GNU Linux-libre 4.14.295-gnu1
[releases.git] / arch / powerpc / include / asm / io.h
1 #ifndef _ASM_POWERPC_IO_H
2 #define _ASM_POWERPC_IO_H
3 #ifdef __KERNEL__
4
5 #define ARCH_HAS_IOREMAP_WC
6
7 /*
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or (at your option) any later version.
12  */
13
14 /* Check of existence of legacy devices */
15 extern int check_legacy_ioport(unsigned long base_port);
16 #define I8042_DATA_REG  0x60
17 #define FDC_BASE        0x3f0
18
19 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20 extern struct pci_dev *isa_bridge_pcidev;
21 /*
22  * has legacy ISA devices ?
23  */
24 #define arch_has_dev_port()     (isa_bridge_pcidev != NULL || isa_io_special)
25 #endif
26
27 #include <linux/device.h>
28 #include <linux/compiler.h>
29 #include <asm/page.h>
30 #include <asm/byteorder.h>
31 #include <asm/synch.h>
32 #include <asm/delay.h>
33 #include <asm/mmu.h>
34 #include <asm/ppc_asm.h>
35
36 #include <asm-generic/iomap.h>
37
38 #ifdef CONFIG_PPC64
39 #include <asm/paca.h>
40 #endif
41
42 #define SIO_CONFIG_RA   0x398
43 #define SIO_CONFIG_RD   0x399
44
45 #define SLOW_DOWN_IO
46
47 /* 32 bits uses slightly different variables for the various IO
48  * bases. Most of this file only uses _IO_BASE though which we
49  * define properly based on the platform
50  */
51 #ifndef CONFIG_PCI
52 #define _IO_BASE        0
53 #define _ISA_MEM_BASE   0
54 #define PCI_DRAM_OFFSET 0
55 #elif defined(CONFIG_PPC32)
56 #define _IO_BASE        isa_io_base
57 #define _ISA_MEM_BASE   isa_mem_base
58 #define PCI_DRAM_OFFSET pci_dram_offset
59 #else
60 #define _IO_BASE        pci_io_base
61 #define _ISA_MEM_BASE   isa_mem_base
62 #define PCI_DRAM_OFFSET 0
63 #endif
64
65 extern unsigned long isa_io_base;
66 extern unsigned long pci_io_base;
67 extern unsigned long pci_dram_offset;
68
69 extern resource_size_t isa_mem_base;
70
71 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE
72  * is not set or addresses cannot be translated to MMIO. This is typically
73  * set when the platform supports "special" PIO accesses via a non memory
74  * mapped mechanism, and allows things like the early udbg UART code to
75  * function.
76  */
77 extern bool isa_io_special;
78
79 #ifdef CONFIG_PPC32
80 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
81 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
82 #endif
83 #endif
84
85 /*
86  *
87  * Low level MMIO accessors
88  *
89  * This provides the non-bus specific accessors to MMIO. Those are PowerPC
90  * specific and thus shouldn't be used in generic code. The accessors
91  * provided here are:
92  *
93  *      in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
94  *      out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
95  *      _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
96  *
97  * Those operate directly on a kernel virtual address. Note that the prototype
98  * for the out_* accessors has the arguments in opposite order from the usual
99  * linux PCI accessors. Unlike those, they take the address first and the value
100  * next.
101  *
102  * Note: I might drop the _ns suffix on the stream operations soon as it is
103  * simply normal for stream operations to not swap in the first place.
104  *
105  */
106
107 #ifdef CONFIG_PPC64
108 #define IO_SET_SYNC_FLAG()      do { local_paca->io_sync = 1; } while(0)
109 #else
110 #define IO_SET_SYNC_FLAG()
111 #endif
112
113 /* gcc 4.0 and older doesn't have 'Z' constraint */
114 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
115 #define DEF_MMIO_IN_X(name, size, insn)                         \
116 static inline u##size name(const volatile u##size __iomem *addr)        \
117 {                                                                       \
118         u##size ret;                                                    \
119         __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync"    \
120                 : "=r" (ret) : "r" (addr), "m" (*addr) : "memory");     \
121         return ret;                                                     \
122 }
123
124 #define DEF_MMIO_OUT_X(name, size, insn)                                \
125 static inline void name(volatile u##size __iomem *addr, u##size val)    \
126 {                                                                       \
127         __asm__ __volatile__("sync;"#insn" %1,0,%2"                     \
128                 : "=m" (*addr) : "r" (val), "r" (addr) : "memory");     \
129         IO_SET_SYNC_FLAG();                                             \
130 }
131 #else /* newer gcc */
132 #define DEF_MMIO_IN_X(name, size, insn)                         \
133 static inline u##size name(const volatile u##size __iomem *addr)        \
134 {                                                                       \
135         u##size ret;                                                    \
136         __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"     \
137                 : "=r" (ret) : "Z" (*addr) : "memory");                 \
138         return ret;                                                     \
139 }
140
141 #define DEF_MMIO_OUT_X(name, size, insn)                                \
142 static inline void name(volatile u##size __iomem *addr, u##size val)    \
143 {                                                                       \
144         __asm__ __volatile__("sync;"#insn" %1,%y0"                      \
145                 : "=Z" (*addr) : "r" (val) : "memory");                 \
146         IO_SET_SYNC_FLAG();                                             \
147 }
148 #endif
149
150 #define DEF_MMIO_IN_D(name, size, insn)                         \
151 static inline u##size name(const volatile u##size __iomem *addr)        \
152 {                                                                       \
153         u##size ret;                                                    \
154         __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
155                 : "=r" (ret) : "m" (*addr) : "memory");                 \
156         return ret;                                                     \
157 }
158
159 #define DEF_MMIO_OUT_D(name, size, insn)                                \
160 static inline void name(volatile u##size __iomem *addr, u##size val)    \
161 {                                                                       \
162         __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"                 \
163                 : "=m" (*addr) : "r" (val) : "memory");                 \
164         IO_SET_SYNC_FLAG();                                             \
165 }
166
167 DEF_MMIO_IN_D(in_8,     8, lbz);
168 DEF_MMIO_OUT_D(out_8,   8, stb);
169
170 #ifdef __BIG_ENDIAN__
171 DEF_MMIO_IN_D(in_be16, 16, lhz);
172 DEF_MMIO_IN_D(in_be32, 32, lwz);
173 DEF_MMIO_IN_X(in_le16, 16, lhbrx);
174 DEF_MMIO_IN_X(in_le32, 32, lwbrx);
175
176 DEF_MMIO_OUT_D(out_be16, 16, sth);
177 DEF_MMIO_OUT_D(out_be32, 32, stw);
178 DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
179 DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
180 #else
181 DEF_MMIO_IN_X(in_be16, 16, lhbrx);
182 DEF_MMIO_IN_X(in_be32, 32, lwbrx);
183 DEF_MMIO_IN_D(in_le16, 16, lhz);
184 DEF_MMIO_IN_D(in_le32, 32, lwz);
185
186 DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
187 DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
188 DEF_MMIO_OUT_D(out_le16, 16, sth);
189 DEF_MMIO_OUT_D(out_le32, 32, stw);
190
191 #endif /* __BIG_ENDIAN */
192
193 #ifdef __powerpc64__
194
195 #ifdef __BIG_ENDIAN__
196 DEF_MMIO_OUT_D(out_be64, 64, std);
197 DEF_MMIO_IN_D(in_be64, 64, ld);
198
199 /* There is no asm instructions for 64 bits reverse loads and stores */
200 static inline u64 in_le64(const volatile u64 __iomem *addr)
201 {
202         return swab64(in_be64(addr));
203 }
204
205 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
206 {
207         out_be64(addr, swab64(val));
208 }
209 #else
210 DEF_MMIO_OUT_D(out_le64, 64, std);
211 DEF_MMIO_IN_D(in_le64, 64, ld);
212
213 /* There is no asm instructions for 64 bits reverse loads and stores */
214 static inline u64 in_be64(const volatile u64 __iomem *addr)
215 {
216         return swab64(in_le64(addr));
217 }
218
219 static inline void out_be64(volatile u64 __iomem *addr, u64 val)
220 {
221         out_le64(addr, swab64(val));
222 }
223
224 #endif
225 #endif /* __powerpc64__ */
226
227 /*
228  * Low level IO stream instructions are defined out of line for now
229  */
230 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
231 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
232 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
233 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
234 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
235 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
236
237 /* The _ns naming is historical and will be removed. For now, just #define
238  * the non _ns equivalent names
239  */
240 #define _insw   _insw_ns
241 #define _insl   _insl_ns
242 #define _outsw  _outsw_ns
243 #define _outsl  _outsl_ns
244
245
246 /*
247  * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
248  */
249
250 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
251 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
252                            unsigned long n);
253 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
254                          unsigned long n);
255
256 /*
257  *
258  * PCI and standard ISA accessors
259  *
260  * Those are globally defined linux accessors for devices on PCI or ISA
261  * busses. They follow the Linux defined semantics. The current implementation
262  * for PowerPC is as close as possible to the x86 version of these, and thus
263  * provides fairly heavy weight barriers for the non-raw versions
264  *
265  * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
266  * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
267  * own implementation of some or all of the accessors.
268  */
269
270 /*
271  * Include the EEH definitions when EEH is enabled only so they don't get
272  * in the way when building for 32 bits
273  */
274 #ifdef CONFIG_EEH
275 #include <asm/eeh.h>
276 #endif
277
278 /* Shortcut to the MMIO argument pointer */
279 #define PCI_IO_ADDR     volatile void __iomem *
280
281 /* Indirect IO address tokens:
282  *
283  * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
284  * on all MMIOs. (Note that this is all 64 bits only for now)
285  *
286  * To help platforms who may need to differentiate MMIO addresses in
287  * their hooks, a bitfield is reserved for use by the platform near the
288  * top of MMIO addresses (not PIO, those have to cope the hard way).
289  *
290  * The highest address in the kernel virtual space are:
291  *
292  *  d0003fffffffffff    # with Hash MMU
293  *  c00fffffffffffff    # with Radix MMU
294  *
295  * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits
296  * that can be used for the field.
297  *
298  * The direct IO mapping operations will then mask off those bits
299  * before doing the actual access, though that only happen when
300  * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
301  * mechanism
302  *
303  * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
304  * all PIO functions call through a hook.
305  */
306
307 #ifdef CONFIG_PPC_INDIRECT_MMIO
308 #define PCI_IO_IND_TOKEN_SHIFT  52
309 #define PCI_IO_IND_TOKEN_MASK   (0xfful << PCI_IO_IND_TOKEN_SHIFT)
310 #define PCI_FIX_ADDR(addr)                                              \
311         ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
312 #define PCI_GET_ADDR_TOKEN(addr)                                        \
313         (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >>             \
314                 PCI_IO_IND_TOKEN_SHIFT)
315 #define PCI_SET_ADDR_TOKEN(addr, token)                                 \
316 do {                                                                    \
317         unsigned long __a = (unsigned long)(addr);                      \
318         __a &= ~PCI_IO_IND_TOKEN_MASK;                                  \
319         __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;      \
320         (addr) = (void __iomem *)__a;                                   \
321 } while(0)
322 #else
323 #define PCI_FIX_ADDR(addr) (addr)
324 #endif
325
326
327 /*
328  * Non ordered and non-swapping "raw" accessors
329  */
330
331 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
332 {
333         return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
334 }
335 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
336 {
337         return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
338 }
339 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
340 {
341         return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
342 }
343 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
344 {
345         *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
346 }
347 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
348 {
349         *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
350 }
351 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
352 {
353         *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
354 }
355
356 #ifdef __powerpc64__
357 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
358 {
359         return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
360 }
361 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
362 {
363         *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
364 }
365
366 /*
367  * Real mode versions of the above. Those instructions are only supposed
368  * to be used in hypervisor real mode as per the architecture spec.
369  */
370 static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
371 {
372         __asm__ __volatile__("stbcix %0,0,%1"
373                 : : "r" (val), "r" (paddr) : "memory");
374 }
375
376 static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
377 {
378         __asm__ __volatile__("sthcix %0,0,%1"
379                 : : "r" (val), "r" (paddr) : "memory");
380 }
381
382 static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
383 {
384         __asm__ __volatile__("stwcix %0,0,%1"
385                 : : "r" (val), "r" (paddr) : "memory");
386 }
387
388 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
389 {
390         __asm__ __volatile__("stdcix %0,0,%1"
391                 : : "r" (val), "r" (paddr) : "memory");
392 }
393
394 static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
395 {
396         u8 ret;
397         __asm__ __volatile__("lbzcix %0,0, %1"
398                              : "=r" (ret) : "r" (paddr) : "memory");
399         return ret;
400 }
401
402 static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
403 {
404         u16 ret;
405         __asm__ __volatile__("lhzcix %0,0, %1"
406                              : "=r" (ret) : "r" (paddr) : "memory");
407         return ret;
408 }
409
410 static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
411 {
412         u32 ret;
413         __asm__ __volatile__("lwzcix %0,0, %1"
414                              : "=r" (ret) : "r" (paddr) : "memory");
415         return ret;
416 }
417
418 static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
419 {
420         u64 ret;
421         __asm__ __volatile__("ldcix %0,0, %1"
422                              : "=r" (ret) : "r" (paddr) : "memory");
423         return ret;
424 }
425 #endif /* __powerpc64__ */
426
427 /*
428  *
429  * PCI PIO and MMIO accessors.
430  *
431  *
432  * On 32 bits, PIO operations have a recovery mechanism in case they trigger
433  * machine checks (which they occasionally do when probing non existing
434  * IO ports on some platforms, like PowerMac and 8xx).
435  * I always found it to be of dubious reliability and I am tempted to get
436  * rid of it one of these days. So if you think it's important to keep it,
437  * please voice up asap. We never had it for 64 bits and I do not intend
438  * to port it over
439  */
440
441 #ifdef CONFIG_PPC32
442
443 #define __do_in_asm(name, op)                           \
444 static inline unsigned int name(unsigned int port)      \
445 {                                                       \
446         unsigned int x;                                 \
447         __asm__ __volatile__(                           \
448                 "sync\n"                                \
449                 "0:"    op "    %0,0,%1\n"              \
450                 "1:     twi     0,%0,0\n"               \
451                 "2:     isync\n"                        \
452                 "3:     nop\n"                          \
453                 "4:\n"                                  \
454                 ".section .fixup,\"ax\"\n"              \
455                 "5:     li      %0,-1\n"                \
456                 "       b       4b\n"                   \
457                 ".previous\n"                           \
458                 EX_TABLE(0b, 5b)                        \
459                 EX_TABLE(1b, 5b)                        \
460                 EX_TABLE(2b, 5b)                        \
461                 EX_TABLE(3b, 5b)                        \
462                 : "=&r" (x)                             \
463                 : "r" (port + _IO_BASE)                 \
464                 : "memory");                            \
465         return x;                                       \
466 }
467
468 #define __do_out_asm(name, op)                          \
469 static inline void name(unsigned int val, unsigned int port) \
470 {                                                       \
471         __asm__ __volatile__(                           \
472                 "sync\n"                                \
473                 "0:" op " %0,0,%1\n"                    \
474                 "1:     sync\n"                         \
475                 "2:\n"                                  \
476                 EX_TABLE(0b, 2b)                        \
477                 EX_TABLE(1b, 2b)                        \
478                 : : "r" (val), "r" (port + _IO_BASE)    \
479                 : "memory");                            \
480 }
481
482 __do_in_asm(_rec_inb, "lbzx")
483 __do_in_asm(_rec_inw, "lhbrx")
484 __do_in_asm(_rec_inl, "lwbrx")
485 __do_out_asm(_rec_outb, "stbx")
486 __do_out_asm(_rec_outw, "sthbrx")
487 __do_out_asm(_rec_outl, "stwbrx")
488
489 #endif /* CONFIG_PPC32 */
490
491 /* The "__do_*" operations below provide the actual "base" implementation
492  * for each of the defined accessors. Some of them use the out_* functions
493  * directly, some of them still use EEH, though we might change that in the
494  * future. Those macros below provide the necessary argument swapping and
495  * handling of the IO base for PIO.
496  *
497  * They are themselves used by the macros that define the actual accessors
498  * and can be used by the hooks if any.
499  *
500  * Note that PIO operations are always defined in terms of their corresonding
501  * MMIO operations. That allows platforms like iSeries who want to modify the
502  * behaviour of both to only hook on the MMIO version and get both. It's also
503  * possible to hook directly at the toplevel PIO operation if they have to
504  * be handled differently
505  */
506 #define __do_writeb(val, addr)  out_8(PCI_FIX_ADDR(addr), val)
507 #define __do_writew(val, addr)  out_le16(PCI_FIX_ADDR(addr), val)
508 #define __do_writel(val, addr)  out_le32(PCI_FIX_ADDR(addr), val)
509 #define __do_writeq(val, addr)  out_le64(PCI_FIX_ADDR(addr), val)
510 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
511 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
512 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
513
514 #ifdef CONFIG_EEH
515 #define __do_readb(addr)        eeh_readb(PCI_FIX_ADDR(addr))
516 #define __do_readw(addr)        eeh_readw(PCI_FIX_ADDR(addr))
517 #define __do_readl(addr)        eeh_readl(PCI_FIX_ADDR(addr))
518 #define __do_readq(addr)        eeh_readq(PCI_FIX_ADDR(addr))
519 #define __do_readw_be(addr)     eeh_readw_be(PCI_FIX_ADDR(addr))
520 #define __do_readl_be(addr)     eeh_readl_be(PCI_FIX_ADDR(addr))
521 #define __do_readq_be(addr)     eeh_readq_be(PCI_FIX_ADDR(addr))
522 #else /* CONFIG_EEH */
523 #define __do_readb(addr)        in_8(PCI_FIX_ADDR(addr))
524 #define __do_readw(addr)        in_le16(PCI_FIX_ADDR(addr))
525 #define __do_readl(addr)        in_le32(PCI_FIX_ADDR(addr))
526 #define __do_readq(addr)        in_le64(PCI_FIX_ADDR(addr))
527 #define __do_readw_be(addr)     in_be16(PCI_FIX_ADDR(addr))
528 #define __do_readl_be(addr)     in_be32(PCI_FIX_ADDR(addr))
529 #define __do_readq_be(addr)     in_be64(PCI_FIX_ADDR(addr))
530 #endif /* !defined(CONFIG_EEH) */
531
532 #ifdef CONFIG_PPC32
533 #define __do_outb(val, port)    _rec_outb(val, port)
534 #define __do_outw(val, port)    _rec_outw(val, port)
535 #define __do_outl(val, port)    _rec_outl(val, port)
536 #define __do_inb(port)          _rec_inb(port)
537 #define __do_inw(port)          _rec_inw(port)
538 #define __do_inl(port)          _rec_inl(port)
539 #else /* CONFIG_PPC32 */
540 #define __do_outb(val, port)    writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
541 #define __do_outw(val, port)    writew(val,(PCI_IO_ADDR)_IO_BASE+port);
542 #define __do_outl(val, port)    writel(val,(PCI_IO_ADDR)_IO_BASE+port);
543 #define __do_inb(port)          readb((PCI_IO_ADDR)_IO_BASE + port);
544 #define __do_inw(port)          readw((PCI_IO_ADDR)_IO_BASE + port);
545 #define __do_inl(port)          readl((PCI_IO_ADDR)_IO_BASE + port);
546 #endif /* !CONFIG_PPC32 */
547
548 #ifdef CONFIG_EEH
549 #define __do_readsb(a, b, n)    eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
550 #define __do_readsw(a, b, n)    eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
551 #define __do_readsl(a, b, n)    eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
552 #else /* CONFIG_EEH */
553 #define __do_readsb(a, b, n)    _insb(PCI_FIX_ADDR(a), (b), (n))
554 #define __do_readsw(a, b, n)    _insw(PCI_FIX_ADDR(a), (b), (n))
555 #define __do_readsl(a, b, n)    _insl(PCI_FIX_ADDR(a), (b), (n))
556 #endif /* !CONFIG_EEH */
557 #define __do_writesb(a, b, n)   _outsb(PCI_FIX_ADDR(a),(b),(n))
558 #define __do_writesw(a, b, n)   _outsw(PCI_FIX_ADDR(a),(b),(n))
559 #define __do_writesl(a, b, n)   _outsl(PCI_FIX_ADDR(a),(b),(n))
560
561 #define __do_insb(p, b, n)      readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
562 #define __do_insw(p, b, n)      readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
563 #define __do_insl(p, b, n)      readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
564 #define __do_outsb(p, b, n)     writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
565 #define __do_outsw(p, b, n)     writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
566 #define __do_outsl(p, b, n)     writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
567
568 #define __do_memset_io(addr, c, n)      \
569                                 _memset_io(PCI_FIX_ADDR(addr), c, n)
570 #define __do_memcpy_toio(dst, src, n)   \
571                                 _memcpy_toio(PCI_FIX_ADDR(dst), src, n)
572
573 #ifdef CONFIG_EEH
574 #define __do_memcpy_fromio(dst, src, n) \
575                                 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
576 #else /* CONFIG_EEH */
577 #define __do_memcpy_fromio(dst, src, n) \
578                                 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
579 #endif /* !CONFIG_EEH */
580
581 #ifdef CONFIG_PPC_INDIRECT_PIO
582 #define DEF_PCI_HOOK_pio(x)     x
583 #else
584 #define DEF_PCI_HOOK_pio(x)     NULL
585 #endif
586
587 #ifdef CONFIG_PPC_INDIRECT_MMIO
588 #define DEF_PCI_HOOK_mem(x)     x
589 #else
590 #define DEF_PCI_HOOK_mem(x)     NULL
591 #endif
592
593 /* Structure containing all the hooks */
594 extern struct ppc_pci_io {
595
596 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)    ret (*name) at;
597 #define DEF_PCI_AC_NORET(name, at, al, space, aa)       void (*name) at;
598
599 #include <asm/io-defs.h>
600
601 #undef DEF_PCI_AC_RET
602 #undef DEF_PCI_AC_NORET
603
604 } ppc_pci_io;
605
606 /* The inline wrappers */
607 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)            \
608 static inline ret name at                                       \
609 {                                                               \
610         if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)      \
611                 return ppc_pci_io.name al;                      \
612         return __do_##name al;                                  \
613 }
614
615 #define DEF_PCI_AC_NORET(name, at, al, space, aa)               \
616 static inline void name at                                      \
617 {                                                               \
618         if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)              \
619                 ppc_pci_io.name al;                             \
620         else                                                    \
621                 __do_##name al;                                 \
622 }
623
624 #include <asm/io-defs.h>
625
626 #undef DEF_PCI_AC_RET
627 #undef DEF_PCI_AC_NORET
628
629 /* Some drivers check for the presence of readq & writeq with
630  * a #ifdef, so we make them happy here.
631  */
632 #ifdef __powerpc64__
633 #define readq   readq
634 #define writeq  writeq
635 #endif
636
637 /*
638  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
639  * access
640  */
641 #define xlate_dev_mem_ptr(p)    __va(p)
642
643 /*
644  * Convert a virtual cached pointer to an uncached pointer
645  */
646 #define xlate_dev_kmem_ptr(p)   p
647
648 /*
649  * We don't do relaxed operations yet, at least not with this semantic
650  */
651 #define readb_relaxed(addr)     readb(addr)
652 #define readw_relaxed(addr)     readw(addr)
653 #define readl_relaxed(addr)     readl(addr)
654 #define readq_relaxed(addr)     readq(addr)
655 #define writeb_relaxed(v, addr) writeb(v, addr)
656 #define writew_relaxed(v, addr) writew(v, addr)
657 #define writel_relaxed(v, addr) writel(v, addr)
658 #define writeq_relaxed(v, addr) writeq(v, addr)
659
660 #ifdef CONFIG_PPC32
661 #define mmiowb()
662 #else
663 /*
664  * Enforce synchronisation of stores vs. spin_unlock
665  * (this does it explicitly, though our implementation of spin_unlock
666  * does it implicitely too)
667  */
668 static inline void mmiowb(void)
669 {
670         unsigned long tmp;
671
672         __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
673         : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
674         : "memory");
675 }
676 #endif /* !CONFIG_PPC32 */
677
678 static inline void iosync(void)
679 {
680         __asm__ __volatile__ ("sync" : : : "memory");
681 }
682
683 /* Enforce in-order execution of data I/O.
684  * No distinction between read/write on PPC; use eieio for all three.
685  * Those are fairly week though. They don't provide a barrier between
686  * MMIO and cacheable storage nor do they provide a barrier vs. locks,
687  * they only provide barriers between 2 __raw MMIO operations and
688  * possibly break write combining.
689  */
690 #define iobarrier_rw() eieio()
691 #define iobarrier_r()  eieio()
692 #define iobarrier_w()  eieio()
693
694
695 /*
696  * output pause versions need a delay at least for the
697  * w83c105 ide controller in a p610.
698  */
699 #define inb_p(port)             inb(port)
700 #define outb_p(val, port)       (udelay(1), outb((val), (port)))
701 #define inw_p(port)             inw(port)
702 #define outw_p(val, port)       (udelay(1), outw((val), (port)))
703 #define inl_p(port)             inl(port)
704 #define outl_p(val, port)       (udelay(1), outl((val), (port)))
705
706
707 #define IO_SPACE_LIMIT ~(0UL)
708
709
710 /**
711  * ioremap     -   map bus memory into CPU space
712  * @address:   bus address of the memory
713  * @size:      size of the resource to map
714  *
715  * ioremap performs a platform specific sequence of operations to
716  * make bus memory CPU accessible via the readb/readw/readl/writeb/
717  * writew/writel functions and the other mmio helpers. The returned
718  * address is not guaranteed to be usable directly as a virtual
719  * address.
720  *
721  * We provide a few variations of it:
722  *
723  * * ioremap is the standard one and provides non-cacheable guarded mappings
724  *   and can be hooked by the platform via ppc_md
725  *
726  * * ioremap_prot allows to specify the page flags as an argument and can
727  *   also be hooked by the platform via ppc_md.
728  *
729  * * ioremap_nocache is identical to ioremap
730  *
731  * * ioremap_wc enables write combining
732  *
733  * * iounmap undoes such a mapping and can be hooked
734  *
735  * * __ioremap_at (and the pending __iounmap_at) are low level functions to
736  *   create hand-made mappings for use only by the PCI code and cannot
737  *   currently be hooked. Must be page aligned.
738  *
739  * * __ioremap is the low level implementation used by ioremap and
740  *   ioremap_prot and cannot be hooked (but can be used by a hook on one
741  *   of the previous ones)
742  *
743  * * __ioremap_caller is the same as above but takes an explicit caller
744  *   reference rather than using __builtin_return_address(0)
745  *
746  * * __iounmap, is the low level implementation used by iounmap and cannot
747  *   be hooked (but can be used by a hook on iounmap)
748  *
749  */
750 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
751 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
752                                   unsigned long flags);
753 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
754 #define ioremap_nocache(addr, size)     ioremap((addr), (size))
755 #define ioremap_uc(addr, size)          ioremap((addr), (size))
756 #define ioremap_cache(addr, size) \
757         ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
758
759 extern void iounmap(volatile void __iomem *addr);
760
761 extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
762                                unsigned long flags);
763 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
764                                       unsigned long flags, void *caller);
765
766 extern void __iounmap(volatile void __iomem *addr);
767
768 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
769                                    unsigned long size, unsigned long flags);
770 extern void __iounmap_at(void *ea, unsigned long size);
771
772 /*
773  * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
774  * which needs some additional definitions here. They basically allow PIO
775  * space overall to be 1GB. This will work as long as we never try to use
776  * iomap to map MMIO below 1GB which should be fine on ppc64
777  */
778 #define HAVE_ARCH_PIO_SIZE              1
779 #define PIO_OFFSET                      0x00000000UL
780 #define PIO_MASK                        (FULL_IO_SIZE - 1)
781 #define PIO_RESERVED                    (FULL_IO_SIZE)
782
783 #define mmio_read16be(addr)             readw_be(addr)
784 #define mmio_read32be(addr)             readl_be(addr)
785 #define mmio_write16be(val, addr)       writew_be(val, addr)
786 #define mmio_write32be(val, addr)       writel_be(val, addr)
787 #define mmio_insb(addr, dst, count)     readsb(addr, dst, count)
788 #define mmio_insw(addr, dst, count)     readsw(addr, dst, count)
789 #define mmio_insl(addr, dst, count)     readsl(addr, dst, count)
790 #define mmio_outsb(addr, src, count)    writesb(addr, src, count)
791 #define mmio_outsw(addr, src, count)    writesw(addr, src, count)
792 #define mmio_outsl(addr, src, count)    writesl(addr, src, count)
793
794 /**
795  *      virt_to_phys    -       map virtual addresses to physical
796  *      @address: address to remap
797  *
798  *      The returned physical address is the physical (CPU) mapping for
799  *      the memory address given. It is only valid to use this function on
800  *      addresses directly mapped or allocated via kmalloc.
801  *
802  *      This function does not give bus mappings for DMA transfers. In
803  *      almost all conceivable cases a device driver should not be using
804  *      this function
805  */
806 static inline unsigned long virt_to_phys(volatile void * address)
807 {
808         return __pa((unsigned long)address);
809 }
810
811 /**
812  *      phys_to_virt    -       map physical address to virtual
813  *      @address: address to remap
814  *
815  *      The returned virtual address is a current CPU mapping for
816  *      the memory address given. It is only valid to use this function on
817  *      addresses that have a kernel mapping
818  *
819  *      This function does not handle bus mappings for DMA transfers. In
820  *      almost all conceivable cases a device driver should not be using
821  *      this function
822  */
823 static inline void * phys_to_virt(unsigned long address)
824 {
825         return (void *)__va(address);
826 }
827
828 /*
829  * Change "struct page" to physical address.
830  */
831 #define page_to_phys(page)      ((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
832
833 /*
834  * 32 bits still uses virt_to_bus() for it's implementation of DMA
835  * mappings se we have to keep it defined here. We also have some old
836  * drivers (shame shame shame) that use bus_to_virt() and haven't been
837  * fixed yet so I need to define it here.
838  */
839 #ifdef CONFIG_PPC32
840
841 static inline unsigned long virt_to_bus(volatile void * address)
842 {
843         if (address == NULL)
844                 return 0;
845         return __pa(address) + PCI_DRAM_OFFSET;
846 }
847
848 static inline void * bus_to_virt(unsigned long address)
849 {
850         if (address == 0)
851                 return NULL;
852         return __va(address - PCI_DRAM_OFFSET);
853 }
854
855 #define page_to_bus(page)       (page_to_phys(page) + PCI_DRAM_OFFSET)
856
857 #endif /* CONFIG_PPC32 */
858
859 /* access ports */
860 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
861 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
862
863 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
864 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
865
866 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
867 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
868
869 /* Clear and set bits in one shot.  These macros can be used to clear and
870  * set multiple bits in a register using a single read-modify-write.  These
871  * macros can also be used to set a multiple-bit bit pattern using a mask,
872  * by specifying the mask in the 'clear' parameter and the new bit pattern
873  * in the 'set' parameter.
874  */
875
876 #define clrsetbits(type, addr, clear, set) \
877         out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
878
879 #ifdef __powerpc64__
880 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
881 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
882 #endif
883
884 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
885 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
886
887 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
888 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
889
890 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
891
892 #endif /* __KERNEL__ */
893
894 #endif /* _ASM_POWERPC_IO_H */