GNU Linux-libre 5.15.137-gnu
[releases.git] / arch / parisc / mm / init.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/arch/parisc/mm/init.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Copyright 1999 SuSE GmbH
7  *    changed by Philipp Rumpf
8  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
9  *  Copyright 2004 Randolph Chung (tausq@debian.org)
10  *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
11  *
12  */
13
14
15 #include <linux/module.h>
16 #include <linux/mm.h>
17 #include <linux/memblock.h>
18 #include <linux/gfp.h>
19 #include <linux/delay.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h>     /* for node_online_map */
25 #include <linux/pagemap.h>      /* for release_pages */
26 #include <linux/compat.h>
27
28 #include <asm/pgalloc.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33 #include <asm/msgbuf.h>
34 #include <asm/sparsemem.h>
35
36 extern int  data_start;
37 extern void parisc_kernel_start(void);  /* Kernel entry point in head.S */
38
39 #if CONFIG_PGTABLE_LEVELS == 3
40 pmd_t pmd0[PTRS_PER_PMD] __section(".data..vm0.pmd") __attribute__ ((aligned(PAGE_SIZE)));
41 #endif
42
43 pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".data..vm0.pgd") __attribute__ ((aligned(PAGE_SIZE)));
44 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __section(".data..vm0.pte") __attribute__ ((aligned(PAGE_SIZE)));
45
46 static struct resource data_resource = {
47         .name   = "Kernel data",
48         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
49 };
50
51 static struct resource code_resource = {
52         .name   = "Kernel code",
53         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
54 };
55
56 static struct resource pdcdata_resource = {
57         .name   = "PDC data (Page Zero)",
58         .start  = 0,
59         .end    = 0x9ff,
60         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
61 };
62
63 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
64
65 /* The following array is initialized from the firmware specific
66  * information retrieved in kernel/inventory.c.
67  */
68
69 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
70 int npmem_ranges __initdata;
71
72 #ifdef CONFIG_64BIT
73 #define MAX_MEM         (1UL << MAX_PHYSMEM_BITS)
74 #else /* !CONFIG_64BIT */
75 #define MAX_MEM         (3584U*1024U*1024U)
76 #endif /* !CONFIG_64BIT */
77
78 static unsigned long mem_limit __read_mostly = MAX_MEM;
79
80 static void __init mem_limit_func(void)
81 {
82         char *cp, *end;
83         unsigned long limit;
84
85         /* We need this before __setup() functions are called */
86
87         limit = MAX_MEM;
88         for (cp = boot_command_line; *cp; ) {
89                 if (memcmp(cp, "mem=", 4) == 0) {
90                         cp += 4;
91                         limit = memparse(cp, &end);
92                         if (end != cp)
93                                 break;
94                         cp = end;
95                 } else {
96                         while (*cp != ' ' && *cp)
97                                 ++cp;
98                         while (*cp == ' ')
99                                 ++cp;
100                 }
101         }
102
103         if (limit < mem_limit)
104                 mem_limit = limit;
105 }
106
107 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
108
109 static void __init setup_bootmem(void)
110 {
111         unsigned long mem_max;
112 #ifndef CONFIG_SPARSEMEM
113         physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
114         int npmem_holes;
115 #endif
116         int i, sysram_resource_count;
117
118         disable_sr_hashing(); /* Turn off space register hashing */
119
120         /*
121          * Sort the ranges. Since the number of ranges is typically
122          * small, and performance is not an issue here, just do
123          * a simple insertion sort.
124          */
125
126         for (i = 1; i < npmem_ranges; i++) {
127                 int j;
128
129                 for (j = i; j > 0; j--) {
130                         physmem_range_t tmp;
131
132                         if (pmem_ranges[j-1].start_pfn <
133                             pmem_ranges[j].start_pfn) {
134
135                                 break;
136                         }
137                         tmp = pmem_ranges[j-1];
138                         pmem_ranges[j-1] = pmem_ranges[j];
139                         pmem_ranges[j] = tmp;
140                 }
141         }
142
143 #ifndef CONFIG_SPARSEMEM
144         /*
145          * Throw out ranges that are too far apart (controlled by
146          * MAX_GAP).
147          */
148
149         for (i = 1; i < npmem_ranges; i++) {
150                 if (pmem_ranges[i].start_pfn -
151                         (pmem_ranges[i-1].start_pfn +
152                          pmem_ranges[i-1].pages) > MAX_GAP) {
153                         npmem_ranges = i;
154                         printk("Large gap in memory detected (%ld pages). "
155                                "Consider turning on CONFIG_SPARSEMEM\n",
156                                pmem_ranges[i].start_pfn -
157                                (pmem_ranges[i-1].start_pfn +
158                                 pmem_ranges[i-1].pages));
159                         break;
160                 }
161         }
162 #endif
163
164         /* Print the memory ranges */
165         pr_info("Memory Ranges:\n");
166
167         for (i = 0; i < npmem_ranges; i++) {
168                 struct resource *res = &sysram_resources[i];
169                 unsigned long start;
170                 unsigned long size;
171
172                 size = (pmem_ranges[i].pages << PAGE_SHIFT);
173                 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
174                 pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
175                         i, start, start + (size - 1), size >> 20);
176
177                 /* request memory resource */
178                 res->name = "System RAM";
179                 res->start = start;
180                 res->end = start + size - 1;
181                 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
182                 request_resource(&iomem_resource, res);
183         }
184
185         sysram_resource_count = npmem_ranges;
186
187         /*
188          * For 32 bit kernels we limit the amount of memory we can
189          * support, in order to preserve enough kernel address space
190          * for other purposes. For 64 bit kernels we don't normally
191          * limit the memory, but this mechanism can be used to
192          * artificially limit the amount of memory (and it is written
193          * to work with multiple memory ranges).
194          */
195
196         mem_limit_func();       /* check for "mem=" argument */
197
198         mem_max = 0;
199         for (i = 0; i < npmem_ranges; i++) {
200                 unsigned long rsize;
201
202                 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
203                 if ((mem_max + rsize) > mem_limit) {
204                         printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
205                         if (mem_max == mem_limit)
206                                 npmem_ranges = i;
207                         else {
208                                 pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
209                                                        - (mem_max >> PAGE_SHIFT);
210                                 npmem_ranges = i + 1;
211                                 mem_max = mem_limit;
212                         }
213                         break;
214                 }
215                 mem_max += rsize;
216         }
217
218         printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
219
220 #ifndef CONFIG_SPARSEMEM
221         /* Merge the ranges, keeping track of the holes */
222         {
223                 unsigned long end_pfn;
224                 unsigned long hole_pages;
225
226                 npmem_holes = 0;
227                 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
228                 for (i = 1; i < npmem_ranges; i++) {
229
230                         hole_pages = pmem_ranges[i].start_pfn - end_pfn;
231                         if (hole_pages) {
232                                 pmem_holes[npmem_holes].start_pfn = end_pfn;
233                                 pmem_holes[npmem_holes++].pages = hole_pages;
234                                 end_pfn += hole_pages;
235                         }
236                         end_pfn += pmem_ranges[i].pages;
237                 }
238
239                 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
240                 npmem_ranges = 1;
241         }
242 #endif
243
244         /*
245          * Initialize and free the full range of memory in each range.
246          */
247
248         max_pfn = 0;
249         for (i = 0; i < npmem_ranges; i++) {
250                 unsigned long start_pfn;
251                 unsigned long npages;
252                 unsigned long start;
253                 unsigned long size;
254
255                 start_pfn = pmem_ranges[i].start_pfn;
256                 npages = pmem_ranges[i].pages;
257
258                 start = start_pfn << PAGE_SHIFT;
259                 size = npages << PAGE_SHIFT;
260
261                 /* add system RAM memblock */
262                 memblock_add(start, size);
263
264                 if ((start_pfn + npages) > max_pfn)
265                         max_pfn = start_pfn + npages;
266         }
267
268         /*
269          * We can't use memblock top-down allocations because we only
270          * created the initial mapping up to KERNEL_INITIAL_SIZE in
271          * the assembly bootup code.
272          */
273         memblock_set_bottom_up(true);
274
275         /* IOMMU is always used to access "high mem" on those boxes
276          * that can support enough mem that a PCI device couldn't
277          * directly DMA to any physical addresses.
278          * ISA DMA support will need to revisit this.
279          */
280         max_low_pfn = max_pfn;
281
282         /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
283
284 #define PDC_CONSOLE_IO_IODC_SIZE 32768
285
286         memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
287                                 PDC_CONSOLE_IO_IODC_SIZE));
288         memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
289                         (unsigned long)(_end - KERNEL_BINARY_TEXT_START));
290
291 #ifndef CONFIG_SPARSEMEM
292
293         /* reserve the holes */
294
295         for (i = 0; i < npmem_holes; i++) {
296                 memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
297                                 (pmem_holes[i].pages << PAGE_SHIFT));
298         }
299 #endif
300
301 #ifdef CONFIG_BLK_DEV_INITRD
302         if (initrd_start) {
303                 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
304                 if (__pa(initrd_start) < mem_max) {
305                         unsigned long initrd_reserve;
306
307                         if (__pa(initrd_end) > mem_max) {
308                                 initrd_reserve = mem_max - __pa(initrd_start);
309                         } else {
310                                 initrd_reserve = initrd_end - initrd_start;
311                         }
312                         initrd_below_start_ok = 1;
313                         printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
314
315                         memblock_reserve(__pa(initrd_start), initrd_reserve);
316                 }
317         }
318 #endif
319
320         data_resource.start =  virt_to_phys(&data_start);
321         data_resource.end = virt_to_phys(_end) - 1;
322         code_resource.start = virt_to_phys(_text);
323         code_resource.end = virt_to_phys(&data_start)-1;
324
325         /* We don't know which region the kernel will be in, so try
326          * all of them.
327          */
328         for (i = 0; i < sysram_resource_count; i++) {
329                 struct resource *res = &sysram_resources[i];
330                 request_resource(res, &code_resource);
331                 request_resource(res, &data_resource);
332         }
333         request_resource(&sysram_resources[0], &pdcdata_resource);
334
335         /* Initialize Page Deallocation Table (PDT) and check for bad memory. */
336         pdc_pdt_init();
337
338         memblock_allow_resize();
339         memblock_dump_all();
340 }
341
342 static bool kernel_set_to_readonly;
343
344 static void __ref map_pages(unsigned long start_vaddr,
345                             unsigned long start_paddr, unsigned long size,
346                             pgprot_t pgprot, int force)
347 {
348         pmd_t *pmd;
349         pte_t *pg_table;
350         unsigned long end_paddr;
351         unsigned long start_pmd;
352         unsigned long start_pte;
353         unsigned long tmp1;
354         unsigned long tmp2;
355         unsigned long address;
356         unsigned long vaddr;
357         unsigned long ro_start;
358         unsigned long ro_end;
359         unsigned long kernel_start, kernel_end;
360
361         ro_start = __pa((unsigned long)_text);
362         ro_end   = __pa((unsigned long)&data_start);
363         kernel_start = __pa((unsigned long)&__init_begin);
364         kernel_end  = __pa((unsigned long)&_end);
365
366         end_paddr = start_paddr + size;
367
368         /* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */
369         start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
370         start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
371
372         address = start_paddr;
373         vaddr = start_vaddr;
374         while (address < end_paddr) {
375                 pgd_t *pgd = pgd_offset_k(vaddr);
376                 p4d_t *p4d = p4d_offset(pgd, vaddr);
377                 pud_t *pud = pud_offset(p4d, vaddr);
378
379 #if CONFIG_PGTABLE_LEVELS == 3
380                 if (pud_none(*pud)) {
381                         pmd = memblock_alloc(PAGE_SIZE << PMD_TABLE_ORDER,
382                                              PAGE_SIZE << PMD_TABLE_ORDER);
383                         if (!pmd)
384                                 panic("pmd allocation failed.\n");
385                         pud_populate(NULL, pud, pmd);
386                 }
387 #endif
388
389                 pmd = pmd_offset(pud, vaddr);
390                 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
391                         if (pmd_none(*pmd)) {
392                                 pg_table = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
393                                 if (!pg_table)
394                                         panic("page table allocation failed\n");
395                                 pmd_populate_kernel(NULL, pmd, pg_table);
396                         }
397
398                         pg_table = pte_offset_kernel(pmd, vaddr);
399                         for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
400                                 pte_t pte;
401                                 pgprot_t prot;
402                                 bool huge = false;
403
404                                 if (force) {
405                                         prot = pgprot;
406                                 } else if (address < kernel_start || address >= kernel_end) {
407                                         /* outside kernel memory */
408                                         prot = PAGE_KERNEL;
409                                 } else if (!kernel_set_to_readonly) {
410                                         /* still initializing, allow writing to RO memory */
411                                         prot = PAGE_KERNEL_RWX;
412                                         huge = true;
413                                 } else if (address >= ro_start) {
414                                         /* Code (ro) and Data areas */
415                                         prot = (address < ro_end) ?
416                                                 PAGE_KERNEL_EXEC : PAGE_KERNEL;
417                                         huge = true;
418                                 } else {
419                                         prot = PAGE_KERNEL;
420                                 }
421
422                                 pte = __mk_pte(address, prot);
423                                 if (huge)
424                                         pte = pte_mkhuge(pte);
425
426                                 if (address >= end_paddr)
427                                         break;
428
429                                 set_pte(pg_table, pte);
430
431                                 address += PAGE_SIZE;
432                                 vaddr += PAGE_SIZE;
433                         }
434                         start_pte = 0;
435
436                         if (address >= end_paddr)
437                             break;
438                 }
439                 start_pmd = 0;
440         }
441 }
442
443 void __init set_kernel_text_rw(int enable_read_write)
444 {
445         unsigned long start = (unsigned long) __init_begin;
446         unsigned long end   = (unsigned long) &data_start;
447
448         map_pages(start, __pa(start), end-start,
449                 PAGE_KERNEL_RWX, enable_read_write ? 1:0);
450
451         /* force the kernel to see the new page table entries */
452         flush_cache_all();
453         flush_tlb_all();
454 }
455
456 void free_initmem(void)
457 {
458         unsigned long init_begin = (unsigned long)__init_begin;
459         unsigned long init_end = (unsigned long)__init_end;
460         unsigned long kernel_end  = (unsigned long)&_end;
461
462         /* Remap kernel text and data, but do not touch init section yet. */
463         kernel_set_to_readonly = true;
464         map_pages(init_end, __pa(init_end), kernel_end - init_end,
465                   PAGE_KERNEL, 0);
466
467         /* The init text pages are marked R-X.  We have to
468          * flush the icache and mark them RW-
469          *
470          * Do a dummy remap of the data section first (the data
471          * section is already PAGE_KERNEL) to pull in the TLB entries
472          * for map_kernel */
473         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
474                   PAGE_KERNEL_RWX, 1);
475         /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
476          * map_pages */
477         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
478                   PAGE_KERNEL, 1);
479
480         /* force the kernel to see the new TLB entries */
481         __flush_tlb_range(0, init_begin, kernel_end);
482
483         /* finally dump all the instructions which were cached, since the
484          * pages are no-longer executable */
485         flush_icache_range(init_begin, init_end);
486         
487         free_initmem_default(POISON_FREE_INITMEM);
488
489         /* set up a new led state on systems shipped LED State panel */
490         pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
491 }
492
493
494 #ifdef CONFIG_STRICT_KERNEL_RWX
495 void mark_rodata_ro(void)
496 {
497         /* rodata memory was already mapped with KERNEL_RO access rights by
498            pagetable_init() and map_pages(). No need to do additional stuff here */
499         unsigned long roai_size = __end_ro_after_init - __start_ro_after_init;
500
501         pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10);
502 }
503 #endif
504
505
506 /*
507  * Just an arbitrary offset to serve as a "hole" between mapping areas
508  * (between top of physical memory and a potential pcxl dma mapping
509  * area, and below the vmalloc mapping area).
510  *
511  * The current 32K value just means that there will be a 32K "hole"
512  * between mapping areas. That means that  any out-of-bounds memory
513  * accesses will hopefully be caught. The vmalloc() routines leaves
514  * a hole of 4kB between each vmalloced area for the same reason.
515  */
516
517  /* Leave room for gateway page expansion */
518 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
519 #error KERNEL_MAP_START is in gateway reserved region
520 #endif
521 #define MAP_START (KERNEL_MAP_START)
522
523 #define VM_MAP_OFFSET  (32*1024)
524 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
525                                      & ~(VM_MAP_OFFSET-1)))
526
527 void *parisc_vmalloc_start __ro_after_init;
528 EXPORT_SYMBOL(parisc_vmalloc_start);
529
530 #ifdef CONFIG_PA11
531 unsigned long pcxl_dma_start __ro_after_init;
532 #endif
533
534 void __init mem_init(void)
535 {
536         /* Do sanity checks on IPC (compat) structures */
537         BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
538 #ifndef CONFIG_64BIT
539         BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
540         BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
541         BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
542 #endif
543 #ifdef CONFIG_COMPAT
544         BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
545         BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
546         BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
547         BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
548 #endif
549
550         /* Do sanity checks on page table constants */
551         BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
552         BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
553         BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
554         BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
555                         > BITS_PER_LONG);
556 #if CONFIG_PGTABLE_LEVELS == 3
557         BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PMD);
558 #else
559         BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PGD);
560 #endif
561
562         high_memory = __va((max_pfn << PAGE_SHIFT));
563         set_max_mapnr(max_low_pfn);
564         memblock_free_all();
565
566 #ifdef CONFIG_PA11
567         if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
568                 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
569                 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
570                                                 + PCXL_DMA_MAP_SIZE);
571         } else
572 #endif
573                 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
574
575 #if 0
576         /*
577          * Do not expose the virtual kernel memory layout to userspace.
578          * But keep code for debugging purposes.
579          */
580         printk("virtual kernel memory layout:\n"
581                "     vmalloc : 0x%px - 0x%px   (%4ld MB)\n"
582                "     fixmap  : 0x%px - 0x%px   (%4ld kB)\n"
583                "     memory  : 0x%px - 0x%px   (%4ld MB)\n"
584                "       .init : 0x%px - 0x%px   (%4ld kB)\n"
585                "       .data : 0x%px - 0x%px   (%4ld kB)\n"
586                "       .text : 0x%px - 0x%px   (%4ld kB)\n",
587
588                (void*)VMALLOC_START, (void*)VMALLOC_END,
589                (VMALLOC_END - VMALLOC_START) >> 20,
590
591                (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
592                (unsigned long)(FIXMAP_SIZE / 1024),
593
594                __va(0), high_memory,
595                ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
596
597                __init_begin, __init_end,
598                ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
599
600                _etext, _edata,
601                ((unsigned long)_edata - (unsigned long)_etext) >> 10,
602
603                _text, _etext,
604                ((unsigned long)_etext - (unsigned long)_text) >> 10);
605 #endif
606 }
607
608 unsigned long *empty_zero_page __ro_after_init;
609 EXPORT_SYMBOL(empty_zero_page);
610
611 /*
612  * pagetable_init() sets up the page tables
613  *
614  * Note that gateway_init() places the Linux gateway page at page 0.
615  * Since gateway pages cannot be dereferenced this has the desirable
616  * side effect of trapping those pesky NULL-reference errors in the
617  * kernel.
618  */
619 static void __init pagetable_init(void)
620 {
621         int range;
622
623         /* Map each physical memory range to its kernel vaddr */
624
625         for (range = 0; range < npmem_ranges; range++) {
626                 unsigned long start_paddr;
627                 unsigned long end_paddr;
628                 unsigned long size;
629
630                 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
631                 size = pmem_ranges[range].pages << PAGE_SHIFT;
632                 end_paddr = start_paddr + size;
633
634                 map_pages((unsigned long)__va(start_paddr), start_paddr,
635                           size, PAGE_KERNEL, 0);
636         }
637
638 #ifdef CONFIG_BLK_DEV_INITRD
639         if (initrd_end && initrd_end > mem_limit) {
640                 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
641                 map_pages(initrd_start, __pa(initrd_start),
642                           initrd_end - initrd_start, PAGE_KERNEL, 0);
643         }
644 #endif
645
646         empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
647         if (!empty_zero_page)
648                 panic("zero page allocation failed.\n");
649
650 }
651
652 static void __init gateway_init(void)
653 {
654         unsigned long linux_gateway_page_addr;
655         /* FIXME: This is 'const' in order to trick the compiler
656            into not treating it as DP-relative data. */
657         extern void * const linux_gateway_page;
658
659         linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
660
661         /*
662          * Setup Linux Gateway page.
663          *
664          * The Linux gateway page will reside in kernel space (on virtual
665          * page 0), so it doesn't need to be aliased into user space.
666          */
667
668         map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
669                   PAGE_SIZE, PAGE_GATEWAY, 1);
670 }
671
672 static void __init parisc_bootmem_free(void)
673 {
674         unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, };
675
676         max_zone_pfn[0] = memblock_end_of_DRAM();
677
678         free_area_init(max_zone_pfn);
679 }
680
681 void __init paging_init(void)
682 {
683         setup_bootmem();
684         pagetable_init();
685         gateway_init();
686         flush_cache_all_local(); /* start with known state */
687         flush_tlb_all_local(NULL);
688
689         sparse_init();
690         parisc_bootmem_free();
691 }
692
693 #ifdef CONFIG_PA20
694
695 /*
696  * Currently, all PA20 chips have 18 bit protection IDs, which is the
697  * limiting factor (space ids are 32 bits).
698  */
699
700 #define NR_SPACE_IDS 262144
701
702 #else
703
704 /*
705  * Currently we have a one-to-one relationship between space IDs and
706  * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
707  * support 15 bit protection IDs, so that is the limiting factor.
708  * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
709  * probably not worth the effort for a special case here.
710  */
711
712 #define NR_SPACE_IDS 32768
713
714 #endif  /* !CONFIG_PA20 */
715
716 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
717 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
718
719 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
720 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
721 static unsigned long space_id_index;
722 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
723 static unsigned long dirty_space_ids = 0;
724
725 static DEFINE_SPINLOCK(sid_lock);
726
727 unsigned long alloc_sid(void)
728 {
729         unsigned long index;
730
731         spin_lock(&sid_lock);
732
733         if (free_space_ids == 0) {
734                 if (dirty_space_ids != 0) {
735                         spin_unlock(&sid_lock);
736                         flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
737                         spin_lock(&sid_lock);
738                 }
739                 BUG_ON(free_space_ids == 0);
740         }
741
742         free_space_ids--;
743
744         index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
745         space_id[BIT_WORD(index)] |= BIT_MASK(index);
746         space_id_index = index;
747
748         spin_unlock(&sid_lock);
749
750         return index << SPACEID_SHIFT;
751 }
752
753 void free_sid(unsigned long spaceid)
754 {
755         unsigned long index = spaceid >> SPACEID_SHIFT;
756         unsigned long *dirty_space_offset, mask;
757
758         dirty_space_offset = &dirty_space_id[BIT_WORD(index)];
759         mask = BIT_MASK(index);
760
761         spin_lock(&sid_lock);
762
763         BUG_ON(*dirty_space_offset & mask); /* attempt to free space id twice */
764
765         *dirty_space_offset |= mask;
766         dirty_space_ids++;
767
768         spin_unlock(&sid_lock);
769 }
770
771
772 #ifdef CONFIG_SMP
773 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
774 {
775         int i;
776
777         /* NOTE: sid_lock must be held upon entry */
778
779         *ndirtyptr = dirty_space_ids;
780         if (dirty_space_ids != 0) {
781             for (i = 0; i < SID_ARRAY_SIZE; i++) {
782                 dirty_array[i] = dirty_space_id[i];
783                 dirty_space_id[i] = 0;
784             }
785             dirty_space_ids = 0;
786         }
787
788         return;
789 }
790
791 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
792 {
793         int i;
794
795         /* NOTE: sid_lock must be held upon entry */
796
797         if (ndirty != 0) {
798                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
799                         space_id[i] ^= dirty_array[i];
800                 }
801
802                 free_space_ids += ndirty;
803                 space_id_index = 0;
804         }
805 }
806
807 #else /* CONFIG_SMP */
808
809 static void recycle_sids(void)
810 {
811         int i;
812
813         /* NOTE: sid_lock must be held upon entry */
814
815         if (dirty_space_ids != 0) {
816                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
817                         space_id[i] ^= dirty_space_id[i];
818                         dirty_space_id[i] = 0;
819                 }
820
821                 free_space_ids += dirty_space_ids;
822                 dirty_space_ids = 0;
823                 space_id_index = 0;
824         }
825 }
826 #endif
827
828 /*
829  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
830  * purged, we can safely reuse the space ids that were released but
831  * not flushed from the tlb.
832  */
833
834 #ifdef CONFIG_SMP
835
836 static unsigned long recycle_ndirty;
837 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
838 static unsigned int recycle_inuse;
839
840 void flush_tlb_all(void)
841 {
842         int do_recycle;
843
844         do_recycle = 0;
845         spin_lock(&sid_lock);
846         __inc_irq_stat(irq_tlb_count);
847         if (dirty_space_ids > RECYCLE_THRESHOLD) {
848             BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
849             get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
850             recycle_inuse++;
851             do_recycle++;
852         }
853         spin_unlock(&sid_lock);
854         on_each_cpu(flush_tlb_all_local, NULL, 1);
855         if (do_recycle) {
856             spin_lock(&sid_lock);
857             recycle_sids(recycle_ndirty,recycle_dirty_array);
858             recycle_inuse = 0;
859             spin_unlock(&sid_lock);
860         }
861 }
862 #else
863 void flush_tlb_all(void)
864 {
865         spin_lock(&sid_lock);
866         __inc_irq_stat(irq_tlb_count);
867         flush_tlb_all_local(NULL);
868         recycle_sids();
869         spin_unlock(&sid_lock);
870 }
871 #endif