GNU Linux-libre 5.4.200-gnu1
[releases.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/memblock.h>
22
23 #include <asm/fpu.h>
24 #include <asm/page.h>
25 #include <asm/cacheflush.h>
26 #include <asm/mmu_context.h>
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33 #include "commpage.h"
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #ifndef VECTORSPACING
39 #define VECTORSPACING 0x100     /* for EI/VI mode */
40 #endif
41
42 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43 struct kvm_stats_debugfs_item debugfs_entries[] = {
44         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
45         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
46         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
47         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
48         { "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
49         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
50         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
51         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
52         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
53         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
54         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
55         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
56         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
57         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
58         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
59         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
60         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
61         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
62 #ifdef CONFIG_KVM_MIPS_VZ
63         { "vz_gpsi",      VCPU_STAT(vz_gpsi_exits),      KVM_STAT_VCPU },
64         { "vz_gsfc",      VCPU_STAT(vz_gsfc_exits),      KVM_STAT_VCPU },
65         { "vz_hc",        VCPU_STAT(vz_hc_exits),        KVM_STAT_VCPU },
66         { "vz_grr",       VCPU_STAT(vz_grr_exits),       KVM_STAT_VCPU },
67         { "vz_gva",       VCPU_STAT(vz_gva_exits),       KVM_STAT_VCPU },
68         { "vz_ghfc",      VCPU_STAT(vz_ghfc_exits),      KVM_STAT_VCPU },
69         { "vz_gpa",       VCPU_STAT(vz_gpa_exits),       KVM_STAT_VCPU },
70         { "vz_resvd",     VCPU_STAT(vz_resvd_exits),     KVM_STAT_VCPU },
71 #endif
72         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
73         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
74         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
75         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
76         {NULL}
77 };
78
79 bool kvm_trace_guest_mode_change;
80
81 int kvm_guest_mode_change_trace_reg(void)
82 {
83         kvm_trace_guest_mode_change = 1;
84         return 0;
85 }
86
87 void kvm_guest_mode_change_trace_unreg(void)
88 {
89         kvm_trace_guest_mode_change = 0;
90 }
91
92 /*
93  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
94  * Config7, so we are "runnable" if interrupts are pending
95  */
96 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
97 {
98         return !!(vcpu->arch.pending_exceptions);
99 }
100
101 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
102 {
103         return false;
104 }
105
106 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
107 {
108         return 1;
109 }
110
111 int kvm_arch_hardware_enable(void)
112 {
113         return kvm_mips_callbacks->hardware_enable();
114 }
115
116 void kvm_arch_hardware_disable(void)
117 {
118         kvm_mips_callbacks->hardware_disable();
119 }
120
121 int kvm_arch_hardware_setup(void)
122 {
123         return 0;
124 }
125
126 int kvm_arch_check_processor_compat(void)
127 {
128         return 0;
129 }
130
131 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132 {
133         switch (type) {
134         case KVM_VM_MIPS_AUTO:
135                 break;
136 #ifdef CONFIG_KVM_MIPS_VZ
137         case KVM_VM_MIPS_VZ:
138 #else
139         case KVM_VM_MIPS_TE:
140 #endif
141                 break;
142         default:
143                 /* Unsupported KVM type */
144                 return -EINVAL;
145         };
146
147         /* Allocate page table to map GPA -> RPA */
148         kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
149         if (!kvm->arch.gpa_mm.pgd)
150                 return -ENOMEM;
151
152         return 0;
153 }
154
155 void kvm_mips_free_vcpus(struct kvm *kvm)
156 {
157         unsigned int i;
158         struct kvm_vcpu *vcpu;
159
160         kvm_for_each_vcpu(i, vcpu, kvm) {
161                 kvm_arch_vcpu_free(vcpu);
162         }
163
164         mutex_lock(&kvm->lock);
165
166         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
167                 kvm->vcpus[i] = NULL;
168
169         atomic_set(&kvm->online_vcpus, 0);
170
171         mutex_unlock(&kvm->lock);
172 }
173
174 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
175 {
176         /* It should always be safe to remove after flushing the whole range */
177         WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
178         pgd_free(NULL, kvm->arch.gpa_mm.pgd);
179 }
180
181 void kvm_arch_destroy_vm(struct kvm *kvm)
182 {
183         kvm_mips_free_vcpus(kvm);
184         kvm_mips_free_gpa_pt(kvm);
185 }
186
187 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
188                         unsigned long arg)
189 {
190         return -ENOIOCTLCMD;
191 }
192
193 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
194                             unsigned long npages)
195 {
196         return 0;
197 }
198
199 void kvm_arch_flush_shadow_all(struct kvm *kvm)
200 {
201         /* Flush whole GPA */
202         kvm_mips_flush_gpa_pt(kvm, 0, ~0);
203
204         /* Let implementation do the rest */
205         kvm_mips_callbacks->flush_shadow_all(kvm);
206 }
207
208 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
209                                    struct kvm_memory_slot *slot)
210 {
211         /*
212          * The slot has been made invalid (ready for moving or deletion), so we
213          * need to ensure that it can no longer be accessed by any guest VCPUs.
214          */
215
216         spin_lock(&kvm->mmu_lock);
217         /* Flush slot from GPA */
218         kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
219                               slot->base_gfn + slot->npages - 1);
220         /* Let implementation do the rest */
221         kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
222         spin_unlock(&kvm->mmu_lock);
223 }
224
225 int kvm_arch_prepare_memory_region(struct kvm *kvm,
226                                    struct kvm_memory_slot *memslot,
227                                    const struct kvm_userspace_memory_region *mem,
228                                    enum kvm_mr_change change)
229 {
230         return 0;
231 }
232
233 void kvm_arch_commit_memory_region(struct kvm *kvm,
234                                    const struct kvm_userspace_memory_region *mem,
235                                    const struct kvm_memory_slot *old,
236                                    const struct kvm_memory_slot *new,
237                                    enum kvm_mr_change change)
238 {
239         int needs_flush;
240
241         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
242                   __func__, kvm, mem->slot, mem->guest_phys_addr,
243                   mem->memory_size, mem->userspace_addr);
244
245         /*
246          * If dirty page logging is enabled, write protect all pages in the slot
247          * ready for dirty logging.
248          *
249          * There is no need to do this in any of the following cases:
250          * CREATE:      No dirty mappings will already exist.
251          * MOVE/DELETE: The old mappings will already have been cleaned up by
252          *              kvm_arch_flush_shadow_memslot()
253          */
254         if (change == KVM_MR_FLAGS_ONLY &&
255             (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
256              new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
257                 spin_lock(&kvm->mmu_lock);
258                 /* Write protect GPA page table entries */
259                 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
260                                         new->base_gfn + new->npages - 1);
261                 /* Let implementation do the rest */
262                 if (needs_flush)
263                         kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
264                 spin_unlock(&kvm->mmu_lock);
265         }
266 }
267
268 static inline void dump_handler(const char *symbol, void *start, void *end)
269 {
270         u32 *p;
271
272         pr_debug("LEAF(%s)\n", symbol);
273
274         pr_debug("\t.set push\n");
275         pr_debug("\t.set noreorder\n");
276
277         for (p = start; p < (u32 *)end; ++p)
278                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
279
280         pr_debug("\t.set\tpop\n");
281
282         pr_debug("\tEND(%s)\n", symbol);
283 }
284
285 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
286 {
287         int err, size;
288         void *gebase, *p, *handler, *refill_start, *refill_end;
289         int i;
290
291         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
292
293         if (!vcpu) {
294                 err = -ENOMEM;
295                 goto out;
296         }
297
298         err = kvm_vcpu_init(vcpu, kvm, id);
299
300         if (err)
301                 goto out_free_cpu;
302
303         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
304
305         /*
306          * Allocate space for host mode exception handlers that handle
307          * guest mode exits
308          */
309         if (cpu_has_veic || cpu_has_vint)
310                 size = 0x200 + VECTORSPACING * 64;
311         else
312                 size = 0x4000;
313
314         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
315
316         if (!gebase) {
317                 err = -ENOMEM;
318                 goto out_uninit_cpu;
319         }
320         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
321                   ALIGN(size, PAGE_SIZE), gebase);
322
323         /*
324          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
325          * limits us to the low 512MB of physical address space. If the memory
326          * we allocate is out of range, just give up now.
327          */
328         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
329                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
330                         gebase);
331                 err = -ENOMEM;
332                 goto out_free_gebase;
333         }
334
335         /* Save new ebase */
336         vcpu->arch.guest_ebase = gebase;
337
338         /* Build guest exception vectors dynamically in unmapped memory */
339         handler = gebase + 0x2000;
340
341         /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
342         refill_start = gebase;
343         if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
344                 refill_start += 0x080;
345         refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
346
347         /* General Exception Entry point */
348         kvm_mips_build_exception(gebase + 0x180, handler);
349
350         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
351         for (i = 0; i < 8; i++) {
352                 kvm_debug("L1 Vectored handler @ %p\n",
353                           gebase + 0x200 + (i * VECTORSPACING));
354                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
355                                          handler);
356         }
357
358         /* General exit handler */
359         p = handler;
360         p = kvm_mips_build_exit(p);
361
362         /* Guest entry routine */
363         vcpu->arch.vcpu_run = p;
364         p = kvm_mips_build_vcpu_run(p);
365
366         /* Dump the generated code */
367         pr_debug("#include <asm/asm.h>\n");
368         pr_debug("#include <asm/regdef.h>\n");
369         pr_debug("\n");
370         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
371         dump_handler("kvm_tlb_refill", refill_start, refill_end);
372         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
373         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
374
375         /* Invalidate the icache for these ranges */
376         flush_icache_range((unsigned long)gebase,
377                            (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
378
379         /*
380          * Allocate comm page for guest kernel, a TLB will be reserved for
381          * mapping GVA @ 0xFFFF8000 to this page
382          */
383         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
384
385         if (!vcpu->arch.kseg0_commpage) {
386                 err = -ENOMEM;
387                 goto out_free_gebase;
388         }
389
390         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
391         kvm_mips_commpage_init(vcpu);
392
393         /* Init */
394         vcpu->arch.last_sched_cpu = -1;
395         vcpu->arch.last_exec_cpu = -1;
396
397         return vcpu;
398
399 out_free_gebase:
400         kfree(gebase);
401
402 out_uninit_cpu:
403         kvm_vcpu_uninit(vcpu);
404
405 out_free_cpu:
406         kfree(vcpu);
407
408 out:
409         return ERR_PTR(err);
410 }
411
412 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
413 {
414         hrtimer_cancel(&vcpu->arch.comparecount_timer);
415
416         kvm_vcpu_uninit(vcpu);
417
418         kvm_mips_dump_stats(vcpu);
419
420         kvm_mmu_free_memory_caches(vcpu);
421         kfree(vcpu->arch.guest_ebase);
422         kfree(vcpu->arch.kseg0_commpage);
423         kfree(vcpu);
424 }
425
426 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
427 {
428         kvm_arch_vcpu_free(vcpu);
429 }
430
431 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
432                                         struct kvm_guest_debug *dbg)
433 {
434         return -ENOIOCTLCMD;
435 }
436
437 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
438 {
439         int r = -EINTR;
440
441         vcpu_load(vcpu);
442
443         kvm_sigset_activate(vcpu);
444
445         if (vcpu->mmio_needed) {
446                 if (!vcpu->mmio_is_write)
447                         kvm_mips_complete_mmio_load(vcpu, run);
448                 vcpu->mmio_needed = 0;
449         }
450
451         if (run->immediate_exit)
452                 goto out;
453
454         lose_fpu(1);
455
456         local_irq_disable();
457         guest_enter_irqoff();
458         trace_kvm_enter(vcpu);
459
460         /*
461          * Make sure the read of VCPU requests in vcpu_run() callback is not
462          * reordered ahead of the write to vcpu->mode, or we could miss a TLB
463          * flush request while the requester sees the VCPU as outside of guest
464          * mode and not needing an IPI.
465          */
466         smp_store_mb(vcpu->mode, IN_GUEST_MODE);
467
468         r = kvm_mips_callbacks->vcpu_run(run, vcpu);
469
470         trace_kvm_out(vcpu);
471         guest_exit_irqoff();
472         local_irq_enable();
473
474 out:
475         kvm_sigset_deactivate(vcpu);
476
477         vcpu_put(vcpu);
478         return r;
479 }
480
481 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
482                              struct kvm_mips_interrupt *irq)
483 {
484         int intr = (int)irq->irq;
485         struct kvm_vcpu *dvcpu = NULL;
486
487         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
488                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
489                           (int)intr);
490
491         if (irq->cpu == -1)
492                 dvcpu = vcpu;
493         else
494                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
495
496         if (intr == 2 || intr == 3 || intr == 4) {
497                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
498
499         } else if (intr == -2 || intr == -3 || intr == -4) {
500                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
501         } else {
502                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
503                         irq->cpu, irq->irq);
504                 return -EINVAL;
505         }
506
507         dvcpu->arch.wait = 0;
508
509         if (swq_has_sleeper(&dvcpu->wq))
510                 swake_up_one(&dvcpu->wq);
511
512         return 0;
513 }
514
515 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
516                                     struct kvm_mp_state *mp_state)
517 {
518         return -ENOIOCTLCMD;
519 }
520
521 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
522                                     struct kvm_mp_state *mp_state)
523 {
524         return -ENOIOCTLCMD;
525 }
526
527 static u64 kvm_mips_get_one_regs[] = {
528         KVM_REG_MIPS_R0,
529         KVM_REG_MIPS_R1,
530         KVM_REG_MIPS_R2,
531         KVM_REG_MIPS_R3,
532         KVM_REG_MIPS_R4,
533         KVM_REG_MIPS_R5,
534         KVM_REG_MIPS_R6,
535         KVM_REG_MIPS_R7,
536         KVM_REG_MIPS_R8,
537         KVM_REG_MIPS_R9,
538         KVM_REG_MIPS_R10,
539         KVM_REG_MIPS_R11,
540         KVM_REG_MIPS_R12,
541         KVM_REG_MIPS_R13,
542         KVM_REG_MIPS_R14,
543         KVM_REG_MIPS_R15,
544         KVM_REG_MIPS_R16,
545         KVM_REG_MIPS_R17,
546         KVM_REG_MIPS_R18,
547         KVM_REG_MIPS_R19,
548         KVM_REG_MIPS_R20,
549         KVM_REG_MIPS_R21,
550         KVM_REG_MIPS_R22,
551         KVM_REG_MIPS_R23,
552         KVM_REG_MIPS_R24,
553         KVM_REG_MIPS_R25,
554         KVM_REG_MIPS_R26,
555         KVM_REG_MIPS_R27,
556         KVM_REG_MIPS_R28,
557         KVM_REG_MIPS_R29,
558         KVM_REG_MIPS_R30,
559         KVM_REG_MIPS_R31,
560
561 #ifndef CONFIG_CPU_MIPSR6
562         KVM_REG_MIPS_HI,
563         KVM_REG_MIPS_LO,
564 #endif
565         KVM_REG_MIPS_PC,
566 };
567
568 static u64 kvm_mips_get_one_regs_fpu[] = {
569         KVM_REG_MIPS_FCR_IR,
570         KVM_REG_MIPS_FCR_CSR,
571 };
572
573 static u64 kvm_mips_get_one_regs_msa[] = {
574         KVM_REG_MIPS_MSA_IR,
575         KVM_REG_MIPS_MSA_CSR,
576 };
577
578 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
579 {
580         unsigned long ret;
581
582         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
583         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
584                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
585                 /* odd doubles */
586                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
587                         ret += 16;
588         }
589         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
590                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
591         ret += kvm_mips_callbacks->num_regs(vcpu);
592
593         return ret;
594 }
595
596 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
597 {
598         u64 index;
599         unsigned int i;
600
601         if (copy_to_user(indices, kvm_mips_get_one_regs,
602                          sizeof(kvm_mips_get_one_regs)))
603                 return -EFAULT;
604         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
605
606         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
607                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
608                                  sizeof(kvm_mips_get_one_regs_fpu)))
609                         return -EFAULT;
610                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
611
612                 for (i = 0; i < 32; ++i) {
613                         index = KVM_REG_MIPS_FPR_32(i);
614                         if (copy_to_user(indices, &index, sizeof(index)))
615                                 return -EFAULT;
616                         ++indices;
617
618                         /* skip odd doubles if no F64 */
619                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
620                                 continue;
621
622                         index = KVM_REG_MIPS_FPR_64(i);
623                         if (copy_to_user(indices, &index, sizeof(index)))
624                                 return -EFAULT;
625                         ++indices;
626                 }
627         }
628
629         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
630                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
631                                  sizeof(kvm_mips_get_one_regs_msa)))
632                         return -EFAULT;
633                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
634
635                 for (i = 0; i < 32; ++i) {
636                         index = KVM_REG_MIPS_VEC_128(i);
637                         if (copy_to_user(indices, &index, sizeof(index)))
638                                 return -EFAULT;
639                         ++indices;
640                 }
641         }
642
643         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
644 }
645
646 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
647                             const struct kvm_one_reg *reg)
648 {
649         struct mips_coproc *cop0 = vcpu->arch.cop0;
650         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
651         int ret;
652         s64 v;
653         s64 vs[2];
654         unsigned int idx;
655
656         switch (reg->id) {
657         /* General purpose registers */
658         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
659                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
660                 break;
661 #ifndef CONFIG_CPU_MIPSR6
662         case KVM_REG_MIPS_HI:
663                 v = (long)vcpu->arch.hi;
664                 break;
665         case KVM_REG_MIPS_LO:
666                 v = (long)vcpu->arch.lo;
667                 break;
668 #endif
669         case KVM_REG_MIPS_PC:
670                 v = (long)vcpu->arch.pc;
671                 break;
672
673         /* Floating point registers */
674         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
675                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
676                         return -EINVAL;
677                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
678                 /* Odd singles in top of even double when FR=0 */
679                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
680                         v = get_fpr32(&fpu->fpr[idx], 0);
681                 else
682                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
683                 break;
684         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
685                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
686                         return -EINVAL;
687                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
688                 /* Can't access odd doubles in FR=0 mode */
689                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
690                         return -EINVAL;
691                 v = get_fpr64(&fpu->fpr[idx], 0);
692                 break;
693         case KVM_REG_MIPS_FCR_IR:
694                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
695                         return -EINVAL;
696                 v = boot_cpu_data.fpu_id;
697                 break;
698         case KVM_REG_MIPS_FCR_CSR:
699                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
700                         return -EINVAL;
701                 v = fpu->fcr31;
702                 break;
703
704         /* MIPS SIMD Architecture (MSA) registers */
705         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
706                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
707                         return -EINVAL;
708                 /* Can't access MSA registers in FR=0 mode */
709                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
710                         return -EINVAL;
711                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
712 #ifdef CONFIG_CPU_LITTLE_ENDIAN
713                 /* least significant byte first */
714                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
715                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
716 #else
717                 /* most significant byte first */
718                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
719                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
720 #endif
721                 break;
722         case KVM_REG_MIPS_MSA_IR:
723                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
724                         return -EINVAL;
725                 v = boot_cpu_data.msa_id;
726                 break;
727         case KVM_REG_MIPS_MSA_CSR:
728                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
729                         return -EINVAL;
730                 v = fpu->msacsr;
731                 break;
732
733         /* registers to be handled specially */
734         default:
735                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
736                 if (ret)
737                         return ret;
738                 break;
739         }
740         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
741                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
742
743                 return put_user(v, uaddr64);
744         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
745                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
746                 u32 v32 = (u32)v;
747
748                 return put_user(v32, uaddr32);
749         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
750                 void __user *uaddr = (void __user *)(long)reg->addr;
751
752                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
753         } else {
754                 return -EINVAL;
755         }
756 }
757
758 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
759                             const struct kvm_one_reg *reg)
760 {
761         struct mips_coproc *cop0 = vcpu->arch.cop0;
762         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
763         s64 v;
764         s64 vs[2];
765         unsigned int idx;
766
767         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
768                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
769
770                 if (get_user(v, uaddr64) != 0)
771                         return -EFAULT;
772         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
773                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
774                 s32 v32;
775
776                 if (get_user(v32, uaddr32) != 0)
777                         return -EFAULT;
778                 v = (s64)v32;
779         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
780                 void __user *uaddr = (void __user *)(long)reg->addr;
781
782                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
783         } else {
784                 return -EINVAL;
785         }
786
787         switch (reg->id) {
788         /* General purpose registers */
789         case KVM_REG_MIPS_R0:
790                 /* Silently ignore requests to set $0 */
791                 break;
792         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
793                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
794                 break;
795 #ifndef CONFIG_CPU_MIPSR6
796         case KVM_REG_MIPS_HI:
797                 vcpu->arch.hi = v;
798                 break;
799         case KVM_REG_MIPS_LO:
800                 vcpu->arch.lo = v;
801                 break;
802 #endif
803         case KVM_REG_MIPS_PC:
804                 vcpu->arch.pc = v;
805                 break;
806
807         /* Floating point registers */
808         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
809                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
810                         return -EINVAL;
811                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
812                 /* Odd singles in top of even double when FR=0 */
813                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
814                         set_fpr32(&fpu->fpr[idx], 0, v);
815                 else
816                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
817                 break;
818         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
819                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
820                         return -EINVAL;
821                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
822                 /* Can't access odd doubles in FR=0 mode */
823                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
824                         return -EINVAL;
825                 set_fpr64(&fpu->fpr[idx], 0, v);
826                 break;
827         case KVM_REG_MIPS_FCR_IR:
828                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
829                         return -EINVAL;
830                 /* Read-only */
831                 break;
832         case KVM_REG_MIPS_FCR_CSR:
833                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
834                         return -EINVAL;
835                 fpu->fcr31 = v;
836                 break;
837
838         /* MIPS SIMD Architecture (MSA) registers */
839         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
840                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
841                         return -EINVAL;
842                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
843 #ifdef CONFIG_CPU_LITTLE_ENDIAN
844                 /* least significant byte first */
845                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
846                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
847 #else
848                 /* most significant byte first */
849                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
850                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
851 #endif
852                 break;
853         case KVM_REG_MIPS_MSA_IR:
854                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
855                         return -EINVAL;
856                 /* Read-only */
857                 break;
858         case KVM_REG_MIPS_MSA_CSR:
859                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
860                         return -EINVAL;
861                 fpu->msacsr = v;
862                 break;
863
864         /* registers to be handled specially */
865         default:
866                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
867         }
868         return 0;
869 }
870
871 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
872                                      struct kvm_enable_cap *cap)
873 {
874         int r = 0;
875
876         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
877                 return -EINVAL;
878         if (cap->flags)
879                 return -EINVAL;
880         if (cap->args[0])
881                 return -EINVAL;
882
883         switch (cap->cap) {
884         case KVM_CAP_MIPS_FPU:
885                 vcpu->arch.fpu_enabled = true;
886                 break;
887         case KVM_CAP_MIPS_MSA:
888                 vcpu->arch.msa_enabled = true;
889                 break;
890         default:
891                 r = -EINVAL;
892                 break;
893         }
894
895         return r;
896 }
897
898 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
899                                unsigned long arg)
900 {
901         struct kvm_vcpu *vcpu = filp->private_data;
902         void __user *argp = (void __user *)arg;
903
904         if (ioctl == KVM_INTERRUPT) {
905                 struct kvm_mips_interrupt irq;
906
907                 if (copy_from_user(&irq, argp, sizeof(irq)))
908                         return -EFAULT;
909                 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
910                           irq.irq);
911
912                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
913         }
914
915         return -ENOIOCTLCMD;
916 }
917
918 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
919                          unsigned long arg)
920 {
921         struct kvm_vcpu *vcpu = filp->private_data;
922         void __user *argp = (void __user *)arg;
923         long r;
924
925         vcpu_load(vcpu);
926
927         switch (ioctl) {
928         case KVM_SET_ONE_REG:
929         case KVM_GET_ONE_REG: {
930                 struct kvm_one_reg reg;
931
932                 r = -EFAULT;
933                 if (copy_from_user(&reg, argp, sizeof(reg)))
934                         break;
935                 if (ioctl == KVM_SET_ONE_REG)
936                         r = kvm_mips_set_reg(vcpu, &reg);
937                 else
938                         r = kvm_mips_get_reg(vcpu, &reg);
939                 break;
940         }
941         case KVM_GET_REG_LIST: {
942                 struct kvm_reg_list __user *user_list = argp;
943                 struct kvm_reg_list reg_list;
944                 unsigned n;
945
946                 r = -EFAULT;
947                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
948                         break;
949                 n = reg_list.n;
950                 reg_list.n = kvm_mips_num_regs(vcpu);
951                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
952                         break;
953                 r = -E2BIG;
954                 if (n < reg_list.n)
955                         break;
956                 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
957                 break;
958         }
959         case KVM_ENABLE_CAP: {
960                 struct kvm_enable_cap cap;
961
962                 r = -EFAULT;
963                 if (copy_from_user(&cap, argp, sizeof(cap)))
964                         break;
965                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
966                 break;
967         }
968         default:
969                 r = -ENOIOCTLCMD;
970         }
971
972         vcpu_put(vcpu);
973         return r;
974 }
975
976 /**
977  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
978  * @kvm: kvm instance
979  * @log: slot id and address to which we copy the log
980  *
981  * Steps 1-4 below provide general overview of dirty page logging. See
982  * kvm_get_dirty_log_protect() function description for additional details.
983  *
984  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
985  * always flush the TLB (step 4) even if previous step failed  and the dirty
986  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
987  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
988  * writes will be marked dirty for next log read.
989  *
990  *   1. Take a snapshot of the bit and clear it if needed.
991  *   2. Write protect the corresponding page.
992  *   3. Copy the snapshot to the userspace.
993  *   4. Flush TLB's if needed.
994  */
995 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
996 {
997         struct kvm_memslots *slots;
998         struct kvm_memory_slot *memslot;
999         bool flush = false;
1000         int r;
1001
1002         mutex_lock(&kvm->slots_lock);
1003
1004         r = kvm_get_dirty_log_protect(kvm, log, &flush);
1005
1006         if (flush) {
1007                 slots = kvm_memslots(kvm);
1008                 memslot = id_to_memslot(slots, log->slot);
1009
1010                 /* Let implementation handle TLB/GVA invalidation */
1011                 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1012         }
1013
1014         mutex_unlock(&kvm->slots_lock);
1015         return r;
1016 }
1017
1018 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1019 {
1020         struct kvm_memslots *slots;
1021         struct kvm_memory_slot *memslot;
1022         bool flush = false;
1023         int r;
1024
1025         mutex_lock(&kvm->slots_lock);
1026
1027         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1028
1029         if (flush) {
1030                 slots = kvm_memslots(kvm);
1031                 memslot = id_to_memslot(slots, log->slot);
1032
1033                 /* Let implementation handle TLB/GVA invalidation */
1034                 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1035         }
1036
1037         mutex_unlock(&kvm->slots_lock);
1038         return r;
1039 }
1040
1041 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1042 {
1043         long r;
1044
1045         switch (ioctl) {
1046         default:
1047                 r = -ENOIOCTLCMD;
1048         }
1049
1050         return r;
1051 }
1052
1053 int kvm_arch_init(void *opaque)
1054 {
1055         if (kvm_mips_callbacks) {
1056                 kvm_err("kvm: module already exists\n");
1057                 return -EEXIST;
1058         }
1059
1060         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1061 }
1062
1063 void kvm_arch_exit(void)
1064 {
1065         kvm_mips_callbacks = NULL;
1066 }
1067
1068 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1069                                   struct kvm_sregs *sregs)
1070 {
1071         return -ENOIOCTLCMD;
1072 }
1073
1074 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1075                                   struct kvm_sregs *sregs)
1076 {
1077         return -ENOIOCTLCMD;
1078 }
1079
1080 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1081 {
1082 }
1083
1084 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1085 {
1086         return -ENOIOCTLCMD;
1087 }
1088
1089 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1090 {
1091         return -ENOIOCTLCMD;
1092 }
1093
1094 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1095 {
1096         return VM_FAULT_SIGBUS;
1097 }
1098
1099 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1100 {
1101         int r;
1102
1103         switch (ext) {
1104         case KVM_CAP_ONE_REG:
1105         case KVM_CAP_ENABLE_CAP:
1106         case KVM_CAP_READONLY_MEM:
1107         case KVM_CAP_SYNC_MMU:
1108         case KVM_CAP_IMMEDIATE_EXIT:
1109                 r = 1;
1110                 break;
1111         case KVM_CAP_NR_VCPUS:
1112                 r = num_online_cpus();
1113                 break;
1114         case KVM_CAP_MAX_VCPUS:
1115                 r = KVM_MAX_VCPUS;
1116                 break;
1117         case KVM_CAP_MAX_VCPU_ID:
1118                 r = KVM_MAX_VCPU_ID;
1119                 break;
1120         case KVM_CAP_MIPS_FPU:
1121                 /* We don't handle systems with inconsistent cpu_has_fpu */
1122                 r = !!raw_cpu_has_fpu;
1123                 break;
1124         case KVM_CAP_MIPS_MSA:
1125                 /*
1126                  * We don't support MSA vector partitioning yet:
1127                  * 1) It would require explicit support which can't be tested
1128                  *    yet due to lack of support in current hardware.
1129                  * 2) It extends the state that would need to be saved/restored
1130                  *    by e.g. QEMU for migration.
1131                  *
1132                  * When vector partitioning hardware becomes available, support
1133                  * could be added by requiring a flag when enabling
1134                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1135                  * to save/restore the appropriate extra state.
1136                  */
1137                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1138                 break;
1139         default:
1140                 r = kvm_mips_callbacks->check_extension(kvm, ext);
1141                 break;
1142         }
1143         return r;
1144 }
1145
1146 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1147 {
1148         return kvm_mips_pending_timer(vcpu) ||
1149                 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1150 }
1151
1152 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1153 {
1154         int i;
1155         struct mips_coproc *cop0;
1156
1157         if (!vcpu)
1158                 return -1;
1159
1160         kvm_debug("VCPU Register Dump:\n");
1161         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1162         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1163
1164         for (i = 0; i < 32; i += 4) {
1165                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1166                        vcpu->arch.gprs[i],
1167                        vcpu->arch.gprs[i + 1],
1168                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1169         }
1170         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1171         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1172
1173         cop0 = vcpu->arch.cop0;
1174         kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1175                   kvm_read_c0_guest_status(cop0),
1176                   kvm_read_c0_guest_cause(cop0));
1177
1178         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1179
1180         return 0;
1181 }
1182
1183 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1184 {
1185         int i;
1186
1187         vcpu_load(vcpu);
1188
1189         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1190                 vcpu->arch.gprs[i] = regs->gpr[i];
1191         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1192         vcpu->arch.hi = regs->hi;
1193         vcpu->arch.lo = regs->lo;
1194         vcpu->arch.pc = regs->pc;
1195
1196         vcpu_put(vcpu);
1197         return 0;
1198 }
1199
1200 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1201 {
1202         int i;
1203
1204         vcpu_load(vcpu);
1205
1206         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1207                 regs->gpr[i] = vcpu->arch.gprs[i];
1208
1209         regs->hi = vcpu->arch.hi;
1210         regs->lo = vcpu->arch.lo;
1211         regs->pc = vcpu->arch.pc;
1212
1213         vcpu_put(vcpu);
1214         return 0;
1215 }
1216
1217 static void kvm_mips_comparecount_func(unsigned long data)
1218 {
1219         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1220
1221         kvm_mips_callbacks->queue_timer_int(vcpu);
1222
1223         vcpu->arch.wait = 0;
1224         if (swq_has_sleeper(&vcpu->wq))
1225                 swake_up_one(&vcpu->wq);
1226 }
1227
1228 /* low level hrtimer wake routine */
1229 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1230 {
1231         struct kvm_vcpu *vcpu;
1232
1233         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1234         kvm_mips_comparecount_func((unsigned long) vcpu);
1235         return kvm_mips_count_timeout(vcpu);
1236 }
1237
1238 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1239 {
1240         int err;
1241
1242         err = kvm_mips_callbacks->vcpu_init(vcpu);
1243         if (err)
1244                 return err;
1245
1246         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1247                      HRTIMER_MODE_REL);
1248         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1249         return 0;
1250 }
1251
1252 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1253 {
1254         kvm_mips_callbacks->vcpu_uninit(vcpu);
1255 }
1256
1257 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1258                                   struct kvm_translation *tr)
1259 {
1260         return 0;
1261 }
1262
1263 /* Initial guest state */
1264 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1265 {
1266         return kvm_mips_callbacks->vcpu_setup(vcpu);
1267 }
1268
1269 static void kvm_mips_set_c0_status(void)
1270 {
1271         u32 status = read_c0_status();
1272
1273         if (cpu_has_dsp)
1274                 status |= (ST0_MX);
1275
1276         write_c0_status(status);
1277         ehb();
1278 }
1279
1280 /*
1281  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1282  */
1283 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1284 {
1285         u32 cause = vcpu->arch.host_cp0_cause;
1286         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1287         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1288         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1289         enum emulation_result er = EMULATE_DONE;
1290         u32 inst;
1291         int ret = RESUME_GUEST;
1292
1293         vcpu->mode = OUTSIDE_GUEST_MODE;
1294
1295         /* re-enable HTW before enabling interrupts */
1296         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1297                 htw_start();
1298
1299         /* Set a default exit reason */
1300         run->exit_reason = KVM_EXIT_UNKNOWN;
1301         run->ready_for_interrupt_injection = 1;
1302
1303         /*
1304          * Set the appropriate status bits based on host CPU features,
1305          * before we hit the scheduler
1306          */
1307         kvm_mips_set_c0_status();
1308
1309         local_irq_enable();
1310
1311         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1312                         cause, opc, run, vcpu);
1313         trace_kvm_exit(vcpu, exccode);
1314
1315         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1316                 /*
1317                  * Do a privilege check, if in UM most of these exit conditions
1318                  * end up causing an exception to be delivered to the Guest
1319                  * Kernel
1320                  */
1321                 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1322                 if (er == EMULATE_PRIV_FAIL) {
1323                         goto skip_emul;
1324                 } else if (er == EMULATE_FAIL) {
1325                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1326                         ret = RESUME_HOST;
1327                         goto skip_emul;
1328                 }
1329         }
1330
1331         switch (exccode) {
1332         case EXCCODE_INT:
1333                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1334
1335                 ++vcpu->stat.int_exits;
1336
1337                 if (need_resched())
1338                         cond_resched();
1339
1340                 ret = RESUME_GUEST;
1341                 break;
1342
1343         case EXCCODE_CPU:
1344                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1345
1346                 ++vcpu->stat.cop_unusable_exits;
1347                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1348                 /* XXXKYMA: Might need to return to user space */
1349                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1350                         ret = RESUME_HOST;
1351                 break;
1352
1353         case EXCCODE_MOD:
1354                 ++vcpu->stat.tlbmod_exits;
1355                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1356                 break;
1357
1358         case EXCCODE_TLBS:
1359                 kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1360                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1361                           badvaddr);
1362
1363                 ++vcpu->stat.tlbmiss_st_exits;
1364                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1365                 break;
1366
1367         case EXCCODE_TLBL:
1368                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1369                           cause, opc, badvaddr);
1370
1371                 ++vcpu->stat.tlbmiss_ld_exits;
1372                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1373                 break;
1374
1375         case EXCCODE_ADES:
1376                 ++vcpu->stat.addrerr_st_exits;
1377                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1378                 break;
1379
1380         case EXCCODE_ADEL:
1381                 ++vcpu->stat.addrerr_ld_exits;
1382                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1383                 break;
1384
1385         case EXCCODE_SYS:
1386                 ++vcpu->stat.syscall_exits;
1387                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1388                 break;
1389
1390         case EXCCODE_RI:
1391                 ++vcpu->stat.resvd_inst_exits;
1392                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1393                 break;
1394
1395         case EXCCODE_BP:
1396                 ++vcpu->stat.break_inst_exits;
1397                 ret = kvm_mips_callbacks->handle_break(vcpu);
1398                 break;
1399
1400         case EXCCODE_TR:
1401                 ++vcpu->stat.trap_inst_exits;
1402                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1403                 break;
1404
1405         case EXCCODE_MSAFPE:
1406                 ++vcpu->stat.msa_fpe_exits;
1407                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1408                 break;
1409
1410         case EXCCODE_FPE:
1411                 ++vcpu->stat.fpe_exits;
1412                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1413                 break;
1414
1415         case EXCCODE_MSADIS:
1416                 ++vcpu->stat.msa_disabled_exits;
1417                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1418                 break;
1419
1420         case EXCCODE_GE:
1421                 /* defer exit accounting to handler */
1422                 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1423                 break;
1424
1425         default:
1426                 if (cause & CAUSEF_BD)
1427                         opc += 1;
1428                 inst = 0;
1429                 kvm_get_badinstr(opc, vcpu, &inst);
1430                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1431                         exccode, opc, inst, badvaddr,
1432                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1433                 kvm_arch_vcpu_dump_regs(vcpu);
1434                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1435                 ret = RESUME_HOST;
1436                 break;
1437
1438         }
1439
1440 skip_emul:
1441         local_irq_disable();
1442
1443         if (ret == RESUME_GUEST)
1444                 kvm_vz_acquire_htimer(vcpu);
1445
1446         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1447                 kvm_mips_deliver_interrupts(vcpu, cause);
1448
1449         if (!(ret & RESUME_HOST)) {
1450                 /* Only check for signals if not already exiting to userspace */
1451                 if (signal_pending(current)) {
1452                         run->exit_reason = KVM_EXIT_INTR;
1453                         ret = (-EINTR << 2) | RESUME_HOST;
1454                         ++vcpu->stat.signal_exits;
1455                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1456                 }
1457         }
1458
1459         if (ret == RESUME_GUEST) {
1460                 trace_kvm_reenter(vcpu);
1461
1462                 /*
1463                  * Make sure the read of VCPU requests in vcpu_reenter()
1464                  * callback is not reordered ahead of the write to vcpu->mode,
1465                  * or we could miss a TLB flush request while the requester sees
1466                  * the VCPU as outside of guest mode and not needing an IPI.
1467                  */
1468                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1469
1470                 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1471
1472                 /*
1473                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1474                  * is live), restore FCR31 / MSACSR.
1475                  *
1476                  * This should be before returning to the guest exception
1477                  * vector, as it may well cause an [MSA] FP exception if there
1478                  * are pending exception bits unmasked. (see
1479                  * kvm_mips_csr_die_notifier() for how that is handled).
1480                  */
1481                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1482                     read_c0_status() & ST0_CU1)
1483                         __kvm_restore_fcsr(&vcpu->arch);
1484
1485                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1486                     read_c0_config5() & MIPS_CONF5_MSAEN)
1487                         __kvm_restore_msacsr(&vcpu->arch);
1488         }
1489
1490         /* Disable HTW before returning to guest or host */
1491         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1492                 htw_stop();
1493
1494         return ret;
1495 }
1496
1497 /* Enable FPU for guest and restore context */
1498 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1499 {
1500         struct mips_coproc *cop0 = vcpu->arch.cop0;
1501         unsigned int sr, cfg5;
1502
1503         preempt_disable();
1504
1505         sr = kvm_read_c0_guest_status(cop0);
1506
1507         /*
1508          * If MSA state is already live, it is undefined how it interacts with
1509          * FR=0 FPU state, and we don't want to hit reserved instruction
1510          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1511          * play it safe and save it first.
1512          *
1513          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1514          * get called when guest CU1 is set, however we can't trust the guest
1515          * not to clobber the status register directly via the commpage.
1516          */
1517         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1518             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1519                 kvm_lose_fpu(vcpu);
1520
1521         /*
1522          * Enable FPU for guest
1523          * We set FR and FRE according to guest context
1524          */
1525         change_c0_status(ST0_CU1 | ST0_FR, sr);
1526         if (cpu_has_fre) {
1527                 cfg5 = kvm_read_c0_guest_config5(cop0);
1528                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1529         }
1530         enable_fpu_hazard();
1531
1532         /* If guest FPU state not active, restore it now */
1533         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1534                 __kvm_restore_fpu(&vcpu->arch);
1535                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1536                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1537         } else {
1538                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1539         }
1540
1541         preempt_enable();
1542 }
1543
1544 #ifdef CONFIG_CPU_HAS_MSA
1545 /* Enable MSA for guest and restore context */
1546 void kvm_own_msa(struct kvm_vcpu *vcpu)
1547 {
1548         struct mips_coproc *cop0 = vcpu->arch.cop0;
1549         unsigned int sr, cfg5;
1550
1551         preempt_disable();
1552
1553         /*
1554          * Enable FPU if enabled in guest, since we're restoring FPU context
1555          * anyway. We set FR and FRE according to guest context.
1556          */
1557         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1558                 sr = kvm_read_c0_guest_status(cop0);
1559
1560                 /*
1561                  * If FR=0 FPU state is already live, it is undefined how it
1562                  * interacts with MSA state, so play it safe and save it first.
1563                  */
1564                 if (!(sr & ST0_FR) &&
1565                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1566                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1567                         kvm_lose_fpu(vcpu);
1568
1569                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1570                 if (sr & ST0_CU1 && cpu_has_fre) {
1571                         cfg5 = kvm_read_c0_guest_config5(cop0);
1572                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1573                 }
1574         }
1575
1576         /* Enable MSA for guest */
1577         set_c0_config5(MIPS_CONF5_MSAEN);
1578         enable_fpu_hazard();
1579
1580         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1581         case KVM_MIPS_AUX_FPU:
1582                 /*
1583                  * Guest FPU state already loaded, only restore upper MSA state
1584                  */
1585                 __kvm_restore_msa_upper(&vcpu->arch);
1586                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1587                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1588                 break;
1589         case 0:
1590                 /* Neither FPU or MSA already active, restore full MSA state */
1591                 __kvm_restore_msa(&vcpu->arch);
1592                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1593                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1594                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1595                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1596                               KVM_TRACE_AUX_FPU_MSA);
1597                 break;
1598         default:
1599                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1600                 break;
1601         }
1602
1603         preempt_enable();
1604 }
1605 #endif
1606
1607 /* Drop FPU & MSA without saving it */
1608 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1609 {
1610         preempt_disable();
1611         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1612                 disable_msa();
1613                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1614                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1615         }
1616         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1617                 clear_c0_status(ST0_CU1 | ST0_FR);
1618                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1619                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1620         }
1621         preempt_enable();
1622 }
1623
1624 /* Save and disable FPU & MSA */
1625 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1626 {
1627         /*
1628          * With T&E, FPU & MSA get disabled in root context (hardware) when it
1629          * is disabled in guest context (software), but the register state in
1630          * the hardware may still be in use.
1631          * This is why we explicitly re-enable the hardware before saving.
1632          */
1633
1634         preempt_disable();
1635         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1636                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1637                         set_c0_config5(MIPS_CONF5_MSAEN);
1638                         enable_fpu_hazard();
1639                 }
1640
1641                 __kvm_save_msa(&vcpu->arch);
1642                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1643
1644                 /* Disable MSA & FPU */
1645                 disable_msa();
1646                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1647                         clear_c0_status(ST0_CU1 | ST0_FR);
1648                         disable_fpu_hazard();
1649                 }
1650                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1651         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1652                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1653                         set_c0_status(ST0_CU1);
1654                         enable_fpu_hazard();
1655                 }
1656
1657                 __kvm_save_fpu(&vcpu->arch);
1658                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1659                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1660
1661                 /* Disable FPU */
1662                 clear_c0_status(ST0_CU1 | ST0_FR);
1663                 disable_fpu_hazard();
1664         }
1665         preempt_enable();
1666 }
1667
1668 /*
1669  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1670  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1671  * exception if cause bits are set in the value being written.
1672  */
1673 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1674                                    unsigned long cmd, void *ptr)
1675 {
1676         struct die_args *args = (struct die_args *)ptr;
1677         struct pt_regs *regs = args->regs;
1678         unsigned long pc;
1679
1680         /* Only interested in FPE and MSAFPE */
1681         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1682                 return NOTIFY_DONE;
1683
1684         /* Return immediately if guest context isn't active */
1685         if (!(current->flags & PF_VCPU))
1686                 return NOTIFY_DONE;
1687
1688         /* Should never get here from user mode */
1689         BUG_ON(user_mode(regs));
1690
1691         pc = instruction_pointer(regs);
1692         switch (cmd) {
1693         case DIE_FP:
1694                 /* match 2nd instruction in __kvm_restore_fcsr */
1695                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1696                         return NOTIFY_DONE;
1697                 break;
1698         case DIE_MSAFP:
1699                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1700                 if (!cpu_has_msa ||
1701                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1702                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1703                         return NOTIFY_DONE;
1704                 break;
1705         }
1706
1707         /* Move PC forward a little and continue executing */
1708         instruction_pointer(regs) += 4;
1709
1710         return NOTIFY_STOP;
1711 }
1712
1713 static struct notifier_block kvm_mips_csr_die_notifier = {
1714         .notifier_call = kvm_mips_csr_die_notify,
1715 };
1716
1717 static int __init kvm_mips_init(void)
1718 {
1719         int ret;
1720
1721         if (cpu_has_mmid) {
1722                 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1723                 return -EOPNOTSUPP;
1724         }
1725
1726         ret = kvm_mips_entry_setup();
1727         if (ret)
1728                 return ret;
1729
1730         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1731
1732         if (ret)
1733                 return ret;
1734
1735         register_die_notifier(&kvm_mips_csr_die_notifier);
1736
1737         return 0;
1738 }
1739
1740 static void __exit kvm_mips_exit(void)
1741 {
1742         kvm_exit();
1743
1744         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1745 }
1746
1747 module_init(kvm_mips_init);
1748 module_exit(kvm_mips_exit);
1749
1750 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);