GNU Linux-libre 4.14.303-gnu1
[releases.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45
46 #include <asm/pgtable.h>
47 #include <asm/io.h>
48 #include <asm/processor.h>
49 #include <asm/mmu.h>
50 #include <asm/prom.h>
51 #include <asm/machdep.h>
52 #include <asm/time.h>
53 #include <asm/runlatch.h>
54 #include <asm/syscalls.h>
55 #include <asm/switch_to.h>
56 #include <asm/tm.h>
57 #include <asm/debug.h>
58 #ifdef CONFIG_PPC64
59 #include <asm/firmware.h>
60 #endif
61 #include <asm/code-patching.h>
62 #include <asm/exec.h>
63 #include <asm/livepatch.h>
64 #include <asm/cpu_has_feature.h>
65 #include <asm/asm-prototypes.h>
66
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76
77 extern unsigned long _get_SP(void);
78
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 static void check_if_tm_restore_required(struct task_struct *tsk)
81 {
82         /*
83          * If we are saving the current thread's registers, and the
84          * thread is in a transactional state, set the TIF_RESTORE_TM
85          * bit so that we know to restore the registers before
86          * returning to userspace.
87          */
88         if (tsk == current && tsk->thread.regs &&
89             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
90             !test_thread_flag(TIF_RESTORE_TM)) {
91                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
92                 set_thread_flag(TIF_RESTORE_TM);
93         }
94 }
95
96 static inline bool msr_tm_active(unsigned long msr)
97 {
98         return MSR_TM_ACTIVE(msr);
99 }
100 #else
101 static inline bool msr_tm_active(unsigned long msr) { return false; }
102 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
103 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
104
105 bool strict_msr_control;
106 EXPORT_SYMBOL(strict_msr_control);
107
108 static int __init enable_strict_msr_control(char *str)
109 {
110         strict_msr_control = true;
111         pr_info("Enabling strict facility control\n");
112
113         return 0;
114 }
115 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
116
117 unsigned long msr_check_and_set(unsigned long bits)
118 {
119         unsigned long oldmsr = mfmsr();
120         unsigned long newmsr;
121
122         newmsr = oldmsr | bits;
123
124 #ifdef CONFIG_VSX
125         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
126                 newmsr |= MSR_VSX;
127 #endif
128
129         if (oldmsr != newmsr)
130                 mtmsr_isync(newmsr);
131
132         return newmsr;
133 }
134
135 void __msr_check_and_clear(unsigned long bits)
136 {
137         unsigned long oldmsr = mfmsr();
138         unsigned long newmsr;
139
140         newmsr = oldmsr & ~bits;
141
142 #ifdef CONFIG_VSX
143         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
144                 newmsr &= ~MSR_VSX;
145 #endif
146
147         if (oldmsr != newmsr)
148                 mtmsr_isync(newmsr);
149 }
150 EXPORT_SYMBOL(__msr_check_and_clear);
151
152 #ifdef CONFIG_PPC_FPU
153 void __giveup_fpu(struct task_struct *tsk)
154 {
155         unsigned long msr;
156
157         save_fpu(tsk);
158         msr = tsk->thread.regs->msr;
159         msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
160 #ifdef CONFIG_VSX
161         if (cpu_has_feature(CPU_FTR_VSX))
162                 msr &= ~MSR_VSX;
163 #endif
164         tsk->thread.regs->msr = msr;
165 }
166
167 void giveup_fpu(struct task_struct *tsk)
168 {
169         check_if_tm_restore_required(tsk);
170
171         msr_check_and_set(MSR_FP);
172         __giveup_fpu(tsk);
173         msr_check_and_clear(MSR_FP);
174 }
175 EXPORT_SYMBOL(giveup_fpu);
176
177 /*
178  * Make sure the floating-point register state in the
179  * the thread_struct is up to date for task tsk.
180  */
181 void flush_fp_to_thread(struct task_struct *tsk)
182 {
183         if (tsk->thread.regs) {
184                 /*
185                  * We need to disable preemption here because if we didn't,
186                  * another process could get scheduled after the regs->msr
187                  * test but before we have finished saving the FP registers
188                  * to the thread_struct.  That process could take over the
189                  * FPU, and then when we get scheduled again we would store
190                  * bogus values for the remaining FP registers.
191                  */
192                 preempt_disable();
193                 if (tsk->thread.regs->msr & MSR_FP) {
194                         /*
195                          * This should only ever be called for current or
196                          * for a stopped child process.  Since we save away
197                          * the FP register state on context switch,
198                          * there is something wrong if a stopped child appears
199                          * to still have its FP state in the CPU registers.
200                          */
201                         BUG_ON(tsk != current);
202                         giveup_fpu(tsk);
203                 }
204                 preempt_enable();
205         }
206 }
207 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208
209 void enable_kernel_fp(void)
210 {
211         unsigned long cpumsr;
212
213         WARN_ON(preemptible());
214
215         cpumsr = msr_check_and_set(MSR_FP);
216
217         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
218                 check_if_tm_restore_required(current);
219                 /*
220                  * If a thread has already been reclaimed then the
221                  * checkpointed registers are on the CPU but have definitely
222                  * been saved by the reclaim code. Don't need to and *cannot*
223                  * giveup as this would save  to the 'live' structure not the
224                  * checkpointed structure.
225                  */
226                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
227                         return;
228                 __giveup_fpu(current);
229         }
230 }
231 EXPORT_SYMBOL(enable_kernel_fp);
232
233 static int restore_fp(struct task_struct *tsk)
234 {
235         if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
236                 load_fp_state(&current->thread.fp_state);
237                 current->thread.load_fp++;
238                 return 1;
239         }
240         return 0;
241 }
242 #else
243 static int restore_fp(struct task_struct *tsk) { return 0; }
244 #endif /* CONFIG_PPC_FPU */
245
246 #ifdef CONFIG_ALTIVEC
247 #define loadvec(thr) ((thr).load_vec)
248
249 static void __giveup_altivec(struct task_struct *tsk)
250 {
251         unsigned long msr;
252
253         save_altivec(tsk);
254         msr = tsk->thread.regs->msr;
255         msr &= ~MSR_VEC;
256 #ifdef CONFIG_VSX
257         if (cpu_has_feature(CPU_FTR_VSX))
258                 msr &= ~MSR_VSX;
259 #endif
260         tsk->thread.regs->msr = msr;
261 }
262
263 void giveup_altivec(struct task_struct *tsk)
264 {
265         check_if_tm_restore_required(tsk);
266
267         msr_check_and_set(MSR_VEC);
268         __giveup_altivec(tsk);
269         msr_check_and_clear(MSR_VEC);
270 }
271 EXPORT_SYMBOL(giveup_altivec);
272
273 void enable_kernel_altivec(void)
274 {
275         unsigned long cpumsr;
276
277         WARN_ON(preemptible());
278
279         cpumsr = msr_check_and_set(MSR_VEC);
280
281         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
282                 check_if_tm_restore_required(current);
283                 /*
284                  * If a thread has already been reclaimed then the
285                  * checkpointed registers are on the CPU but have definitely
286                  * been saved by the reclaim code. Don't need to and *cannot*
287                  * giveup as this would save  to the 'live' structure not the
288                  * checkpointed structure.
289                  */
290                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
291                         return;
292                 __giveup_altivec(current);
293         }
294 }
295 EXPORT_SYMBOL(enable_kernel_altivec);
296
297 /*
298  * Make sure the VMX/Altivec register state in the
299  * the thread_struct is up to date for task tsk.
300  */
301 void flush_altivec_to_thread(struct task_struct *tsk)
302 {
303         if (tsk->thread.regs) {
304                 preempt_disable();
305                 if (tsk->thread.regs->msr & MSR_VEC) {
306                         BUG_ON(tsk != current);
307                         giveup_altivec(tsk);
308                 }
309                 preempt_enable();
310         }
311 }
312 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
313
314 static int restore_altivec(struct task_struct *tsk)
315 {
316         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
317                 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
318                 load_vr_state(&tsk->thread.vr_state);
319                 tsk->thread.used_vr = 1;
320                 tsk->thread.load_vec++;
321
322                 return 1;
323         }
324         return 0;
325 }
326 #else
327 #define loadvec(thr) 0
328 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
329 #endif /* CONFIG_ALTIVEC */
330
331 #ifdef CONFIG_VSX
332 static void __giveup_vsx(struct task_struct *tsk)
333 {
334         unsigned long msr = tsk->thread.regs->msr;
335
336         /*
337          * We should never be ssetting MSR_VSX without also setting
338          * MSR_FP and MSR_VEC
339          */
340         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
341
342         /* __giveup_fpu will clear MSR_VSX */
343         if (msr & MSR_FP)
344                 __giveup_fpu(tsk);
345         if (msr & MSR_VEC)
346                 __giveup_altivec(tsk);
347 }
348
349 static void giveup_vsx(struct task_struct *tsk)
350 {
351         check_if_tm_restore_required(tsk);
352
353         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
354         __giveup_vsx(tsk);
355         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
356 }
357
358 void enable_kernel_vsx(void)
359 {
360         unsigned long cpumsr;
361
362         WARN_ON(preemptible());
363
364         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
365
366         if (current->thread.regs &&
367             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
368                 check_if_tm_restore_required(current);
369                 /*
370                  * If a thread has already been reclaimed then the
371                  * checkpointed registers are on the CPU but have definitely
372                  * been saved by the reclaim code. Don't need to and *cannot*
373                  * giveup as this would save  to the 'live' structure not the
374                  * checkpointed structure.
375                  */
376                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
377                         return;
378                 __giveup_vsx(current);
379         }
380 }
381 EXPORT_SYMBOL(enable_kernel_vsx);
382
383 void flush_vsx_to_thread(struct task_struct *tsk)
384 {
385         if (tsk->thread.regs) {
386                 preempt_disable();
387                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
388                         BUG_ON(tsk != current);
389                         giveup_vsx(tsk);
390                 }
391                 preempt_enable();
392         }
393 }
394 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
395
396 static int restore_vsx(struct task_struct *tsk)
397 {
398         if (cpu_has_feature(CPU_FTR_VSX)) {
399                 tsk->thread.used_vsr = 1;
400                 return 1;
401         }
402
403         return 0;
404 }
405 #else
406 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
407 #endif /* CONFIG_VSX */
408
409 #ifdef CONFIG_SPE
410 void giveup_spe(struct task_struct *tsk)
411 {
412         check_if_tm_restore_required(tsk);
413
414         msr_check_and_set(MSR_SPE);
415         __giveup_spe(tsk);
416         msr_check_and_clear(MSR_SPE);
417 }
418 EXPORT_SYMBOL(giveup_spe);
419
420 void enable_kernel_spe(void)
421 {
422         WARN_ON(preemptible());
423
424         msr_check_and_set(MSR_SPE);
425
426         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
427                 check_if_tm_restore_required(current);
428                 __giveup_spe(current);
429         }
430 }
431 EXPORT_SYMBOL(enable_kernel_spe);
432
433 void flush_spe_to_thread(struct task_struct *tsk)
434 {
435         if (tsk->thread.regs) {
436                 preempt_disable();
437                 if (tsk->thread.regs->msr & MSR_SPE) {
438                         BUG_ON(tsk != current);
439                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
440                         giveup_spe(tsk);
441                 }
442                 preempt_enable();
443         }
444 }
445 #endif /* CONFIG_SPE */
446
447 static unsigned long msr_all_available;
448
449 static int __init init_msr_all_available(void)
450 {
451 #ifdef CONFIG_PPC_FPU
452         msr_all_available |= MSR_FP;
453 #endif
454 #ifdef CONFIG_ALTIVEC
455         if (cpu_has_feature(CPU_FTR_ALTIVEC))
456                 msr_all_available |= MSR_VEC;
457 #endif
458 #ifdef CONFIG_VSX
459         if (cpu_has_feature(CPU_FTR_VSX))
460                 msr_all_available |= MSR_VSX;
461 #endif
462 #ifdef CONFIG_SPE
463         if (cpu_has_feature(CPU_FTR_SPE))
464                 msr_all_available |= MSR_SPE;
465 #endif
466
467         return 0;
468 }
469 early_initcall(init_msr_all_available);
470
471 void giveup_all(struct task_struct *tsk)
472 {
473         unsigned long usermsr;
474
475         if (!tsk->thread.regs)
476                 return;
477
478         check_if_tm_restore_required(tsk);
479
480         usermsr = tsk->thread.regs->msr;
481
482         if ((usermsr & msr_all_available) == 0)
483                 return;
484
485         msr_check_and_set(msr_all_available);
486
487         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
488
489 #ifdef CONFIG_PPC_FPU
490         if (usermsr & MSR_FP)
491                 __giveup_fpu(tsk);
492 #endif
493 #ifdef CONFIG_ALTIVEC
494         if (usermsr & MSR_VEC)
495                 __giveup_altivec(tsk);
496 #endif
497 #ifdef CONFIG_SPE
498         if (usermsr & MSR_SPE)
499                 __giveup_spe(tsk);
500 #endif
501
502         msr_check_and_clear(msr_all_available);
503 }
504 EXPORT_SYMBOL(giveup_all);
505
506 void restore_math(struct pt_regs *regs)
507 {
508         unsigned long msr;
509
510         if (!msr_tm_active(regs->msr) &&
511                 !current->thread.load_fp && !loadvec(current->thread))
512                 return;
513
514         msr = regs->msr;
515         msr_check_and_set(msr_all_available);
516
517         /*
518          * Only reload if the bit is not set in the user MSR, the bit BEING set
519          * indicates that the registers are hot
520          */
521         if ((!(msr & MSR_FP)) && restore_fp(current))
522                 msr |= MSR_FP | current->thread.fpexc_mode;
523
524         if ((!(msr & MSR_VEC)) && restore_altivec(current))
525                 msr |= MSR_VEC;
526
527         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
528                         restore_vsx(current)) {
529                 msr |= MSR_VSX;
530         }
531
532         msr_check_and_clear(msr_all_available);
533
534         regs->msr = msr;
535 }
536
537 void save_all(struct task_struct *tsk)
538 {
539         unsigned long usermsr;
540
541         if (!tsk->thread.regs)
542                 return;
543
544         usermsr = tsk->thread.regs->msr;
545
546         if ((usermsr & msr_all_available) == 0)
547                 return;
548
549         msr_check_and_set(msr_all_available);
550
551         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
552
553         if (usermsr & MSR_FP)
554                 save_fpu(tsk);
555
556         if (usermsr & MSR_VEC)
557                 save_altivec(tsk);
558
559         if (usermsr & MSR_SPE)
560                 __giveup_spe(tsk);
561
562         msr_check_and_clear(msr_all_available);
563 }
564
565 void flush_all_to_thread(struct task_struct *tsk)
566 {
567         if (tsk->thread.regs) {
568                 preempt_disable();
569                 BUG_ON(tsk != current);
570 #ifdef CONFIG_SPE
571                 if (tsk->thread.regs->msr & MSR_SPE)
572                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
573 #endif
574                 save_all(tsk);
575
576                 preempt_enable();
577         }
578 }
579 EXPORT_SYMBOL(flush_all_to_thread);
580
581 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
582 void do_send_trap(struct pt_regs *regs, unsigned long address,
583                   unsigned long error_code, int signal_code, int breakpt)
584 {
585         siginfo_t info;
586
587         current->thread.trap_nr = signal_code;
588         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
589                         11, SIGSEGV) == NOTIFY_STOP)
590                 return;
591
592         /* Deliver the signal to userspace */
593         info.si_signo = SIGTRAP;
594         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
595         info.si_code = signal_code;
596         info.si_addr = (void __user *)address;
597         force_sig_info(SIGTRAP, &info, current);
598 }
599 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
600 void do_break (struct pt_regs *regs, unsigned long address,
601                     unsigned long error_code)
602 {
603         siginfo_t info;
604
605         current->thread.trap_nr = TRAP_HWBKPT;
606         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
607                         11, SIGSEGV) == NOTIFY_STOP)
608                 return;
609
610         if (debugger_break_match(regs))
611                 return;
612
613         /* Clear the breakpoint */
614         hw_breakpoint_disable();
615
616         /* Deliver the signal to userspace */
617         info.si_signo = SIGTRAP;
618         info.si_errno = 0;
619         info.si_code = TRAP_HWBKPT;
620         info.si_addr = (void __user *)address;
621         force_sig_info(SIGTRAP, &info, current);
622 }
623 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
624
625 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
626
627 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
628 /*
629  * Set the debug registers back to their default "safe" values.
630  */
631 static void set_debug_reg_defaults(struct thread_struct *thread)
632 {
633         thread->debug.iac1 = thread->debug.iac2 = 0;
634 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
635         thread->debug.iac3 = thread->debug.iac4 = 0;
636 #endif
637         thread->debug.dac1 = thread->debug.dac2 = 0;
638 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
639         thread->debug.dvc1 = thread->debug.dvc2 = 0;
640 #endif
641         thread->debug.dbcr0 = 0;
642 #ifdef CONFIG_BOOKE
643         /*
644          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
645          */
646         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
647                         DBCR1_IAC3US | DBCR1_IAC4US;
648         /*
649          * Force Data Address Compare User/Supervisor bits to be User-only
650          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
651          */
652         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
653 #else
654         thread->debug.dbcr1 = 0;
655 #endif
656 }
657
658 static void prime_debug_regs(struct debug_reg *debug)
659 {
660         /*
661          * We could have inherited MSR_DE from userspace, since
662          * it doesn't get cleared on exception entry.  Make sure
663          * MSR_DE is clear before we enable any debug events.
664          */
665         mtmsr(mfmsr() & ~MSR_DE);
666
667         mtspr(SPRN_IAC1, debug->iac1);
668         mtspr(SPRN_IAC2, debug->iac2);
669 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
670         mtspr(SPRN_IAC3, debug->iac3);
671         mtspr(SPRN_IAC4, debug->iac4);
672 #endif
673         mtspr(SPRN_DAC1, debug->dac1);
674         mtspr(SPRN_DAC2, debug->dac2);
675 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
676         mtspr(SPRN_DVC1, debug->dvc1);
677         mtspr(SPRN_DVC2, debug->dvc2);
678 #endif
679         mtspr(SPRN_DBCR0, debug->dbcr0);
680         mtspr(SPRN_DBCR1, debug->dbcr1);
681 #ifdef CONFIG_BOOKE
682         mtspr(SPRN_DBCR2, debug->dbcr2);
683 #endif
684 }
685 /*
686  * Unless neither the old or new thread are making use of the
687  * debug registers, set the debug registers from the values
688  * stored in the new thread.
689  */
690 void switch_booke_debug_regs(struct debug_reg *new_debug)
691 {
692         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
693                 || (new_debug->dbcr0 & DBCR0_IDM))
694                         prime_debug_regs(new_debug);
695 }
696 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
697 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
698 #ifndef CONFIG_HAVE_HW_BREAKPOINT
699 static void set_debug_reg_defaults(struct thread_struct *thread)
700 {
701         thread->hw_brk.address = 0;
702         thread->hw_brk.type = 0;
703         set_breakpoint(&thread->hw_brk);
704 }
705 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
706 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
707
708 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
709 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
710 {
711         mtspr(SPRN_DAC1, dabr);
712 #ifdef CONFIG_PPC_47x
713         isync();
714 #endif
715         return 0;
716 }
717 #elif defined(CONFIG_PPC_BOOK3S)
718 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
719 {
720         mtspr(SPRN_DABR, dabr);
721         if (cpu_has_feature(CPU_FTR_DABRX))
722                 mtspr(SPRN_DABRX, dabrx);
723         return 0;
724 }
725 #elif defined(CONFIG_PPC_8xx)
726 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
727 {
728         unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
729         unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
730         unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
731
732         if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
733                 lctrl1 |= 0xa0000;
734         else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
735                 lctrl1 |= 0xf0000;
736         else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
737                 lctrl2 = 0;
738
739         mtspr(SPRN_LCTRL2, 0);
740         mtspr(SPRN_CMPE, addr);
741         mtspr(SPRN_CMPF, addr + 4);
742         mtspr(SPRN_LCTRL1, lctrl1);
743         mtspr(SPRN_LCTRL2, lctrl2);
744
745         return 0;
746 }
747 #else
748 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
749 {
750         return -EINVAL;
751 }
752 #endif
753
754 static inline int set_dabr(struct arch_hw_breakpoint *brk)
755 {
756         unsigned long dabr, dabrx;
757
758         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
759         dabrx = ((brk->type >> 3) & 0x7);
760
761         if (ppc_md.set_dabr)
762                 return ppc_md.set_dabr(dabr, dabrx);
763
764         return __set_dabr(dabr, dabrx);
765 }
766
767 static inline int set_dawr(struct arch_hw_breakpoint *brk)
768 {
769         unsigned long dawr, dawrx, mrd;
770
771         dawr = brk->address;
772
773         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
774                                    << (63 - 58); //* read/write bits */
775         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
776                                    << (63 - 59); //* translate */
777         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
778                                    >> 3; //* PRIM bits */
779         /* dawr length is stored in field MDR bits 48:53.  Matches range in
780            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
781            0b111111=64DW.
782            brk->len is in bytes.
783            This aligns up to double word size, shifts and does the bias.
784         */
785         mrd = ((brk->len + 7) >> 3) - 1;
786         dawrx |= (mrd & 0x3f) << (63 - 53);
787
788         if (ppc_md.set_dawr)
789                 return ppc_md.set_dawr(dawr, dawrx);
790         mtspr(SPRN_DAWR, dawr);
791         mtspr(SPRN_DAWRX, dawrx);
792         return 0;
793 }
794
795 void __set_breakpoint(struct arch_hw_breakpoint *brk)
796 {
797         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
798
799         if (cpu_has_feature(CPU_FTR_DAWR))
800                 set_dawr(brk);
801         else
802                 set_dabr(brk);
803 }
804
805 void set_breakpoint(struct arch_hw_breakpoint *brk)
806 {
807         preempt_disable();
808         __set_breakpoint(brk);
809         preempt_enable();
810 }
811
812 #ifdef CONFIG_PPC64
813 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
814 #endif
815
816 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
817                               struct arch_hw_breakpoint *b)
818 {
819         if (a->address != b->address)
820                 return false;
821         if (a->type != b->type)
822                 return false;
823         if (a->len != b->len)
824                 return false;
825         return true;
826 }
827
828 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
829
830 static inline bool tm_enabled(struct task_struct *tsk)
831 {
832         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
833 }
834
835 static void tm_reclaim_thread(struct thread_struct *thr,
836                               struct thread_info *ti, uint8_t cause)
837 {
838         /*
839          * Use the current MSR TM suspended bit to track if we have
840          * checkpointed state outstanding.
841          * On signal delivery, we'd normally reclaim the checkpointed
842          * state to obtain stack pointer (see:get_tm_stackpointer()).
843          * This will then directly return to userspace without going
844          * through __switch_to(). However, if the stack frame is bad,
845          * we need to exit this thread which calls __switch_to() which
846          * will again attempt to reclaim the already saved tm state.
847          * Hence we need to check that we've not already reclaimed
848          * this state.
849          * We do this using the current MSR, rather tracking it in
850          * some specific thread_struct bit, as it has the additional
851          * benefit of checking for a potential TM bad thing exception.
852          */
853         if (!MSR_TM_SUSPENDED(mfmsr()))
854                 return;
855
856         /*
857          * If we are in a transaction and FP is off then we can't have
858          * used FP inside that transaction. Hence the checkpointed
859          * state is the same as the live state. We need to copy the
860          * live state to the checkpointed state so that when the
861          * transaction is restored, the checkpointed state is correct
862          * and the aborted transaction sees the correct state. We use
863          * ckpt_regs.msr here as that's what tm_reclaim will use to
864          * determine if it's going to write the checkpointed state or
865          * not. So either this will write the checkpointed registers,
866          * or reclaim will. Similarly for VMX.
867          */
868         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
869                 memcpy(&thr->ckfp_state, &thr->fp_state,
870                        sizeof(struct thread_fp_state));
871         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
872                 memcpy(&thr->ckvr_state, &thr->vr_state,
873                        sizeof(struct thread_vr_state));
874
875         giveup_all(container_of(thr, struct task_struct, thread));
876
877         tm_reclaim(thr, thr->ckpt_regs.msr, cause);
878 }
879
880 void tm_reclaim_current(uint8_t cause)
881 {
882         tm_enable();
883         tm_reclaim_thread(&current->thread, current_thread_info(), cause);
884 }
885
886 static inline void tm_reclaim_task(struct task_struct *tsk)
887 {
888         /* We have to work out if we're switching from/to a task that's in the
889          * middle of a transaction.
890          *
891          * In switching we need to maintain a 2nd register state as
892          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
893          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
894          * ckvr_state
895          *
896          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
897          */
898         struct thread_struct *thr = &tsk->thread;
899
900         if (!thr->regs)
901                 return;
902
903         if (!MSR_TM_ACTIVE(thr->regs->msr))
904                 goto out_and_saveregs;
905
906         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
907                  "ccr=%lx, msr=%lx, trap=%lx)\n",
908                  tsk->pid, thr->regs->nip,
909                  thr->regs->ccr, thr->regs->msr,
910                  thr->regs->trap);
911
912         tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
913
914         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
915                  tsk->pid);
916
917 out_and_saveregs:
918         /* Always save the regs here, even if a transaction's not active.
919          * This context-switches a thread's TM info SPRs.  We do it here to
920          * be consistent with the restore path (in recheckpoint) which
921          * cannot happen later in _switch().
922          */
923         tm_save_sprs(thr);
924 }
925
926 extern void __tm_recheckpoint(struct thread_struct *thread,
927                               unsigned long orig_msr);
928
929 void tm_recheckpoint(struct thread_struct *thread,
930                      unsigned long orig_msr)
931 {
932         unsigned long flags;
933
934         if (!(thread->regs->msr & MSR_TM))
935                 return;
936
937         /* We really can't be interrupted here as the TEXASR registers can't
938          * change and later in the trecheckpoint code, we have a userspace R1.
939          * So let's hard disable over this region.
940          */
941         local_irq_save(flags);
942         hard_irq_disable();
943
944         /* The TM SPRs are restored here, so that TEXASR.FS can be set
945          * before the trecheckpoint and no explosion occurs.
946          */
947         tm_restore_sprs(thread);
948
949         __tm_recheckpoint(thread, orig_msr);
950
951         local_irq_restore(flags);
952 }
953
954 static inline void tm_recheckpoint_new_task(struct task_struct *new)
955 {
956         unsigned long msr;
957
958         if (!cpu_has_feature(CPU_FTR_TM))
959                 return;
960
961         /* Recheckpoint the registers of the thread we're about to switch to.
962          *
963          * If the task was using FP, we non-lazily reload both the original and
964          * the speculative FP register states.  This is because the kernel
965          * doesn't see if/when a TM rollback occurs, so if we take an FP
966          * unavailable later, we are unable to determine which set of FP regs
967          * need to be restored.
968          */
969         if (!tm_enabled(new))
970                 return;
971
972         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
973                 tm_restore_sprs(&new->thread);
974                 return;
975         }
976         msr = new->thread.ckpt_regs.msr;
977         /* Recheckpoint to restore original checkpointed register state. */
978         TM_DEBUG("*** tm_recheckpoint of pid %d "
979                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
980                  new->pid, new->thread.regs->msr, msr);
981
982         tm_recheckpoint(&new->thread, msr);
983
984         /*
985          * The checkpointed state has been restored but the live state has
986          * not, ensure all the math functionality is turned off to trigger
987          * restore_math() to reload.
988          */
989         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
990
991         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
992                  "(kernel msr 0x%lx)\n",
993                  new->pid, mfmsr());
994 }
995
996 static inline void __switch_to_tm(struct task_struct *prev,
997                 struct task_struct *new)
998 {
999         if (cpu_has_feature(CPU_FTR_TM)) {
1000                 if (tm_enabled(prev) || tm_enabled(new))
1001                         tm_enable();
1002
1003                 if (tm_enabled(prev)) {
1004                         prev->thread.load_tm++;
1005                         tm_reclaim_task(prev);
1006                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1007                                 prev->thread.regs->msr &= ~MSR_TM;
1008                 }
1009
1010                 tm_recheckpoint_new_task(new);
1011         }
1012 }
1013
1014 /*
1015  * This is called if we are on the way out to userspace and the
1016  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1017  * FP and/or vector state and does so if necessary.
1018  * If userspace is inside a transaction (whether active or
1019  * suspended) and FP/VMX/VSX instructions have ever been enabled
1020  * inside that transaction, then we have to keep them enabled
1021  * and keep the FP/VMX/VSX state loaded while ever the transaction
1022  * continues.  The reason is that if we didn't, and subsequently
1023  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1024  * we don't know whether it's the same transaction, and thus we
1025  * don't know which of the checkpointed state and the transactional
1026  * state to use.
1027  */
1028 void restore_tm_state(struct pt_regs *regs)
1029 {
1030         unsigned long msr_diff;
1031
1032         /*
1033          * This is the only moment we should clear TIF_RESTORE_TM as
1034          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1035          * again, anything else could lead to an incorrect ckpt_msr being
1036          * saved and therefore incorrect signal contexts.
1037          */
1038         clear_thread_flag(TIF_RESTORE_TM);
1039         if (!MSR_TM_ACTIVE(regs->msr))
1040                 return;
1041
1042         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1043         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1044
1045         /* Ensure that restore_math() will restore */
1046         if (msr_diff & MSR_FP)
1047                 current->thread.load_fp = 1;
1048 #ifdef CONFIG_ALTIVEC
1049         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1050                 current->thread.load_vec = 1;
1051 #endif
1052         restore_math(regs);
1053
1054         regs->msr |= msr_diff;
1055 }
1056
1057 #else
1058 #define tm_recheckpoint_new_task(new)
1059 #define __switch_to_tm(prev, new)
1060 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1061
1062 static inline void save_sprs(struct thread_struct *t)
1063 {
1064 #ifdef CONFIG_ALTIVEC
1065         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1066                 t->vrsave = mfspr(SPRN_VRSAVE);
1067 #endif
1068 #ifdef CONFIG_PPC_BOOK3S_64
1069         if (cpu_has_feature(CPU_FTR_DSCR))
1070                 t->dscr = mfspr(SPRN_DSCR);
1071
1072         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1073                 t->bescr = mfspr(SPRN_BESCR);
1074                 t->ebbhr = mfspr(SPRN_EBBHR);
1075                 t->ebbrr = mfspr(SPRN_EBBRR);
1076
1077                 t->fscr = mfspr(SPRN_FSCR);
1078
1079                 /*
1080                  * Note that the TAR is not available for use in the kernel.
1081                  * (To provide this, the TAR should be backed up/restored on
1082                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1083                  * this should be in pt_regs anyway (for debug).)
1084                  */
1085                 t->tar = mfspr(SPRN_TAR);
1086         }
1087 #endif
1088 }
1089
1090 static inline void restore_sprs(struct thread_struct *old_thread,
1091                                 struct thread_struct *new_thread)
1092 {
1093 #ifdef CONFIG_ALTIVEC
1094         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1095             old_thread->vrsave != new_thread->vrsave)
1096                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1097 #endif
1098 #ifdef CONFIG_PPC_BOOK3S_64
1099         if (cpu_has_feature(CPU_FTR_DSCR)) {
1100                 u64 dscr = get_paca()->dscr_default;
1101                 if (new_thread->dscr_inherit)
1102                         dscr = new_thread->dscr;
1103
1104                 if (old_thread->dscr != dscr)
1105                         mtspr(SPRN_DSCR, dscr);
1106         }
1107
1108         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1109                 if (old_thread->bescr != new_thread->bescr)
1110                         mtspr(SPRN_BESCR, new_thread->bescr);
1111                 if (old_thread->ebbhr != new_thread->ebbhr)
1112                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1113                 if (old_thread->ebbrr != new_thread->ebbrr)
1114                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1115
1116                 if (old_thread->fscr != new_thread->fscr)
1117                         mtspr(SPRN_FSCR, new_thread->fscr);
1118
1119                 if (old_thread->tar != new_thread->tar)
1120                         mtspr(SPRN_TAR, new_thread->tar);
1121         }
1122 #endif
1123 }
1124
1125 #ifdef CONFIG_PPC_BOOK3S_64
1126 #define CP_SIZE 128
1127 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1128 #endif
1129
1130 struct task_struct *__switch_to(struct task_struct *prev,
1131         struct task_struct *new)
1132 {
1133         struct thread_struct *new_thread, *old_thread;
1134         struct task_struct *last;
1135 #ifdef CONFIG_PPC_BOOK3S_64
1136         struct ppc64_tlb_batch *batch;
1137 #endif
1138
1139         new_thread = &new->thread;
1140         old_thread = &current->thread;
1141
1142         WARN_ON(!irqs_disabled());
1143
1144 #ifdef CONFIG_PPC64
1145         /*
1146          * Collect processor utilization data per process
1147          */
1148         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1149                 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1150                 long unsigned start_tb, current_tb;
1151                 start_tb = old_thread->start_tb;
1152                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1153                 old_thread->accum_tb += (current_tb - start_tb);
1154                 new_thread->start_tb = current_tb;
1155         }
1156 #endif /* CONFIG_PPC64 */
1157
1158 #ifdef CONFIG_PPC_STD_MMU_64
1159         batch = this_cpu_ptr(&ppc64_tlb_batch);
1160         if (batch->active) {
1161                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1162                 if (batch->index)
1163                         __flush_tlb_pending(batch);
1164                 batch->active = 0;
1165         }
1166 #endif /* CONFIG_PPC_STD_MMU_64 */
1167
1168 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1169         switch_booke_debug_regs(&new->thread.debug);
1170 #else
1171 /*
1172  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1173  * schedule DABR
1174  */
1175 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1176         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1177                 __set_breakpoint(&new->thread.hw_brk);
1178 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1179 #endif
1180
1181         /*
1182          * We need to save SPRs before treclaim/trecheckpoint as these will
1183          * change a number of them.
1184          */
1185         save_sprs(&prev->thread);
1186
1187         /* Save FPU, Altivec, VSX and SPE state */
1188         giveup_all(prev);
1189
1190         __switch_to_tm(prev, new);
1191
1192         if (!radix_enabled()) {
1193                 /*
1194                  * We can't take a PMU exception inside _switch() since there
1195                  * is a window where the kernel stack SLB and the kernel stack
1196                  * are out of sync. Hard disable here.
1197                  */
1198                 hard_irq_disable();
1199         }
1200
1201         /*
1202          * Call restore_sprs() before calling _switch(). If we move it after
1203          * _switch() then we miss out on calling it for new tasks. The reason
1204          * for this is we manually create a stack frame for new tasks that
1205          * directly returns through ret_from_fork() or
1206          * ret_from_kernel_thread(). See copy_thread() for details.
1207          */
1208         restore_sprs(old_thread, new_thread);
1209
1210         last = _switch(old_thread, new_thread);
1211
1212 #ifdef CONFIG_PPC_STD_MMU_64
1213         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1214                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1215                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1216                 batch->active = 1;
1217         }
1218
1219         if (current_thread_info()->task->thread.regs) {
1220                 restore_math(current_thread_info()->task->thread.regs);
1221
1222                 /*
1223                  * The copy-paste buffer can only store into foreign real
1224                  * addresses, so unprivileged processes can not see the
1225                  * data or use it in any way unless they have foreign real
1226                  * mappings. We don't have a VAS driver that allocates those
1227                  * yet, so no cpabort is required.
1228                  */
1229                 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1230                         /*
1231                          * DD1 allows paste into normal system memory, so we
1232                          * do an unpaired copy here to clear the buffer and
1233                          * prevent a covert channel being set up.
1234                          *
1235                          * cpabort is not used because it is quite expensive.
1236                          */
1237                         asm volatile(PPC_COPY(%0, %1)
1238                                         : : "r"(dummy_copy_buffer), "r"(0));
1239                 }
1240         }
1241 #endif /* CONFIG_PPC_STD_MMU_64 */
1242
1243         return last;
1244 }
1245
1246 static int instructions_to_print = 16;
1247
1248 static void show_instructions(struct pt_regs *regs)
1249 {
1250         int i;
1251         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1252                         sizeof(int));
1253
1254         printk("Instruction dump:");
1255
1256         for (i = 0; i < instructions_to_print; i++) {
1257                 int instr;
1258
1259                 if (!(i % 8))
1260                         pr_cont("\n");
1261
1262 #if !defined(CONFIG_BOOKE)
1263                 /* If executing with the IMMU off, adjust pc rather
1264                  * than print XXXXXXXX.
1265                  */
1266                 if (!(regs->msr & MSR_IR))
1267                         pc = (unsigned long)phys_to_virt(pc);
1268 #endif
1269
1270                 if (!__kernel_text_address(pc) ||
1271                      probe_kernel_address((unsigned int __user *)pc, instr)) {
1272                         pr_cont("XXXXXXXX ");
1273                 } else {
1274                         if (regs->nip == pc)
1275                                 pr_cont("<%08x> ", instr);
1276                         else
1277                                 pr_cont("%08x ", instr);
1278                 }
1279
1280                 pc += sizeof(int);
1281         }
1282
1283         pr_cont("\n");
1284 }
1285
1286 struct regbit {
1287         unsigned long bit;
1288         const char *name;
1289 };
1290
1291 static struct regbit msr_bits[] = {
1292 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1293         {MSR_SF,        "SF"},
1294         {MSR_HV,        "HV"},
1295 #endif
1296         {MSR_VEC,       "VEC"},
1297         {MSR_VSX,       "VSX"},
1298 #ifdef CONFIG_BOOKE
1299         {MSR_CE,        "CE"},
1300 #endif
1301         {MSR_EE,        "EE"},
1302         {MSR_PR,        "PR"},
1303         {MSR_FP,        "FP"},
1304         {MSR_ME,        "ME"},
1305 #ifdef CONFIG_BOOKE
1306         {MSR_DE,        "DE"},
1307 #else
1308         {MSR_SE,        "SE"},
1309         {MSR_BE,        "BE"},
1310 #endif
1311         {MSR_IR,        "IR"},
1312         {MSR_DR,        "DR"},
1313         {MSR_PMM,       "PMM"},
1314 #ifndef CONFIG_BOOKE
1315         {MSR_RI,        "RI"},
1316         {MSR_LE,        "LE"},
1317 #endif
1318         {0,             NULL}
1319 };
1320
1321 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1322 {
1323         const char *s = "";
1324
1325         for (; bits->bit; ++bits)
1326                 if (val & bits->bit) {
1327                         pr_cont("%s%s", s, bits->name);
1328                         s = sep;
1329                 }
1330 }
1331
1332 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1333 static struct regbit msr_tm_bits[] = {
1334         {MSR_TS_T,      "T"},
1335         {MSR_TS_S,      "S"},
1336         {MSR_TM,        "E"},
1337         {0,             NULL}
1338 };
1339
1340 static void print_tm_bits(unsigned long val)
1341 {
1342 /*
1343  * This only prints something if at least one of the TM bit is set.
1344  * Inside the TM[], the output means:
1345  *   E: Enabled         (bit 32)
1346  *   S: Suspended       (bit 33)
1347  *   T: Transactional   (bit 34)
1348  */
1349         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1350                 pr_cont(",TM[");
1351                 print_bits(val, msr_tm_bits, "");
1352                 pr_cont("]");
1353         }
1354 }
1355 #else
1356 static void print_tm_bits(unsigned long val) {}
1357 #endif
1358
1359 static void print_msr_bits(unsigned long val)
1360 {
1361         pr_cont("<");
1362         print_bits(val, msr_bits, ",");
1363         print_tm_bits(val);
1364         pr_cont(">");
1365 }
1366
1367 #ifdef CONFIG_PPC64
1368 #define REG             "%016lx"
1369 #define REGS_PER_LINE   4
1370 #define LAST_VOLATILE   13
1371 #else
1372 #define REG             "%08lx"
1373 #define REGS_PER_LINE   8
1374 #define LAST_VOLATILE   12
1375 #endif
1376
1377 void show_regs(struct pt_regs * regs)
1378 {
1379         int i, trap;
1380
1381         show_regs_print_info(KERN_DEFAULT);
1382
1383         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1384                regs->nip, regs->link, regs->ctr);
1385         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1386                regs, regs->trap, print_tainted(), init_utsname()->release);
1387         printk("MSR:  "REG" ", regs->msr);
1388         print_msr_bits(regs->msr);
1389         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1390         trap = TRAP(regs);
1391         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1392                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1393         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1394 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1395                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1396 #else
1397                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1398 #endif
1399 #ifdef CONFIG_PPC64
1400         pr_cont("SOFTE: %ld ", regs->softe);
1401 #endif
1402 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1403         if (MSR_TM_ACTIVE(regs->msr))
1404                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1405 #endif
1406
1407         for (i = 0;  i < 32;  i++) {
1408                 if ((i % REGS_PER_LINE) == 0)
1409                         pr_cont("\nGPR%02d: ", i);
1410                 pr_cont(REG " ", regs->gpr[i]);
1411                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1412                         break;
1413         }
1414         pr_cont("\n");
1415 #ifdef CONFIG_KALLSYMS
1416         /*
1417          * Lookup NIP late so we have the best change of getting the
1418          * above info out without failing
1419          */
1420         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1421         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1422 #endif
1423         show_stack(current, (unsigned long *) regs->gpr[1]);
1424         if (!user_mode(regs))
1425                 show_instructions(regs);
1426 }
1427
1428 void flush_thread(void)
1429 {
1430 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1431         flush_ptrace_hw_breakpoint(current);
1432 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1433         set_debug_reg_defaults(&current->thread);
1434 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1435 }
1436
1437 void
1438 release_thread(struct task_struct *t)
1439 {
1440 }
1441
1442 /*
1443  * this gets called so that we can store coprocessor state into memory and
1444  * copy the current task into the new thread.
1445  */
1446 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1447 {
1448         flush_all_to_thread(src);
1449         /*
1450          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1451          * flush but it removes the checkpointed state from the current CPU and
1452          * transitions the CPU out of TM mode.  Hence we need to call
1453          * tm_recheckpoint_new_task() (on the same task) to restore the
1454          * checkpointed state back and the TM mode.
1455          *
1456          * Can't pass dst because it isn't ready. Doesn't matter, passing
1457          * dst is only important for __switch_to()
1458          */
1459         __switch_to_tm(src, src);
1460
1461         *dst = *src;
1462
1463         clear_task_ebb(dst);
1464
1465         return 0;
1466 }
1467
1468 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1469 {
1470 #ifdef CONFIG_PPC_STD_MMU_64
1471         unsigned long sp_vsid;
1472         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1473
1474         if (radix_enabled())
1475                 return;
1476
1477         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1478                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1479                         << SLB_VSID_SHIFT_1T;
1480         else
1481                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1482                         << SLB_VSID_SHIFT;
1483         sp_vsid |= SLB_VSID_KERNEL | llp;
1484         p->thread.ksp_vsid = sp_vsid;
1485 #endif
1486 }
1487
1488 /*
1489  * Copy a thread..
1490  */
1491
1492 /*
1493  * Copy architecture-specific thread state
1494  */
1495 int copy_thread(unsigned long clone_flags, unsigned long usp,
1496                 unsigned long kthread_arg, struct task_struct *p)
1497 {
1498         struct pt_regs *childregs, *kregs;
1499         extern void ret_from_fork(void);
1500         extern void ret_from_kernel_thread(void);
1501         void (*f)(void);
1502         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1503         struct thread_info *ti = task_thread_info(p);
1504
1505         klp_init_thread_info(ti);
1506
1507         /* Copy registers */
1508         sp -= sizeof(struct pt_regs);
1509         childregs = (struct pt_regs *) sp;
1510         if (unlikely(p->flags & PF_KTHREAD)) {
1511                 /* kernel thread */
1512                 memset(childregs, 0, sizeof(struct pt_regs));
1513                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1514                 /* function */
1515                 if (usp)
1516                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1517 #ifdef CONFIG_PPC64
1518                 clear_tsk_thread_flag(p, TIF_32BIT);
1519                 childregs->softe = 1;
1520 #endif
1521                 childregs->gpr[15] = kthread_arg;
1522                 p->thread.regs = NULL;  /* no user register state */
1523                 ti->flags |= _TIF_RESTOREALL;
1524                 f = ret_from_kernel_thread;
1525         } else {
1526                 /* user thread */
1527                 struct pt_regs *regs = current_pt_regs();
1528                 CHECK_FULL_REGS(regs);
1529                 *childregs = *regs;
1530                 if (usp)
1531                         childregs->gpr[1] = usp;
1532                 p->thread.regs = childregs;
1533                 childregs->gpr[3] = 0;  /* Result from fork() */
1534                 if (clone_flags & CLONE_SETTLS) {
1535 #ifdef CONFIG_PPC64
1536                         if (!is_32bit_task())
1537                                 childregs->gpr[13] = childregs->gpr[6];
1538                         else
1539 #endif
1540                                 childregs->gpr[2] = childregs->gpr[6];
1541                 }
1542
1543                 f = ret_from_fork;
1544         }
1545         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1546         sp -= STACK_FRAME_OVERHEAD;
1547
1548         /*
1549          * The way this works is that at some point in the future
1550          * some task will call _switch to switch to the new task.
1551          * That will pop off the stack frame created below and start
1552          * the new task running at ret_from_fork.  The new task will
1553          * do some house keeping and then return from the fork or clone
1554          * system call, using the stack frame created above.
1555          */
1556         ((unsigned long *)sp)[0] = 0;
1557         sp -= sizeof(struct pt_regs);
1558         kregs = (struct pt_regs *) sp;
1559         sp -= STACK_FRAME_OVERHEAD;
1560         p->thread.ksp = sp;
1561 #ifdef CONFIG_PPC32
1562         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1563                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1564 #endif
1565 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1566         p->thread.ptrace_bps[0] = NULL;
1567 #endif
1568
1569         p->thread.fp_save_area = NULL;
1570 #ifdef CONFIG_ALTIVEC
1571         p->thread.vr_save_area = NULL;
1572 #endif
1573
1574         setup_ksp_vsid(p, sp);
1575
1576 #ifdef CONFIG_PPC64 
1577         if (cpu_has_feature(CPU_FTR_DSCR)) {
1578                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1579                 p->thread.dscr = mfspr(SPRN_DSCR);
1580         }
1581         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1582                 p->thread.ppr = INIT_PPR;
1583 #endif
1584         kregs->nip = ppc_function_entry(f);
1585         return 0;
1586 }
1587
1588 /*
1589  * Set up a thread for executing a new program
1590  */
1591 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1592 {
1593 #ifdef CONFIG_PPC64
1594         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1595 #endif
1596
1597         /*
1598          * If we exec out of a kernel thread then thread.regs will not be
1599          * set.  Do it now.
1600          */
1601         if (!current->thread.regs) {
1602                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1603                 current->thread.regs = regs - 1;
1604         }
1605
1606 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1607         /*
1608          * Clear any transactional state, we're exec()ing. The cause is
1609          * not important as there will never be a recheckpoint so it's not
1610          * user visible.
1611          */
1612         if (MSR_TM_SUSPENDED(mfmsr()))
1613                 tm_reclaim_current(0);
1614 #endif
1615
1616         memset(&regs->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
1617         regs->ctr = 0;
1618         regs->link = 0;
1619         regs->xer = 0;
1620         regs->ccr = 0;
1621         regs->gpr[1] = sp;
1622
1623         /*
1624          * We have just cleared all the nonvolatile GPRs, so make
1625          * FULL_REGS(regs) return true.  This is necessary to allow
1626          * ptrace to examine the thread immediately after exec.
1627          */
1628         regs->trap &= ~1UL;
1629
1630 #ifdef CONFIG_PPC32
1631         regs->mq = 0;
1632         regs->nip = start;
1633         regs->msr = MSR_USER;
1634 #else
1635         if (!is_32bit_task()) {
1636                 unsigned long entry;
1637
1638                 if (is_elf2_task()) {
1639                         /* Look ma, no function descriptors! */
1640                         entry = start;
1641
1642                         /*
1643                          * Ulrich says:
1644                          *   The latest iteration of the ABI requires that when
1645                          *   calling a function (at its global entry point),
1646                          *   the caller must ensure r12 holds the entry point
1647                          *   address (so that the function can quickly
1648                          *   establish addressability).
1649                          */
1650                         regs->gpr[12] = start;
1651                         /* Make sure that's restored on entry to userspace. */
1652                         set_thread_flag(TIF_RESTOREALL);
1653                 } else {
1654                         unsigned long toc;
1655
1656                         /* start is a relocated pointer to the function
1657                          * descriptor for the elf _start routine.  The first
1658                          * entry in the function descriptor is the entry
1659                          * address of _start and the second entry is the TOC
1660                          * value we need to use.
1661                          */
1662                         __get_user(entry, (unsigned long __user *)start);
1663                         __get_user(toc, (unsigned long __user *)start+1);
1664
1665                         /* Check whether the e_entry function descriptor entries
1666                          * need to be relocated before we can use them.
1667                          */
1668                         if (load_addr != 0) {
1669                                 entry += load_addr;
1670                                 toc   += load_addr;
1671                         }
1672                         regs->gpr[2] = toc;
1673                 }
1674                 regs->nip = entry;
1675                 regs->msr = MSR_USER64;
1676         } else {
1677                 regs->nip = start;
1678                 regs->gpr[2] = 0;
1679                 regs->msr = MSR_USER32;
1680         }
1681 #endif
1682 #ifdef CONFIG_VSX
1683         current->thread.used_vsr = 0;
1684 #endif
1685         current->thread.load_fp = 0;
1686         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1687         current->thread.fp_save_area = NULL;
1688 #ifdef CONFIG_ALTIVEC
1689         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1690         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1691         current->thread.vr_save_area = NULL;
1692         current->thread.vrsave = 0;
1693         current->thread.used_vr = 0;
1694         current->thread.load_vec = 0;
1695 #endif /* CONFIG_ALTIVEC */
1696 #ifdef CONFIG_SPE
1697         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1698         current->thread.acc = 0;
1699         current->thread.spefscr = 0;
1700         current->thread.used_spe = 0;
1701 #endif /* CONFIG_SPE */
1702 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1703         current->thread.tm_tfhar = 0;
1704         current->thread.tm_texasr = 0;
1705         current->thread.tm_tfiar = 0;
1706         current->thread.load_tm = 0;
1707 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1708 }
1709 EXPORT_SYMBOL(start_thread);
1710
1711 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1712                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1713
1714 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1715 {
1716         struct pt_regs *regs = tsk->thread.regs;
1717
1718         /* This is a bit hairy.  If we are an SPE enabled  processor
1719          * (have embedded fp) we store the IEEE exception enable flags in
1720          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1721          * mode (asyn, precise, disabled) for 'Classic' FP. */
1722         if (val & PR_FP_EXC_SW_ENABLE) {
1723 #ifdef CONFIG_SPE
1724                 if (cpu_has_feature(CPU_FTR_SPE)) {
1725                         /*
1726                          * When the sticky exception bits are set
1727                          * directly by userspace, it must call prctl
1728                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1729                          * in the existing prctl settings) or
1730                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1731                          * the bits being set).  <fenv.h> functions
1732                          * saving and restoring the whole
1733                          * floating-point environment need to do so
1734                          * anyway to restore the prctl settings from
1735                          * the saved environment.
1736                          */
1737                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1738                         tsk->thread.fpexc_mode = val &
1739                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1740                         return 0;
1741                 } else {
1742                         return -EINVAL;
1743                 }
1744 #else
1745                 return -EINVAL;
1746 #endif
1747         }
1748
1749         /* on a CONFIG_SPE this does not hurt us.  The bits that
1750          * __pack_fe01 use do not overlap with bits used for
1751          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1752          * on CONFIG_SPE implementations are reserved so writing to
1753          * them does not change anything */
1754         if (val > PR_FP_EXC_PRECISE)
1755                 return -EINVAL;
1756         tsk->thread.fpexc_mode = __pack_fe01(val);
1757         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1758                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1759                         | tsk->thread.fpexc_mode;
1760         return 0;
1761 }
1762
1763 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1764 {
1765         unsigned int val;
1766
1767         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1768 #ifdef CONFIG_SPE
1769                 if (cpu_has_feature(CPU_FTR_SPE)) {
1770                         /*
1771                          * When the sticky exception bits are set
1772                          * directly by userspace, it must call prctl
1773                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1774                          * in the existing prctl settings) or
1775                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1776                          * the bits being set).  <fenv.h> functions
1777                          * saving and restoring the whole
1778                          * floating-point environment need to do so
1779                          * anyway to restore the prctl settings from
1780                          * the saved environment.
1781                          */
1782                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1783                         val = tsk->thread.fpexc_mode;
1784                 } else
1785                         return -EINVAL;
1786 #else
1787                 return -EINVAL;
1788 #endif
1789         else
1790                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1791         return put_user(val, (unsigned int __user *) adr);
1792 }
1793
1794 int set_endian(struct task_struct *tsk, unsigned int val)
1795 {
1796         struct pt_regs *regs = tsk->thread.regs;
1797
1798         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1799             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1800                 return -EINVAL;
1801
1802         if (regs == NULL)
1803                 return -EINVAL;
1804
1805         if (val == PR_ENDIAN_BIG)
1806                 regs->msr &= ~MSR_LE;
1807         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1808                 regs->msr |= MSR_LE;
1809         else
1810                 return -EINVAL;
1811
1812         return 0;
1813 }
1814
1815 int get_endian(struct task_struct *tsk, unsigned long adr)
1816 {
1817         struct pt_regs *regs = tsk->thread.regs;
1818         unsigned int val;
1819
1820         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1821             !cpu_has_feature(CPU_FTR_REAL_LE))
1822                 return -EINVAL;
1823
1824         if (regs == NULL)
1825                 return -EINVAL;
1826
1827         if (regs->msr & MSR_LE) {
1828                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1829                         val = PR_ENDIAN_LITTLE;
1830                 else
1831                         val = PR_ENDIAN_PPC_LITTLE;
1832         } else
1833                 val = PR_ENDIAN_BIG;
1834
1835         return put_user(val, (unsigned int __user *)adr);
1836 }
1837
1838 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1839 {
1840         tsk->thread.align_ctl = val;
1841         return 0;
1842 }
1843
1844 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1845 {
1846         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1847 }
1848
1849 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1850                                   unsigned long nbytes)
1851 {
1852         unsigned long stack_page;
1853         unsigned long cpu = task_cpu(p);
1854
1855         /*
1856          * Avoid crashing if the stack has overflowed and corrupted
1857          * task_cpu(p), which is in the thread_info struct.
1858          */
1859         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1860                 stack_page = (unsigned long) hardirq_ctx[cpu];
1861                 if (sp >= stack_page + sizeof(struct thread_struct)
1862                     && sp <= stack_page + THREAD_SIZE - nbytes)
1863                         return 1;
1864
1865                 stack_page = (unsigned long) softirq_ctx[cpu];
1866                 if (sp >= stack_page + sizeof(struct thread_struct)
1867                     && sp <= stack_page + THREAD_SIZE - nbytes)
1868                         return 1;
1869         }
1870         return 0;
1871 }
1872
1873 int validate_sp(unsigned long sp, struct task_struct *p,
1874                        unsigned long nbytes)
1875 {
1876         unsigned long stack_page = (unsigned long)task_stack_page(p);
1877
1878         if (sp >= stack_page + sizeof(struct thread_struct)
1879             && sp <= stack_page + THREAD_SIZE - nbytes)
1880                 return 1;
1881
1882         return valid_irq_stack(sp, p, nbytes);
1883 }
1884
1885 EXPORT_SYMBOL(validate_sp);
1886
1887 unsigned long get_wchan(struct task_struct *p)
1888 {
1889         unsigned long ip, sp;
1890         int count = 0;
1891
1892         if (!p || p == current || p->state == TASK_RUNNING)
1893                 return 0;
1894
1895         sp = p->thread.ksp;
1896         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1897                 return 0;
1898
1899         do {
1900                 sp = *(unsigned long *)sp;
1901                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1902                         return 0;
1903                 if (count > 0) {
1904                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1905                         if (!in_sched_functions(ip))
1906                                 return ip;
1907                 }
1908         } while (count++ < 16);
1909         return 0;
1910 }
1911
1912 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1913
1914 void show_stack(struct task_struct *tsk, unsigned long *stack)
1915 {
1916         unsigned long sp, ip, lr, newsp;
1917         int count = 0;
1918         int firstframe = 1;
1919 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1920         int curr_frame = current->curr_ret_stack;
1921         extern void return_to_handler(void);
1922         unsigned long rth = (unsigned long)return_to_handler;
1923 #endif
1924
1925         sp = (unsigned long) stack;
1926         if (tsk == NULL)
1927                 tsk = current;
1928         if (sp == 0) {
1929                 if (tsk == current)
1930                         sp = current_stack_pointer();
1931                 else
1932                         sp = tsk->thread.ksp;
1933         }
1934
1935         lr = 0;
1936         printk("Call Trace:\n");
1937         do {
1938                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1939                         return;
1940
1941                 stack = (unsigned long *) sp;
1942                 newsp = stack[0];
1943                 ip = stack[STACK_FRAME_LR_SAVE];
1944                 if (!firstframe || ip != lr) {
1945                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1946 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1947                         if ((ip == rth) && curr_frame >= 0) {
1948                                 pr_cont(" (%pS)",
1949                                        (void *)current->ret_stack[curr_frame].ret);
1950                                 curr_frame--;
1951                         }
1952 #endif
1953                         if (firstframe)
1954                                 pr_cont(" (unreliable)");
1955                         pr_cont("\n");
1956                 }
1957                 firstframe = 0;
1958
1959                 /*
1960                  * See if this is an exception frame.
1961                  * We look for the "regshere" marker in the current frame.
1962                  */
1963                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1964                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1965                         struct pt_regs *regs = (struct pt_regs *)
1966                                 (sp + STACK_FRAME_OVERHEAD);
1967                         lr = regs->link;
1968                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1969                                regs->trap, (void *)regs->nip, (void *)lr);
1970                         firstframe = 1;
1971                 }
1972
1973                 sp = newsp;
1974         } while (count++ < kstack_depth_to_print);
1975 }
1976
1977 #ifdef CONFIG_PPC64
1978 /* Called with hard IRQs off */
1979 void notrace __ppc64_runlatch_on(void)
1980 {
1981         struct thread_info *ti = current_thread_info();
1982
1983         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
1984                 /*
1985                  * Least significant bit (RUN) is the only writable bit of
1986                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
1987                  * earliest ISA where this is the case, but it's convenient.
1988                  */
1989                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
1990         } else {
1991                 unsigned long ctrl;
1992
1993                 /*
1994                  * Some architectures (e.g., Cell) have writable fields other
1995                  * than RUN, so do the read-modify-write.
1996                  */
1997                 ctrl = mfspr(SPRN_CTRLF);
1998                 ctrl |= CTRL_RUNLATCH;
1999                 mtspr(SPRN_CTRLT, ctrl);
2000         }
2001
2002         ti->local_flags |= _TLF_RUNLATCH;
2003 }
2004
2005 /* Called with hard IRQs off */
2006 void notrace __ppc64_runlatch_off(void)
2007 {
2008         struct thread_info *ti = current_thread_info();
2009
2010         ti->local_flags &= ~_TLF_RUNLATCH;
2011
2012         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2013                 mtspr(SPRN_CTRLT, 0);
2014         } else {
2015                 unsigned long ctrl;
2016
2017                 ctrl = mfspr(SPRN_CTRLF);
2018                 ctrl &= ~CTRL_RUNLATCH;
2019                 mtspr(SPRN_CTRLT, ctrl);
2020         }
2021 }
2022 #endif /* CONFIG_PPC64 */
2023
2024 unsigned long arch_align_stack(unsigned long sp)
2025 {
2026         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2027                 sp -= get_random_int() & ~PAGE_MASK;
2028         return sp & ~0xf;
2029 }
2030
2031 static inline unsigned long brk_rnd(void)
2032 {
2033         unsigned long rnd = 0;
2034
2035         /* 8MB for 32bit, 1GB for 64bit */
2036         if (is_32bit_task())
2037                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2038         else
2039                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2040
2041         return rnd << PAGE_SHIFT;
2042 }
2043
2044 unsigned long arch_randomize_brk(struct mm_struct *mm)
2045 {
2046         unsigned long base = mm->brk;
2047         unsigned long ret;
2048
2049 #ifdef CONFIG_PPC_STD_MMU_64
2050         /*
2051          * If we are using 1TB segments and we are allowed to randomise
2052          * the heap, we can put it above 1TB so it is backed by a 1TB
2053          * segment. Otherwise the heap will be in the bottom 1TB
2054          * which always uses 256MB segments and this may result in a
2055          * performance penalty. We don't need to worry about radix. For
2056          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2057          */
2058         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2059                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2060 #endif
2061
2062         ret = PAGE_ALIGN(base + brk_rnd());
2063
2064         if (ret < mm->brk)
2065                 return mm->brk;
2066
2067         return ret;
2068 }
2069