GNU Linux-libre 6.1.90-gnu
[releases.git] / arch / parisc / kernel / cache.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1999-2006 Helge Deller <deller@gmx.de> (07-13-1999)
7  * Copyright (C) 1999 SuSE GmbH Nuernberg
8  * Copyright (C) 2000 Philipp Rumpf (prumpf@tux.org)
9  *
10  * Cache and TLB management
11  *
12  */
13  
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/seq_file.h>
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <asm/pdc.h>
23 #include <asm/cache.h>
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 #include <asm/page.h>
27 #include <asm/processor.h>
28 #include <asm/sections.h>
29 #include <asm/shmparam.h>
30 #include <asm/mmu_context.h>
31
32 int split_tlb __ro_after_init;
33 int dcache_stride __ro_after_init;
34 int icache_stride __ro_after_init;
35 EXPORT_SYMBOL(dcache_stride);
36
37 void flush_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr);
38 EXPORT_SYMBOL(flush_dcache_page_asm);
39 void purge_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr);
40 void flush_icache_page_asm(unsigned long phys_addr, unsigned long vaddr);
41
42 /* Internal implementation in arch/parisc/kernel/pacache.S */
43 void flush_data_cache_local(void *);  /* flushes local data-cache only */
44 void flush_instruction_cache_local(void); /* flushes local code-cache only */
45
46 /* On some machines (i.e., ones with the Merced bus), there can be
47  * only a single PxTLB broadcast at a time; this must be guaranteed
48  * by software. We need a spinlock around all TLB flushes to ensure
49  * this.
50  */
51 DEFINE_SPINLOCK(pa_tlb_flush_lock);
52
53 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
54 int pa_serialize_tlb_flushes __ro_after_init;
55 #endif
56
57 struct pdc_cache_info cache_info __ro_after_init;
58 #ifndef CONFIG_PA20
59 static struct pdc_btlb_info btlb_info __ro_after_init;
60 #endif
61
62 DEFINE_STATIC_KEY_TRUE(parisc_has_cache);
63 DEFINE_STATIC_KEY_TRUE(parisc_has_dcache);
64 DEFINE_STATIC_KEY_TRUE(parisc_has_icache);
65
66 static void cache_flush_local_cpu(void *dummy)
67 {
68         if (static_branch_likely(&parisc_has_icache))
69                 flush_instruction_cache_local();
70         if (static_branch_likely(&parisc_has_dcache))
71                 flush_data_cache_local(NULL);
72 }
73
74 void flush_cache_all_local(void)
75 {
76         cache_flush_local_cpu(NULL);
77 }
78
79 void flush_cache_all(void)
80 {
81         if (static_branch_likely(&parisc_has_cache))
82                 on_each_cpu(cache_flush_local_cpu, NULL, 1);
83 }
84
85 static inline void flush_data_cache(void)
86 {
87         if (static_branch_likely(&parisc_has_dcache))
88                 on_each_cpu(flush_data_cache_local, NULL, 1);
89 }
90
91
92 /* Kernel virtual address of pfn.  */
93 #define pfn_va(pfn)     __va(PFN_PHYS(pfn))
94
95 void
96 __update_cache(pte_t pte)
97 {
98         unsigned long pfn = pte_pfn(pte);
99         struct page *page;
100
101         /* We don't have pte special.  As a result, we can be called with
102            an invalid pfn and we don't need to flush the kernel dcache page.
103            This occurs with FireGL card in C8000.  */
104         if (!pfn_valid(pfn))
105                 return;
106
107         page = pfn_to_page(pfn);
108         if (page_mapping_file(page) &&
109             test_bit(PG_dcache_dirty, &page->flags)) {
110                 flush_kernel_dcache_page_addr(pfn_va(pfn));
111                 clear_bit(PG_dcache_dirty, &page->flags);
112         } else if (parisc_requires_coherency())
113                 flush_kernel_dcache_page_addr(pfn_va(pfn));
114 }
115
116 void
117 show_cache_info(struct seq_file *m)
118 {
119         char buf[32];
120
121         seq_printf(m, "I-cache\t\t: %ld KB\n", 
122                 cache_info.ic_size/1024 );
123         if (cache_info.dc_loop != 1)
124                 snprintf(buf, 32, "%lu-way associative", cache_info.dc_loop);
125         seq_printf(m, "D-cache\t\t: %ld KB (%s%s, %s, alias=%d)\n",
126                 cache_info.dc_size/1024,
127                 (cache_info.dc_conf.cc_wt ? "WT":"WB"),
128                 (cache_info.dc_conf.cc_sh ? ", shared I/D":""),
129                 ((cache_info.dc_loop == 1) ? "direct mapped" : buf),
130                 cache_info.dc_conf.cc_alias
131         );
132         seq_printf(m, "ITLB entries\t: %ld\n" "DTLB entries\t: %ld%s\n",
133                 cache_info.it_size,
134                 cache_info.dt_size,
135                 cache_info.dt_conf.tc_sh ? " - shared with ITLB":""
136         );
137                 
138 #ifndef CONFIG_PA20
139         /* BTLB - Block TLB */
140         if (btlb_info.max_size==0) {
141                 seq_printf(m, "BTLB\t\t: not supported\n" );
142         } else {
143                 seq_printf(m, 
144                 "BTLB fixed\t: max. %d pages, pagesize=%d (%dMB)\n"
145                 "BTLB fix-entr.\t: %d instruction, %d data (%d combined)\n"
146                 "BTLB var-entr.\t: %d instruction, %d data (%d combined)\n",
147                 btlb_info.max_size, (int)4096,
148                 btlb_info.max_size>>8,
149                 btlb_info.fixed_range_info.num_i,
150                 btlb_info.fixed_range_info.num_d,
151                 btlb_info.fixed_range_info.num_comb, 
152                 btlb_info.variable_range_info.num_i,
153                 btlb_info.variable_range_info.num_d,
154                 btlb_info.variable_range_info.num_comb
155                 );
156         }
157 #endif
158 }
159
160 void __init 
161 parisc_cache_init(void)
162 {
163         if (pdc_cache_info(&cache_info) < 0)
164                 panic("parisc_cache_init: pdc_cache_info failed");
165
166 #if 0
167         printk("ic_size %lx dc_size %lx it_size %lx\n",
168                 cache_info.ic_size,
169                 cache_info.dc_size,
170                 cache_info.it_size);
171
172         printk("DC  base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
173                 cache_info.dc_base,
174                 cache_info.dc_stride,
175                 cache_info.dc_count,
176                 cache_info.dc_loop);
177
178         printk("dc_conf = 0x%lx  alias %d blk %d line %d shift %d\n",
179                 *(unsigned long *) (&cache_info.dc_conf),
180                 cache_info.dc_conf.cc_alias,
181                 cache_info.dc_conf.cc_block,
182                 cache_info.dc_conf.cc_line,
183                 cache_info.dc_conf.cc_shift);
184         printk("        wt %d sh %d cst %d hv %d\n",
185                 cache_info.dc_conf.cc_wt,
186                 cache_info.dc_conf.cc_sh,
187                 cache_info.dc_conf.cc_cst,
188                 cache_info.dc_conf.cc_hv);
189
190         printk("IC  base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
191                 cache_info.ic_base,
192                 cache_info.ic_stride,
193                 cache_info.ic_count,
194                 cache_info.ic_loop);
195
196         printk("IT  base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n",
197                 cache_info.it_sp_base,
198                 cache_info.it_sp_stride,
199                 cache_info.it_sp_count,
200                 cache_info.it_loop,
201                 cache_info.it_off_base,
202                 cache_info.it_off_stride,
203                 cache_info.it_off_count);
204
205         printk("DT  base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n",
206                 cache_info.dt_sp_base,
207                 cache_info.dt_sp_stride,
208                 cache_info.dt_sp_count,
209                 cache_info.dt_loop,
210                 cache_info.dt_off_base,
211                 cache_info.dt_off_stride,
212                 cache_info.dt_off_count);
213
214         printk("ic_conf = 0x%lx  alias %d blk %d line %d shift %d\n",
215                 *(unsigned long *) (&cache_info.ic_conf),
216                 cache_info.ic_conf.cc_alias,
217                 cache_info.ic_conf.cc_block,
218                 cache_info.ic_conf.cc_line,
219                 cache_info.ic_conf.cc_shift);
220         printk("        wt %d sh %d cst %d hv %d\n",
221                 cache_info.ic_conf.cc_wt,
222                 cache_info.ic_conf.cc_sh,
223                 cache_info.ic_conf.cc_cst,
224                 cache_info.ic_conf.cc_hv);
225
226         printk("D-TLB conf: sh %d page %d cst %d aid %d sr %d\n",
227                 cache_info.dt_conf.tc_sh,
228                 cache_info.dt_conf.tc_page,
229                 cache_info.dt_conf.tc_cst,
230                 cache_info.dt_conf.tc_aid,
231                 cache_info.dt_conf.tc_sr);
232
233         printk("I-TLB conf: sh %d page %d cst %d aid %d sr %d\n",
234                 cache_info.it_conf.tc_sh,
235                 cache_info.it_conf.tc_page,
236                 cache_info.it_conf.tc_cst,
237                 cache_info.it_conf.tc_aid,
238                 cache_info.it_conf.tc_sr);
239 #endif
240
241         split_tlb = 0;
242         if (cache_info.dt_conf.tc_sh == 0 || cache_info.dt_conf.tc_sh == 2) {
243                 if (cache_info.dt_conf.tc_sh == 2)
244                         printk(KERN_WARNING "Unexpected TLB configuration. "
245                         "Will flush I/D separately (could be optimized).\n");
246
247                 split_tlb = 1;
248         }
249
250         /* "New and Improved" version from Jim Hull 
251          *      (1 << (cc_block-1)) * (cc_line << (4 + cnf.cc_shift))
252          * The following CAFL_STRIDE is an optimized version, see
253          * http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023625.html
254          * http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023671.html
255          */
256 #define CAFL_STRIDE(cnf) (cnf.cc_line << (3 + cnf.cc_block + cnf.cc_shift))
257         dcache_stride = CAFL_STRIDE(cache_info.dc_conf);
258         icache_stride = CAFL_STRIDE(cache_info.ic_conf);
259 #undef CAFL_STRIDE
260
261 #ifndef CONFIG_PA20
262         if (pdc_btlb_info(&btlb_info) < 0) {
263                 memset(&btlb_info, 0, sizeof btlb_info);
264         }
265 #endif
266
267         if ((boot_cpu_data.pdc.capabilities & PDC_MODEL_NVA_MASK) ==
268                                                 PDC_MODEL_NVA_UNSUPPORTED) {
269                 printk(KERN_WARNING "parisc_cache_init: Only equivalent aliasing supported!\n");
270 #if 0
271                 panic("SMP kernel required to avoid non-equivalent aliasing");
272 #endif
273         }
274 }
275
276 void disable_sr_hashing(void)
277 {
278         int srhash_type, retval;
279         unsigned long space_bits;
280
281         switch (boot_cpu_data.cpu_type) {
282         case pcx: /* We shouldn't get this far.  setup.c should prevent it. */
283                 BUG();
284                 return;
285
286         case pcxs:
287         case pcxt:
288         case pcxt_:
289                 srhash_type = SRHASH_PCXST;
290                 break;
291
292         case pcxl:
293                 srhash_type = SRHASH_PCXL;
294                 break;
295
296         case pcxl2: /* pcxl2 doesn't support space register hashing */
297                 return;
298
299         default: /* Currently all PA2.0 machines use the same ins. sequence */
300                 srhash_type = SRHASH_PA20;
301                 break;
302         }
303
304         disable_sr_hashing_asm(srhash_type);
305
306         retval = pdc_spaceid_bits(&space_bits);
307         /* If this procedure isn't implemented, don't panic. */
308         if (retval < 0 && retval != PDC_BAD_OPTION)
309                 panic("pdc_spaceid_bits call failed.\n");
310         if (space_bits != 0)
311                 panic("SpaceID hashing is still on!\n");
312 }
313
314 static inline void
315 __flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr,
316                    unsigned long physaddr)
317 {
318         if (!static_branch_likely(&parisc_has_cache))
319                 return;
320         preempt_disable();
321         flush_dcache_page_asm(physaddr, vmaddr);
322         if (vma->vm_flags & VM_EXEC)
323                 flush_icache_page_asm(physaddr, vmaddr);
324         preempt_enable();
325 }
326
327 static void flush_user_cache_page(struct vm_area_struct *vma, unsigned long vmaddr)
328 {
329         unsigned long flags, space, pgd, prot;
330 #ifdef CONFIG_TLB_PTLOCK
331         unsigned long pgd_lock;
332 #endif
333
334         vmaddr &= PAGE_MASK;
335
336         preempt_disable();
337
338         /* Set context for flush */
339         local_irq_save(flags);
340         prot = mfctl(8);
341         space = mfsp(SR_USER);
342         pgd = mfctl(25);
343 #ifdef CONFIG_TLB_PTLOCK
344         pgd_lock = mfctl(28);
345 #endif
346         switch_mm_irqs_off(NULL, vma->vm_mm, NULL);
347         local_irq_restore(flags);
348
349         flush_user_dcache_range_asm(vmaddr, vmaddr + PAGE_SIZE);
350         if (vma->vm_flags & VM_EXEC)
351                 flush_user_icache_range_asm(vmaddr, vmaddr + PAGE_SIZE);
352         flush_tlb_page(vma, vmaddr);
353
354         /* Restore previous context */
355         local_irq_save(flags);
356 #ifdef CONFIG_TLB_PTLOCK
357         mtctl(pgd_lock, 28);
358 #endif
359         mtctl(pgd, 25);
360         mtsp(space, SR_USER);
361         mtctl(prot, 8);
362         local_irq_restore(flags);
363
364         preempt_enable();
365 }
366
367 static inline pte_t *get_ptep(struct mm_struct *mm, unsigned long addr)
368 {
369         pte_t *ptep = NULL;
370         pgd_t *pgd = mm->pgd;
371         p4d_t *p4d;
372         pud_t *pud;
373         pmd_t *pmd;
374
375         if (!pgd_none(*pgd)) {
376                 p4d = p4d_offset(pgd, addr);
377                 if (!p4d_none(*p4d)) {
378                         pud = pud_offset(p4d, addr);
379                         if (!pud_none(*pud)) {
380                                 pmd = pmd_offset(pud, addr);
381                                 if (!pmd_none(*pmd))
382                                         ptep = pte_offset_map(pmd, addr);
383                         }
384                 }
385         }
386         return ptep;
387 }
388
389 static inline bool pte_needs_flush(pte_t pte)
390 {
391         return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_NO_CACHE))
392                 == (_PAGE_PRESENT | _PAGE_ACCESSED);
393 }
394
395 void flush_dcache_page(struct page *page)
396 {
397         struct address_space *mapping = page_mapping_file(page);
398         struct vm_area_struct *mpnt;
399         unsigned long offset;
400         unsigned long addr, old_addr = 0;
401         unsigned long count = 0;
402         unsigned long flags;
403         pgoff_t pgoff;
404
405         if (mapping && !mapping_mapped(mapping)) {
406                 set_bit(PG_dcache_dirty, &page->flags);
407                 return;
408         }
409
410         flush_kernel_dcache_page_addr(page_address(page));
411
412         if (!mapping)
413                 return;
414
415         pgoff = page->index;
416
417         /*
418          * We have carefully arranged in arch_get_unmapped_area() that
419          * *any* mappings of a file are always congruently mapped (whether
420          * declared as MAP_PRIVATE or MAP_SHARED), so we only need
421          * to flush one address here for them all to become coherent
422          * on machines that support equivalent aliasing
423          */
424         flush_dcache_mmap_lock_irqsave(mapping, flags);
425         vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
426                 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
427                 addr = mpnt->vm_start + offset;
428                 if (parisc_requires_coherency()) {
429                         pte_t *ptep;
430
431                         ptep = get_ptep(mpnt->vm_mm, addr);
432                         if (ptep && pte_needs_flush(*ptep))
433                                 flush_user_cache_page(mpnt, addr);
434                 } else {
435                         /*
436                          * The TLB is the engine of coherence on parisc:
437                          * The CPU is entitled to speculate any page
438                          * with a TLB mapping, so here we kill the
439                          * mapping then flush the page along a special
440                          * flush only alias mapping. This guarantees that
441                          * the page is no-longer in the cache for any
442                          * process and nor may it be speculatively read
443                          * in (until the user or kernel specifically
444                          * accesses it, of course)
445                          */
446                         flush_tlb_page(mpnt, addr);
447                         if (old_addr == 0 || (old_addr & (SHM_COLOUR - 1))
448                                         != (addr & (SHM_COLOUR - 1))) {
449                                 __flush_cache_page(mpnt, addr, page_to_phys(page));
450                                 /*
451                                  * Software is allowed to have any number
452                                  * of private mappings to a page.
453                                  */
454                                 if (!(mpnt->vm_flags & VM_SHARED))
455                                         continue;
456                                 if (old_addr)
457                                         pr_err("INEQUIVALENT ALIASES 0x%lx and 0x%lx in file %pD\n",
458                                                 old_addr, addr, mpnt->vm_file);
459                                 old_addr = addr;
460                         }
461                 }
462                 WARN_ON(++count == 4096);
463         }
464         flush_dcache_mmap_unlock_irqrestore(mapping, flags);
465 }
466 EXPORT_SYMBOL(flush_dcache_page);
467
468 /* Defined in arch/parisc/kernel/pacache.S */
469 EXPORT_SYMBOL(flush_kernel_dcache_range_asm);
470 EXPORT_SYMBOL(flush_kernel_icache_range_asm);
471
472 #define FLUSH_THRESHOLD 0x80000 /* 0.5MB */
473 static unsigned long parisc_cache_flush_threshold __ro_after_init = FLUSH_THRESHOLD;
474
475 #define FLUSH_TLB_THRESHOLD (16*1024) /* 16 KiB minimum TLB threshold */
476 static unsigned long parisc_tlb_flush_threshold __ro_after_init = ~0UL;
477
478 void __init parisc_setup_cache_timing(void)
479 {
480         unsigned long rangetime, alltime;
481         unsigned long size;
482         unsigned long threshold, threshold2;
483
484         alltime = mfctl(16);
485         flush_data_cache();
486         alltime = mfctl(16) - alltime;
487
488         size = (unsigned long)(_end - _text);
489         rangetime = mfctl(16);
490         flush_kernel_dcache_range((unsigned long)_text, size);
491         rangetime = mfctl(16) - rangetime;
492
493         printk(KERN_DEBUG "Whole cache flush %lu cycles, flushing %lu bytes %lu cycles\n",
494                 alltime, size, rangetime);
495
496         threshold = L1_CACHE_ALIGN((unsigned long)((uint64_t)size * alltime / rangetime));
497         pr_info("Calculated flush threshold is %lu KiB\n",
498                 threshold/1024);
499
500         /*
501          * The threshold computed above isn't very reliable. The following
502          * heuristic works reasonably well on c8000/rp3440.
503          */
504         threshold2 = cache_info.dc_size * num_online_cpus();
505         parisc_cache_flush_threshold = threshold2;
506         printk(KERN_INFO "Cache flush threshold set to %lu KiB\n",
507                 parisc_cache_flush_threshold/1024);
508
509         /* calculate TLB flush threshold */
510
511         /* On SMP machines, skip the TLB measure of kernel text which
512          * has been mapped as huge pages. */
513         if (num_online_cpus() > 1 && !parisc_requires_coherency()) {
514                 threshold = max(cache_info.it_size, cache_info.dt_size);
515                 threshold *= PAGE_SIZE;
516                 threshold /= num_online_cpus();
517                 goto set_tlb_threshold;
518         }
519
520         size = (unsigned long)_end - (unsigned long)_text;
521         rangetime = mfctl(16);
522         flush_tlb_kernel_range((unsigned long)_text, (unsigned long)_end);
523         rangetime = mfctl(16) - rangetime;
524
525         alltime = mfctl(16);
526         flush_tlb_all();
527         alltime = mfctl(16) - alltime;
528
529         printk(KERN_INFO "Whole TLB flush %lu cycles, Range flush %lu bytes %lu cycles\n",
530                 alltime, size, rangetime);
531
532         threshold = PAGE_ALIGN((num_online_cpus() * size * alltime) / rangetime);
533         printk(KERN_INFO "Calculated TLB flush threshold %lu KiB\n",
534                 threshold/1024);
535
536 set_tlb_threshold:
537         if (threshold > FLUSH_TLB_THRESHOLD)
538                 parisc_tlb_flush_threshold = threshold;
539         else
540                 parisc_tlb_flush_threshold = FLUSH_TLB_THRESHOLD;
541
542         printk(KERN_INFO "TLB flush threshold set to %lu KiB\n",
543                 parisc_tlb_flush_threshold/1024);
544 }
545
546 extern void purge_kernel_dcache_page_asm(unsigned long);
547 extern void clear_user_page_asm(void *, unsigned long);
548 extern void copy_user_page_asm(void *, void *, unsigned long);
549
550 void flush_kernel_dcache_page_addr(const void *addr)
551 {
552         unsigned long flags;
553
554         flush_kernel_dcache_page_asm(addr);
555         purge_tlb_start(flags);
556         pdtlb(SR_KERNEL, addr);
557         purge_tlb_end(flags);
558 }
559 EXPORT_SYMBOL(flush_kernel_dcache_page_addr);
560
561 static void flush_cache_page_if_present(struct vm_area_struct *vma,
562         unsigned long vmaddr, unsigned long pfn)
563 {
564         pte_t *ptep = get_ptep(vma->vm_mm, vmaddr);
565
566         /*
567          * The pte check is racy and sometimes the flush will trigger
568          * a non-access TLB miss. Hopefully, the page has already been
569          * flushed.
570          */
571         if (ptep && pte_needs_flush(*ptep))
572                 flush_cache_page(vma, vmaddr, pfn);
573 }
574
575 void copy_user_highpage(struct page *to, struct page *from,
576         unsigned long vaddr, struct vm_area_struct *vma)
577 {
578         void *kto, *kfrom;
579
580         kfrom = kmap_local_page(from);
581         kto = kmap_local_page(to);
582         flush_cache_page_if_present(vma, vaddr, page_to_pfn(from));
583         copy_page_asm(kto, kfrom);
584         kunmap_local(kto);
585         kunmap_local(kfrom);
586 }
587
588 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
589                 unsigned long user_vaddr, void *dst, void *src, int len)
590 {
591         flush_cache_page_if_present(vma, user_vaddr, page_to_pfn(page));
592         memcpy(dst, src, len);
593         flush_kernel_dcache_range_asm((unsigned long)dst, (unsigned long)dst + len);
594 }
595
596 void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
597                 unsigned long user_vaddr, void *dst, void *src, int len)
598 {
599         flush_cache_page_if_present(vma, user_vaddr, page_to_pfn(page));
600         memcpy(dst, src, len);
601 }
602
603 /* __flush_tlb_range()
604  *
605  * returns 1 if all TLBs were flushed.
606  */
607 int __flush_tlb_range(unsigned long sid, unsigned long start,
608                       unsigned long end)
609 {
610         unsigned long flags;
611
612         if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) &&
613             end - start >= parisc_tlb_flush_threshold) {
614                 flush_tlb_all();
615                 return 1;
616         }
617
618         /* Purge TLB entries for small ranges using the pdtlb and
619            pitlb instructions.  These instructions execute locally
620            but cause a purge request to be broadcast to other TLBs.  */
621         while (start < end) {
622                 purge_tlb_start(flags);
623                 mtsp(sid, SR_TEMP1);
624                 pdtlb(SR_TEMP1, start);
625                 pitlb(SR_TEMP1, start);
626                 purge_tlb_end(flags);
627                 start += PAGE_SIZE;
628         }
629         return 0;
630 }
631
632 static void flush_cache_pages(struct vm_area_struct *vma, unsigned long start, unsigned long end)
633 {
634         unsigned long addr, pfn;
635         pte_t *ptep;
636
637         for (addr = start; addr < end; addr += PAGE_SIZE) {
638                 /*
639                  * The vma can contain pages that aren't present. Although
640                  * the pte search is expensive, we need the pte to find the
641                  * page pfn and to check whether the page should be flushed.
642                  */
643                 ptep = get_ptep(vma->vm_mm, addr);
644                 if (ptep && pte_needs_flush(*ptep)) {
645                         if (parisc_requires_coherency()) {
646                                 flush_user_cache_page(vma, addr);
647                         } else {
648                                 pfn = pte_pfn(*ptep);
649                                 if (WARN_ON(!pfn_valid(pfn)))
650                                         return;
651                                 __flush_cache_page(vma, addr, PFN_PHYS(pfn));
652                         }
653                 }
654         }
655 }
656
657 static inline unsigned long mm_total_size(struct mm_struct *mm)
658 {
659         struct vm_area_struct *vma;
660         unsigned long usize = 0;
661         VMA_ITERATOR(vmi, mm, 0);
662
663         for_each_vma(vmi, vma) {
664                 if (usize >= parisc_cache_flush_threshold)
665                         break;
666                 usize += vma->vm_end - vma->vm_start;
667         }
668         return usize;
669 }
670
671 void flush_cache_mm(struct mm_struct *mm)
672 {
673         struct vm_area_struct *vma;
674         VMA_ITERATOR(vmi, mm, 0);
675
676         /*
677          * Flushing the whole cache on each cpu takes forever on
678          * rp3440, etc. So, avoid it if the mm isn't too big.
679          *
680          * Note that we must flush the entire cache on machines
681          * with aliasing caches to prevent random segmentation
682          * faults.
683          */
684         if (!parisc_requires_coherency()
685             ||  mm_total_size(mm) >= parisc_cache_flush_threshold) {
686                 if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled()))
687                         return;
688                 flush_tlb_all();
689                 flush_cache_all();
690                 return;
691         }
692
693         /* Flush mm */
694         for_each_vma(vmi, vma)
695                 flush_cache_pages(vma, vma->vm_start, vma->vm_end);
696 }
697
698 void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
699 {
700         if (!parisc_requires_coherency()
701             || end - start >= parisc_cache_flush_threshold) {
702                 if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled()))
703                         return;
704                 flush_tlb_range(vma, start, end);
705                 flush_cache_all();
706                 return;
707         }
708
709         flush_cache_pages(vma, start, end);
710 }
711
712 void flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr, unsigned long pfn)
713 {
714         if (WARN_ON(!pfn_valid(pfn)))
715                 return;
716         if (parisc_requires_coherency())
717                 flush_user_cache_page(vma, vmaddr);
718         else
719                 __flush_cache_page(vma, vmaddr, PFN_PHYS(pfn));
720 }
721
722 void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
723 {
724         if (!PageAnon(page))
725                 return;
726
727         if (parisc_requires_coherency()) {
728                 if (vma->vm_flags & VM_SHARED)
729                         flush_data_cache();
730                 else
731                         flush_user_cache_page(vma, vmaddr);
732                 return;
733         }
734
735         flush_tlb_page(vma, vmaddr);
736         preempt_disable();
737         flush_dcache_page_asm(page_to_phys(page), vmaddr);
738         preempt_enable();
739 }
740
741 void flush_kernel_vmap_range(void *vaddr, int size)
742 {
743         unsigned long start = (unsigned long)vaddr;
744         unsigned long end = start + size;
745
746         if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) &&
747             (unsigned long)size >= parisc_cache_flush_threshold) {
748                 flush_tlb_kernel_range(start, end);
749                 flush_data_cache();
750                 return;
751         }
752
753         flush_kernel_dcache_range_asm(start, end);
754         flush_tlb_kernel_range(start, end);
755 }
756 EXPORT_SYMBOL(flush_kernel_vmap_range);
757
758 void invalidate_kernel_vmap_range(void *vaddr, int size)
759 {
760         unsigned long start = (unsigned long)vaddr;
761         unsigned long end = start + size;
762
763         /* Ensure DMA is complete */
764         asm_syncdma();
765
766         if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) &&
767             (unsigned long)size >= parisc_cache_flush_threshold) {
768                 flush_tlb_kernel_range(start, end);
769                 flush_data_cache();
770                 return;
771         }
772
773         purge_kernel_dcache_range_asm(start, end);
774         flush_tlb_kernel_range(start, end);
775 }
776 EXPORT_SYMBOL(invalidate_kernel_vmap_range);