FTR_BOOK3S_KUAP))
1788                 kregs->amr = AMR_KUAP_BLOCKED;
1789
1790         if (mmu_has_feature(MMU_FTR_BOOK3S_KUEP))
1791                 kregs->iamr = AMR_KUEP_BLOCKED;
1792 #endif
1793         kregs->nip = ppc_function_entry(f);
1794         return 0;
1795 }
1796
1797 void preload_new_slb_context(unsigned long start, unsigned long sp);
1798
1799 /*
1800  * Set up a thread for executing a new program
1801  */
1802 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1803 {
1804 #ifdef CONFIG_PPC64
1805         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1806
1807         if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1808                 preload_new_slb_context(start, sp);
1809 #endif
1810
1811 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1812         /*
1813          * Clear any transactional state, we're exec()ing. The cause is
1814          * not important as there will never be a recheckpoint so it's not
1815          * user visible.
1816          */
1817         if (MSR_TM_SUSPENDED(mfmsr()))
1818                 tm_reclaim_current(0);
1819 #endif
1820
1821         memset(&regs->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
1822         regs->ctr = 0;
1823         regs->link = 0;
1824         regs->xer = 0;
1825         regs->ccr = 0;
1826         regs->gpr[1] = sp;
1827
1828 #ifdef CONFIG_PPC32
1829         regs->mq = 0;
1830         regs->nip = start;
1831         regs->msr = MSR_USER;
1832 #else
1833         if (!is_32bit_task()) {
1834                 unsigned long entry;
1835
1836                 if (is_elf2_task()) {
1837                         /* Look ma, no function descriptors! */
1838                         entry = start;
1839
1840                         /*
1841                          * Ulrich says:
1842                          *   The latest iteration of the ABI requires that when
1843                          *   calling a function (at its global entry point),
1844                          *   the caller must ensure r12 holds the entry point
1845                          *   address (so that the function can quickly
1846                          *   establish addressability).
1847                          */
1848                         regs->gpr[12] = start;
1849                         /* Make sure that's restored on entry to userspace. */
1850                         set_thread_flag(TIF_RESTOREALL);
1851                 } else {
1852                         unsigned long toc;
1853
1854                         /* start is a relocated pointer to the function
1855                          * descriptor for the elf _start routine.  The first
1856                          * entry in the function descriptor is the entry
1857                          * address of _start and the second entry is the TOC
1858                          * value we need to use.
1859                          */
1860                         __get_user(entry, (unsigned long __user *)start);
1861                         __get_user(toc, (unsigned long __user *)start+1);
1862
1863                         /* Check whether the e_entry function descriptor entries
1864                          * need to be relocated before we can use them.
1865                          */
1866                         if (load_addr != 0) {
1867                                 entry += load_addr;
1868                                 toc   += load_addr;
1869                         }
1870                         regs->gpr[2] = toc;
1871                 }
1872                 regs_set_return_ip(regs, entry);
1873                 regs_set_return_msr(regs, MSR_USER64);
1874         } else {
1875                 regs->gpr[2] = 0;
1876                 regs_set_return_ip(regs, start);
1877                 regs_set_return_msr(regs, MSR_USER32);
1878         }
1879
1880 #endif
1881 #ifdef CONFIG_VSX
1882         current->thread.used_vsr = 0;
1883 #endif
1884         current->thread.load_slb = 0;
1885         current->thread.load_fp = 0;
1886 #ifdef CONFIG_PPC_FPU_REGS
1887         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1888         current->thread.fp_save_area = NULL;
1889 #endif
1890 #ifdef CONFIG_ALTIVEC
1891         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1892         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1893         current->thread.vr_save_area = NULL;
1894         current->thread.vrsave = 0;
1895         current->thread.used_vr = 0;
1896         current->thread.load_vec = 0;
1897 #endif /* CONFIG_ALTIVEC */
1898 #ifdef CONFIG_SPE
1899         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1900         current->thread.acc = 0;
1901         current->thread.spefscr = 0;
1902         current->thread.used_spe = 0;
1903 #endif /* CONFIG_SPE */
1904 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1905         current->thread.tm_tfhar = 0;
1906         current->thread.tm_texasr = 0;
1907         current->thread.tm_tfiar = 0;
1908         current->thread.load_tm = 0;
1909 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1910 }
1911 EXPORT_SYMBOL(start_thread);
1912
1913 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1914                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1915
1916 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1917 {
1918         struct pt_regs *regs = tsk->thread.regs;
1919
1920         /* This is a bit hairy.  If we are an SPE enabled  processor
1921          * (have embedded fp) we store the IEEE exception enable flags in
1922          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1923          * mode (asyn, precise, disabled) for 'Classic' FP. */
1924         if (val & PR_FP_EXC_SW_ENABLE) {
1925                 if (cpu_has_feature(CPU_FTR_SPE)) {
1926                         /*
1927                          * When the sticky exception bits are set
1928                          * directly by userspace, it must call prctl
1929                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1930                          * in the existing prctl settings) or
1931                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1932                          * the bits being set).  <fenv.h> functions
1933                          * saving and restoring the whole
1934                          * floating-point environment need to do so
1935                          * anyway to restore the prctl settings from
1936                          * the saved environment.
1937                          */
1938 #ifdef CONFIG_SPE
1939                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1940                         tsk->thread.fpexc_mode = val &
1941                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1942 #endif
1943                         return 0;
1944                 } else {
1945                         return -EINVAL;
1946                 }
1947         }
1948
1949         /* on a CONFIG_SPE this does not hurt us.  The bits that
1950          * __pack_fe01 use do not overlap with bits used for
1951          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1952          * on CONFIG_SPE implementations are reserved so writing to
1953          * them does not change anything */
1954         if (val > PR_FP_EXC_PRECISE)
1955                 return -EINVAL;
1956         tsk->thread.fpexc_mode = __pack_fe01(val);
1957         if (regs != NULL && (regs->msr & MSR_FP) != 0) {
1958                 regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
1959                                                 | tsk->thread.fpexc_mode);
1960         }
1961         return 0;
1962 }
1963
1964 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1965 {
1966         unsigned int val = 0;
1967
1968         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
1969                 if (cpu_has_feature(CPU_FTR_SPE)) {
1970                         /*
1971                          * When the sticky exception bits are set
1972                          * directly by userspace, it must call prctl
1973                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1974                          * in the existing prctl settings) or
1975                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1976                          * the bits being set).  <fenv.h> functions
1977                          * saving and restoring the whole
1978                          * floating-point environment need to do so
1979                          * anyway to restore the prctl settings from
1980                          * the saved environment.
1981                          */
1982 #ifdef CONFIG_SPE
1983                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1984                         val = tsk->thread.fpexc_mode;
1985 #endif
1986                 } else
1987                         return -EINVAL;
1988         } else {
1989                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1990         }
1991         return put_user(val, (unsigned int __user *) adr);
1992 }
1993
1994 int set_endian(struct task_struct *tsk, unsigned int val)
1995 {
1996         struct pt_regs *regs = tsk->thread.regs;
1997
1998         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1999             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
2000                 return -EINVAL;
2001
2002         if (regs == NULL)
2003                 return -EINVAL;
2004
2005         if (val == PR_ENDIAN_BIG)
2006                 regs_set_return_msr(regs, regs->msr & ~MSR_LE);
2007         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
2008                 regs_set_return_msr(regs, regs->msr | MSR_LE);
2009         else
2010                 return -EINVAL;
2011
2012         return 0;
2013 }
2014
2015 int get_endian(struct task_struct *tsk, unsigned long adr)
2016 {
2017         struct pt_regs *regs = tsk->thread.regs;
2018         unsigned int val;
2019
2020         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2021             !cpu_has_feature(CPU_FTR_REAL_LE))
2022                 return -EINVAL;
2023
2024         if (regs == NULL)
2025                 return -EINVAL;
2026
2027         if (regs->msr & MSR_LE) {
2028                 if (cpu_has_feature(CPU_FTR_REAL_LE))
2029                         val = PR_ENDIAN_LITTLE;
2030                 else
2031                         val = PR_ENDIAN_PPC_LITTLE;
2032         } else
2033                 val = PR_ENDIAN_BIG;
2034
2035         return put_user(val, (unsigned int __user *)adr);
2036 }
2037
2038 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2039 {
2040         tsk->thread.align_ctl = val;
2041         return 0;
2042 }
2043
2044 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2045 {
2046         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2047 }
2048
2049 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2050                                   unsigned long nbytes)
2051 {
2052         unsigned long stack_page;
2053         unsigned long cpu = task_cpu(p);
2054
2055         stack_page = (unsigned long)hardirq_ctx[cpu];
2056         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2057                 return 1;
2058
2059         stack_page = (unsigned long)softirq_ctx[cpu];
2060         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2061                 return 1;
2062
2063         return 0;
2064 }
2065
2066 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2067                                         unsigned long nbytes)
2068 {
2069 #ifdef CONFIG_PPC64
2070         unsigned long stack_page;
2071         unsigned long cpu = task_cpu(p);
2072
2073         if (!paca_ptrs)
2074                 return 0;
2075
2076         stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2077         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2078                 return 1;
2079
2080 # ifdef CONFIG_PPC_BOOK3S_64
2081         stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2082         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2083                 return 1;
2084
2085         stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2086         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2087                 return 1;
2088 # endif
2089 #endif
2090
2091         return 0;
2092 }
2093
2094
2095 int validate_sp(unsigned long sp, struct task_struct *p,
2096                        unsigned long nbytes)
2097 {
2098         unsigned long stack_page = (unsigned long)task_stack_page(p);
2099
2100         if (sp < THREAD_SIZE)
2101                 return 0;
2102
2103         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2104                 return 1;
2105
2106         if (valid_irq_stack(sp, p, nbytes))
2107                 return 1;
2108
2109         return valid_emergency_stack(sp, p, nbytes);
2110 }
2111
2112 EXPORT_SYMBOL(validate_sp);
2113
2114 static unsigned long __get_wchan(struct task_struct *p)
2115 {
2116         unsigned long ip, sp;
2117         int count = 0;
2118
2119         if (!p || p == current || task_is_running(p))
2120                 return 0;
2121
2122         sp = p->thread.ksp;
2123         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2124                 return 0;
2125
2126         do {
2127                 sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
2128                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2129                     task_is_running(p))
2130                         return 0;
2131                 if (count > 0) {
2132                         ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
2133                         if (!in_sched_functions(ip))
2134                                 return ip;
2135                 }
2136         } while (count++ < 16);
2137         return 0;
2138 }
2139
2140 unsigned long get_wchan(struct task_struct *p)
2141 {
2142         unsigned long ret;
2143
2144         if (!try_get_task_stack(p))
2145                 return 0;
2146
2147         ret = __get_wchan(p);
2148
2149         put_task_stack(p);
2150
2151         return ret;
2152 }
2153
2154 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2155
2156 void __no_sanitize_address show_stack(struct task_struct *tsk,
2157                                       unsigned long *stack,
2158                                       const char *loglvl)
2159 {
2160         unsigned long sp, ip, lr, newsp;
2161         int count = 0;
2162         int firstframe = 1;
2163         unsigned long ret_addr;
2164         int ftrace_idx = 0;
2165
2166         if (tsk == NULL)
2167                 tsk = current;
2168
2169         if (!try_get_task_stack(tsk))
2170                 return;
2171
2172         sp = (unsigned long) stack;
2173         if (sp == 0) {
2174                 if (tsk == current)
2175                         sp = current_stack_frame();
2176                 else
2177                         sp = tsk->thread.ksp;
2178         }
2179
2180         lr = 0;
2181         printk("%sCall Trace:\n", loglvl);
2182         do {
2183                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2184                         break;
2185
2186                 stack = (unsigned long *) sp;
2187                 newsp = stack[0];
2188                 ip = stack[STACK_FRAME_LR_SAVE];
2189                 if (!firstframe || ip != lr) {
2190                         printk("%s["REG"] ["REG"] %pS",
2191                                 loglvl, sp, ip, (void *)ip);
2192                         ret_addr = ftrace_graph_ret_addr(current,
2193                                                 &ftrace_idx, ip, stack);
2194                         if (ret_addr != ip)
2195                                 pr_cont(" (%pS)", (void *)ret_addr);
2196                         if (firstframe)
2197                                 pr_cont(" (unreliable)");
2198                         pr_cont("\n");
2199                 }
2200                 firstframe = 0;
2201
2202                 /*
2203                  * See if this is an exception frame.
2204                  * We look for the "regshere" marker in the current frame.
2205                  */
2206                 if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS)
2207                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2208                         struct pt_regs *regs = (struct pt_regs *)
2209                                 (sp + STACK_FRAME_OVERHEAD);
2210
2211                         lr = regs->link;
2212                         printk("%s--- interrupt: %lx at %pS\n",
2213                                loglvl, regs->trap, (void *)regs->nip);
2214                         __show_regs(regs);
2215                         printk("%s--- interrupt: %lx\n",
2216                                loglvl, regs->trap);
2217
2218                         firstframe = 1;
2219                 }
2220
2221                 sp = newsp;
2222         } while (count++ < kstack_depth_to_print);
2223
2224         put_task_stack(tsk);
2225 }
2226
2227 #ifdef CONFIG_PPC64
2228 /* Called with hard IRQs off */
2229 void notrace __ppc64_runlatch_on(void)
2230 {
2231         struct thread_info *ti = current_thread_info();
2232
2233         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2234                 /*
2235                  * Least significant bit (RUN) is the only writable bit of
2236                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2237                  * earliest ISA where this is the case, but it's convenient.
2238                  */
2239                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2240         } else {
2241                 unsigned long ctrl;
2242
2243                 /*
2244                  * Some architectures (e.g., Cell) have writable fields other
2245                  * than RUN, so do the read-modify-write.
2246                  */
2247                 ctrl = mfspr(SPRN_CTRLF);
2248                 ctrl |= CTRL_RUNLATCH;
2249                 mtspr(SPRN_CTRLT, ctrl);
2250         }
2251
2252         ti->local_flags |= _TLF_RUNLATCH;
2253 }
2254
2255 /* Called with hard IRQs off */
2256 void notrace __ppc64_runlatch_off(void)
2257 {
2258         struct thread_info *ti = current_thread_info();
2259
2260         ti->local_flags &= ~_TLF_RUNLATCH;
2261
2262         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2263                 mtspr(SPRN_CTRLT, 0);
2264         } else {
2265                 unsigned long ctrl;
2266
2267                 ctrl = mfspr(SPRN_CTRLF);
2268                 ctrl &= ~CTRL_RUNLATCH;
2269                 mtspr(SPRN_CTRLT, ctrl);
2270         }
2271 }
2272 #endif /* CONFIG_PPC64 */
2273
2274 unsigned long arch_align_stack(unsigned long sp)
2275 {
2276         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2277                 sp -= get_random_int() & ~PAGE_MASK;
2278         return sp & ~0xf;
2279 }
2280
2281 static inline unsigned long brk_rnd(void)
2282 {
2283         unsigned long rnd = 0;
2284
2285         /* 8MB for 32bit, 1GB for 64bit */
2286         if (is_32bit_task())
2287                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2288         else
2289                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2290
2291         return rnd << PAGE_SHIFT;
2292 }
2293
2294 unsigned long arch_randomize_brk(struct mm_struct *mm)
2295 {
2296         unsigned long base = mm->brk;
2297         unsigned long ret;
2298
2299 #ifdef CONFIG_PPC_BOOK3S_64
2300         /*
2301          * If we are using 1TB segments and we are allowed to randomise
2302          * the heap, we can put it above 1TB so it is backed by a 1TB
2303          * segment. Otherwise the heap will be in the bottom 1TB
2304          * which always uses 256MB segments and this may result in a
2305          * performance penalty. We don't need to worry about radix. For
2306          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2307          */
2308         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2309                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2310 #endif
2311
2312         ret = PAGE_ALIGN(base + brk_rnd());
2313
2314         if (ret < mm->brk)
2315                 return mm->brk;
2316
2317         return ret;
2318 }
2319