GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / powerpc / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *              Probes initial implementation ( includes contributions from
9  *              Rusty Russell).
10  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11  *              interface to access function arguments.
12  * 2004-Nov     Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
13  *              for PPC64
14  */
15
16 #include <linux/kprobes.h>
17 #include <linux/ptrace.h>
18 #include <linux/preempt.h>
19 #include <linux/extable.h>
20 #include <linux/kdebug.h>
21 #include <linux/slab.h>
22 #include <asm/code-patching.h>
23 #include <asm/cacheflush.h>
24 #include <asm/sstep.h>
25 #include <asm/sections.h>
26 #include <linux/uaccess.h>
27
28 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
29 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
30
31 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
32
33 bool arch_within_kprobe_blacklist(unsigned long addr)
34 {
35         return  (addr >= (unsigned long)__kprobes_text_start &&
36                  addr < (unsigned long)__kprobes_text_end) ||
37                 (addr >= (unsigned long)_stext &&
38                  addr < (unsigned long)__head_end);
39 }
40
41 kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
42 {
43         kprobe_opcode_t *addr = NULL;
44
45 #ifdef PPC64_ELF_ABI_v2
46         /* PPC64 ABIv2 needs local entry point */
47         addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
48         if (addr && !offset) {
49 #ifdef CONFIG_KPROBES_ON_FTRACE
50                 unsigned long faddr;
51                 /*
52                  * Per livepatch.h, ftrace location is always within the first
53                  * 16 bytes of a function on powerpc with -mprofile-kernel.
54                  */
55                 faddr = ftrace_location_range((unsigned long)addr,
56                                               (unsigned long)addr + 16);
57                 if (faddr)
58                         addr = (kprobe_opcode_t *)faddr;
59                 else
60 #endif
61                         addr = (kprobe_opcode_t *)ppc_function_entry(addr);
62         }
63 #elif defined(PPC64_ELF_ABI_v1)
64         /*
65          * 64bit powerpc ABIv1 uses function descriptors:
66          * - Check for the dot variant of the symbol first.
67          * - If that fails, try looking up the symbol provided.
68          *
69          * This ensures we always get to the actual symbol and not
70          * the descriptor.
71          *
72          * Also handle <module:symbol> format.
73          */
74         char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
75         bool dot_appended = false;
76         const char *c;
77         ssize_t ret = 0;
78         int len = 0;
79
80         if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
81                 c++;
82                 len = c - name;
83                 memcpy(dot_name, name, len);
84         } else
85                 c = name;
86
87         if (*c != '\0' && *c != '.') {
88                 dot_name[len++] = '.';
89                 dot_appended = true;
90         }
91         ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
92         if (ret > 0)
93                 addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
94
95         /* Fallback to the original non-dot symbol lookup */
96         if (!addr && dot_appended)
97                 addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
98 #else
99         addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
100 #endif
101
102         return addr;
103 }
104
105 int arch_prepare_kprobe(struct kprobe *p)
106 {
107         int ret = 0;
108         kprobe_opcode_t insn = *p->addr;
109
110         if ((unsigned long)p->addr & 0x03) {
111                 printk("Attempt to register kprobe at an unaligned address\n");
112                 ret = -EINVAL;
113         } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
114                 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
115                 ret = -EINVAL;
116         }
117
118         /* insn must be on a special executable page on ppc64.  This is
119          * not explicitly required on ppc32 (right now), but it doesn't hurt */
120         if (!ret) {
121                 p->ainsn.insn = get_insn_slot();
122                 if (!p->ainsn.insn)
123                         ret = -ENOMEM;
124         }
125
126         if (!ret) {
127                 memcpy(p->ainsn.insn, p->addr,
128                                 MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
129                 p->opcode = *p->addr;
130                 flush_icache_range((unsigned long)p->ainsn.insn,
131                         (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
132         }
133
134         p->ainsn.boostable = 0;
135         return ret;
136 }
137 NOKPROBE_SYMBOL(arch_prepare_kprobe);
138
139 void arch_arm_kprobe(struct kprobe *p)
140 {
141         patch_instruction(p->addr, BREAKPOINT_INSTRUCTION);
142 }
143 NOKPROBE_SYMBOL(arch_arm_kprobe);
144
145 void arch_disarm_kprobe(struct kprobe *p)
146 {
147         patch_instruction(p->addr, p->opcode);
148 }
149 NOKPROBE_SYMBOL(arch_disarm_kprobe);
150
151 void arch_remove_kprobe(struct kprobe *p)
152 {
153         if (p->ainsn.insn) {
154                 free_insn_slot(p->ainsn.insn, 0);
155                 p->ainsn.insn = NULL;
156         }
157 }
158 NOKPROBE_SYMBOL(arch_remove_kprobe);
159
160 static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
161 {
162         enable_single_step(regs);
163
164         /*
165          * On powerpc we should single step on the original
166          * instruction even if the probed insn is a trap
167          * variant as values in regs could play a part in
168          * if the trap is taken or not
169          */
170         regs->nip = (unsigned long)p->ainsn.insn;
171 }
172
173 static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
174 {
175         kcb->prev_kprobe.kp = kprobe_running();
176         kcb->prev_kprobe.status = kcb->kprobe_status;
177         kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
178 }
179
180 static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
181 {
182         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
183         kcb->kprobe_status = kcb->prev_kprobe.status;
184         kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
185 }
186
187 static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
188                                 struct kprobe_ctlblk *kcb)
189 {
190         __this_cpu_write(current_kprobe, p);
191         kcb->kprobe_saved_msr = regs->msr;
192 }
193
194 bool arch_kprobe_on_func_entry(unsigned long offset)
195 {
196 #ifdef PPC64_ELF_ABI_v2
197 #ifdef CONFIG_KPROBES_ON_FTRACE
198         return offset <= 16;
199 #else
200         return offset <= 8;
201 #endif
202 #else
203         return !offset;
204 #endif
205 }
206
207 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
208 {
209         ri->ret_addr = (kprobe_opcode_t *)regs->link;
210
211         /* Replace the return addr with trampoline addr */
212         regs->link = (unsigned long)kretprobe_trampoline;
213 }
214 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
215
216 static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
217 {
218         int ret;
219         unsigned int insn = *p->ainsn.insn;
220
221         /* regs->nip is also adjusted if emulate_step returns 1 */
222         ret = emulate_step(regs, insn);
223         if (ret > 0) {
224                 /*
225                  * Once this instruction has been boosted
226                  * successfully, set the boostable flag
227                  */
228                 if (unlikely(p->ainsn.boostable == 0))
229                         p->ainsn.boostable = 1;
230         } else if (ret < 0) {
231                 /*
232                  * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
233                  * So, we should never get here... but, its still
234                  * good to catch them, just in case...
235                  */
236                 printk("Can't step on instruction %x\n", insn);
237                 BUG();
238         } else {
239                 /*
240                  * If we haven't previously emulated this instruction, then it
241                  * can't be boosted. Note it down so we don't try to do so again.
242                  *
243                  * If, however, we had emulated this instruction in the past,
244                  * then this is just an error with the current run (for
245                  * instance, exceptions due to a load/store). We return 0 so
246                  * that this is now single-stepped, but continue to try
247                  * emulating it in subsequent probe hits.
248                  */
249                 if (unlikely(p->ainsn.boostable != 1))
250                         p->ainsn.boostable = -1;
251         }
252
253         return ret;
254 }
255 NOKPROBE_SYMBOL(try_to_emulate);
256
257 int kprobe_handler(struct pt_regs *regs)
258 {
259         struct kprobe *p;
260         int ret = 0;
261         unsigned int *addr = (unsigned int *)regs->nip;
262         struct kprobe_ctlblk *kcb;
263
264         if (user_mode(regs))
265                 return 0;
266
267         if (!IS_ENABLED(CONFIG_BOOKE) &&
268             (!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR)))
269                 return 0;
270
271         /*
272          * We don't want to be preempted for the entire
273          * duration of kprobe processing
274          */
275         preempt_disable();
276         kcb = get_kprobe_ctlblk();
277
278         /* Check we're not actually recursing */
279         if (kprobe_running()) {
280                 p = get_kprobe(addr);
281                 if (p) {
282                         kprobe_opcode_t insn = *p->ainsn.insn;
283                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
284                                         is_trap(insn)) {
285                                 /* Turn off 'trace' bits */
286                                 regs->msr &= ~MSR_SINGLESTEP;
287                                 regs->msr |= kcb->kprobe_saved_msr;
288                                 goto no_kprobe;
289                         }
290                         /* We have reentered the kprobe_handler(), since
291                          * another probe was hit while within the handler.
292                          * We here save the original kprobes variables and
293                          * just single step on the instruction of the new probe
294                          * without calling any user handlers.
295                          */
296                         save_previous_kprobe(kcb);
297                         set_current_kprobe(p, regs, kcb);
298                         kprobes_inc_nmissed_count(p);
299                         kcb->kprobe_status = KPROBE_REENTER;
300                         if (p->ainsn.boostable >= 0) {
301                                 ret = try_to_emulate(p, regs);
302
303                                 if (ret > 0) {
304                                         restore_previous_kprobe(kcb);
305                                         preempt_enable_no_resched();
306                                         return 1;
307                                 }
308                         }
309                         prepare_singlestep(p, regs);
310                         return 1;
311                 } else if (*addr != BREAKPOINT_INSTRUCTION) {
312                         /* If trap variant, then it belongs not to us */
313                         kprobe_opcode_t cur_insn = *addr;
314
315                         if (is_trap(cur_insn))
316                                 goto no_kprobe;
317                         /* The breakpoint instruction was removed by
318                          * another cpu right after we hit, no further
319                          * handling of this interrupt is appropriate
320                          */
321                         ret = 1;
322                 }
323                 goto no_kprobe;
324         }
325
326         p = get_kprobe(addr);
327         if (!p) {
328                 if (*addr != BREAKPOINT_INSTRUCTION) {
329                         /*
330                          * PowerPC has multiple variants of the "trap"
331                          * instruction. If the current instruction is a
332                          * trap variant, it could belong to someone else
333                          */
334                         kprobe_opcode_t cur_insn = *addr;
335                         if (is_trap(cur_insn))
336                                 goto no_kprobe;
337                         /*
338                          * The breakpoint instruction was removed right
339                          * after we hit it.  Another cpu has removed
340                          * either a probepoint or a debugger breakpoint
341                          * at this address.  In either case, no further
342                          * handling of this interrupt is appropriate.
343                          */
344                         ret = 1;
345                 }
346                 /* Not one of ours: let kernel handle it */
347                 goto no_kprobe;
348         }
349
350         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
351         set_current_kprobe(p, regs, kcb);
352         if (p->pre_handler && p->pre_handler(p, regs)) {
353                 /* handler changed execution path, so skip ss setup */
354                 reset_current_kprobe();
355                 preempt_enable_no_resched();
356                 return 1;
357         }
358
359         if (p->ainsn.boostable >= 0) {
360                 ret = try_to_emulate(p, regs);
361
362                 if (ret > 0) {
363                         if (p->post_handler)
364                                 p->post_handler(p, regs, 0);
365
366                         kcb->kprobe_status = KPROBE_HIT_SSDONE;
367                         reset_current_kprobe();
368                         preempt_enable_no_resched();
369                         return 1;
370                 }
371         }
372         prepare_singlestep(p, regs);
373         kcb->kprobe_status = KPROBE_HIT_SS;
374         return 1;
375
376 no_kprobe:
377         preempt_enable_no_resched();
378         return ret;
379 }
380 NOKPROBE_SYMBOL(kprobe_handler);
381
382 /*
383  * Function return probe trampoline:
384  *      - init_kprobes() establishes a probepoint here
385  *      - When the probed function returns, this probe
386  *              causes the handlers to fire
387  */
388 asm(".global kretprobe_trampoline\n"
389         ".type kretprobe_trampoline, @function\n"
390         "kretprobe_trampoline:\n"
391         "nop\n"
392         "blr\n"
393         ".size kretprobe_trampoline, .-kretprobe_trampoline\n");
394
395 /*
396  * Called when the probe at kretprobe trampoline is hit
397  */
398 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
399 {
400         struct kretprobe_instance *ri = NULL;
401         struct hlist_head *head, empty_rp;
402         struct hlist_node *tmp;
403         unsigned long flags, orig_ret_address = 0;
404         unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
405
406         INIT_HLIST_HEAD(&empty_rp);
407         kretprobe_hash_lock(current, &head, &flags);
408
409         /*
410          * It is possible to have multiple instances associated with a given
411          * task either because an multiple functions in the call path
412          * have a return probe installed on them, and/or more than one return
413          * return probe was registered for a target function.
414          *
415          * We can handle this because:
416          *     - instances are always inserted at the head of the list
417          *     - when multiple return probes are registered for the same
418          *       function, the first instance's ret_addr will point to the
419          *       real return address, and all the rest will point to
420          *       kretprobe_trampoline
421          */
422         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
423                 if (ri->task != current)
424                         /* another task is sharing our hash bucket */
425                         continue;
426
427                 if (ri->rp && ri->rp->handler)
428                         ri->rp->handler(ri, regs);
429
430                 orig_ret_address = (unsigned long)ri->ret_addr;
431                 recycle_rp_inst(ri, &empty_rp);
432
433                 if (orig_ret_address != trampoline_address)
434                         /*
435                          * This is the real return address. Any other
436                          * instances associated with this task are for
437                          * other calls deeper on the call stack
438                          */
439                         break;
440         }
441
442         kretprobe_assert(ri, orig_ret_address, trampoline_address);
443
444         /*
445          * We get here through one of two paths:
446          * 1. by taking a trap -> kprobe_handler() -> here
447          * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
448          *
449          * When going back through (1), we need regs->nip to be setup properly
450          * as it is used to determine the return address from the trap.
451          * For (2), since nip is not honoured with optprobes, we instead setup
452          * the link register properly so that the subsequent 'blr' in
453          * kretprobe_trampoline jumps back to the right instruction.
454          *
455          * For nip, we should set the address to the previous instruction since
456          * we end up emulating it in kprobe_handler(), which increments the nip
457          * again.
458          */
459         regs->nip = orig_ret_address - 4;
460         regs->link = orig_ret_address;
461
462         kretprobe_hash_unlock(current, &flags);
463
464         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
465                 hlist_del(&ri->hlist);
466                 kfree(ri);
467         }
468
469         return 0;
470 }
471 NOKPROBE_SYMBOL(trampoline_probe_handler);
472
473 /*
474  * Called after single-stepping.  p->addr is the address of the
475  * instruction whose first byte has been replaced by the "breakpoint"
476  * instruction.  To avoid the SMP problems that can occur when we
477  * temporarily put back the original opcode to single-step, we
478  * single-stepped a copy of the instruction.  The address of this
479  * copy is p->ainsn.insn.
480  */
481 int kprobe_post_handler(struct pt_regs *regs)
482 {
483         struct kprobe *cur = kprobe_running();
484         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
485
486         if (!cur || user_mode(regs))
487                 return 0;
488
489         /* make sure we got here for instruction we have a kprobe on */
490         if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
491                 return 0;
492
493         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
494                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
495                 cur->post_handler(cur, regs, 0);
496         }
497
498         /* Adjust nip to after the single-stepped instruction */
499         regs->nip = (unsigned long)cur->addr + 4;
500         regs->msr |= kcb->kprobe_saved_msr;
501
502         /*Restore back the original saved kprobes variables and continue. */
503         if (kcb->kprobe_status == KPROBE_REENTER) {
504                 restore_previous_kprobe(kcb);
505                 goto out;
506         }
507         reset_current_kprobe();
508 out:
509         preempt_enable_no_resched();
510
511         /*
512          * if somebody else is singlestepping across a probe point, msr
513          * will have DE/SE set, in which case, continue the remaining processing
514          * of do_debug, as if this is not a probe hit.
515          */
516         if (regs->msr & MSR_SINGLESTEP)
517                 return 0;
518
519         return 1;
520 }
521 NOKPROBE_SYMBOL(kprobe_post_handler);
522
523 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
524 {
525         struct kprobe *cur = kprobe_running();
526         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
527         const struct exception_table_entry *entry;
528
529         switch(kcb->kprobe_status) {
530         case KPROBE_HIT_SS:
531         case KPROBE_REENTER:
532                 /*
533                  * We are here because the instruction being single
534                  * stepped caused a page fault. We reset the current
535                  * kprobe and the nip points back to the probe address
536                  * and allow the page fault handler to continue as a
537                  * normal page fault.
538                  */
539                 regs->nip = (unsigned long)cur->addr;
540                 regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
541                 regs->msr |= kcb->kprobe_saved_msr;
542                 if (kcb->kprobe_status == KPROBE_REENTER)
543                         restore_previous_kprobe(kcb);
544                 else
545                         reset_current_kprobe();
546                 preempt_enable_no_resched();
547                 break;
548         case KPROBE_HIT_ACTIVE:
549         case KPROBE_HIT_SSDONE:
550                 /*
551                  * We increment the nmissed count for accounting,
552                  * we can also use npre/npostfault count for accounting
553                  * these specific fault cases.
554                  */
555                 kprobes_inc_nmissed_count(cur);
556
557                 /*
558                  * We come here because instructions in the pre/post
559                  * handler caused the page_fault, this could happen
560                  * if handler tries to access user space by
561                  * copy_from_user(), get_user() etc. Let the
562                  * user-specified handler try to fix it first.
563                  */
564                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
565                         return 1;
566
567                 /*
568                  * In case the user-specified fault handler returned
569                  * zero, try to fix up.
570                  */
571                 if ((entry = search_exception_tables(regs->nip)) != NULL) {
572                         regs->nip = extable_fixup(entry);
573                         return 1;
574                 }
575
576                 /*
577                  * fixup_exception() could not handle it,
578                  * Let do_page_fault() fix it.
579                  */
580                 break;
581         default:
582                 break;
583         }
584         return 0;
585 }
586 NOKPROBE_SYMBOL(kprobe_fault_handler);
587
588 unsigned long arch_deref_entry_point(void *entry)
589 {
590 #ifdef PPC64_ELF_ABI_v1
591         if (!kernel_text_address((unsigned long)entry))
592                 return ppc_global_function_entry(entry);
593         else
594 #endif
595                 return (unsigned long)entry;
596 }
597 NOKPROBE_SYMBOL(arch_deref_entry_point);
598
599 static struct kprobe trampoline_p = {
600         .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
601         .pre_handler = trampoline_probe_handler
602 };
603
604 int __init arch_init_kprobes(void)
605 {
606         return register_kprobe(&trampoline_p);
607 }
608
609 int arch_trampoline_kprobe(struct kprobe *p)
610 {
611         if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
612                 return 1;
613
614         return 0;
615 }
616 NOKPROBE_SYMBOL(arch_trampoline_kprobe);