GNU Linux-libre 5.13.14-gnu1
[releases.git] / arch / mips / mm / dma-noncoherent.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
4  * Copyright (C) 2000, 2001, 06  Ralf Baechle <ralf@linux-mips.org>
5  * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
6  */
7 #include <linux/dma-direct.h>
8 #include <linux/dma-map-ops.h>
9 #include <linux/highmem.h>
10
11 #include <asm/cache.h>
12 #include <asm/cpu-type.h>
13 #include <asm/io.h>
14
15 /*
16  * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively
17  * fill random cachelines with stale data at any time, requiring an extra
18  * flush post-DMA.
19  *
20  * Warning on the terminology - Linux calls an uncached area coherent;  MIPS
21  * terminology calls memory areas with hardware maintained coherency coherent.
22  *
23  * Note that the R14000 and R16000 should also be checked for in this condition.
24  * However this function is only called on non-I/O-coherent systems and only the
25  * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp.
26  * SGI IP32 aka O2.
27  */
28 static inline bool cpu_needs_post_dma_flush(void)
29 {
30         switch (boot_cpu_type()) {
31         case CPU_R10000:
32         case CPU_R12000:
33         case CPU_BMIPS5000:
34         case CPU_LOONGSON2EF:
35                 return true;
36         default:
37                 /*
38                  * Presence of MAARs suggests that the CPU supports
39                  * speculatively prefetching data, and therefore requires
40                  * the post-DMA flush/invalidate.
41                  */
42                 return cpu_has_maar;
43         }
44 }
45
46 void arch_dma_prep_coherent(struct page *page, size_t size)
47 {
48         dma_cache_wback_inv((unsigned long)page_address(page), size);
49 }
50
51 void *arch_dma_set_uncached(void *addr, size_t size)
52 {
53         return (void *)(__pa(addr) + UNCAC_BASE);
54 }
55
56 static inline void dma_sync_virt_for_device(void *addr, size_t size,
57                 enum dma_data_direction dir)
58 {
59         switch (dir) {
60         case DMA_TO_DEVICE:
61                 dma_cache_wback((unsigned long)addr, size);
62                 break;
63         case DMA_FROM_DEVICE:
64                 dma_cache_inv((unsigned long)addr, size);
65                 break;
66         case DMA_BIDIRECTIONAL:
67                 dma_cache_wback_inv((unsigned long)addr, size);
68                 break;
69         default:
70                 BUG();
71         }
72 }
73
74 static inline void dma_sync_virt_for_cpu(void *addr, size_t size,
75                 enum dma_data_direction dir)
76 {
77         switch (dir) {
78         case DMA_TO_DEVICE:
79                 break;
80         case DMA_FROM_DEVICE:
81         case DMA_BIDIRECTIONAL:
82                 dma_cache_inv((unsigned long)addr, size);
83                 break;
84         default:
85                 BUG();
86         }
87 }
88
89 /*
90  * A single sg entry may refer to multiple physically contiguous pages.  But
91  * we still need to process highmem pages individually.  If highmem is not
92  * configured then the bulk of this loop gets optimized out.
93  */
94 static inline void dma_sync_phys(phys_addr_t paddr, size_t size,
95                 enum dma_data_direction dir, bool for_device)
96 {
97         struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
98         unsigned long offset = paddr & ~PAGE_MASK;
99         size_t left = size;
100
101         do {
102                 size_t len = left;
103                 void *addr;
104
105                 if (PageHighMem(page)) {
106                         if (offset + len > PAGE_SIZE)
107                                 len = PAGE_SIZE - offset;
108                 }
109
110                 addr = kmap_atomic(page);
111                 if (for_device)
112                         dma_sync_virt_for_device(addr + offset, len, dir);
113                 else
114                         dma_sync_virt_for_cpu(addr + offset, len, dir);
115                 kunmap_atomic(addr);
116
117                 offset = 0;
118                 page++;
119                 left -= len;
120         } while (left);
121 }
122
123 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
124                 enum dma_data_direction dir)
125 {
126         dma_sync_phys(paddr, size, dir, true);
127 }
128
129 #ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU
130 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
131                 enum dma_data_direction dir)
132 {
133         if (cpu_needs_post_dma_flush())
134                 dma_sync_phys(paddr, size, dir, false);
135 }
136 #endif
137
138 #ifdef CONFIG_ARCH_HAS_SETUP_DMA_OPS
139 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
140                 const struct iommu_ops *iommu, bool coherent)
141 {
142         dev->dma_coherent = coherent;
143 }
144 #endif