GNU Linux-libre 4.9.301-gnu1
[releases.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/fs.h>
20 #include <linux/bootmem.h>
21 #include <asm/fpu.h>
22 #include <asm/page.h>
23 #include <asm/cacheflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/pgtable.h>
26
27 #include <linux/kvm_host.h>
28
29 #include "interrupt.h"
30 #include "commpage.h"
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #ifndef VECTORSPACING
36 #define VECTORSPACING 0x100     /* for EI/VI mode */
37 #endif
38
39 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
40 struct kvm_stats_debugfs_item debugfs_entries[] = {
41         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
42         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
43         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
44         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
45         { "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
46         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
47         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
48         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
49         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
50         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
51         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
52         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
53         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
54         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
55         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
56         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
57         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
58         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
59         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
60         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
61         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
62         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
63         {NULL}
64 };
65
66 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
67 {
68         int i;
69
70         for_each_possible_cpu(i) {
71                 vcpu->arch.guest_kernel_asid[i] = 0;
72                 vcpu->arch.guest_user_asid[i] = 0;
73         }
74
75         return 0;
76 }
77
78 /*
79  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
80  * Config7, so we are "runnable" if interrupts are pending
81  */
82 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
83 {
84         return !!(vcpu->arch.pending_exceptions);
85 }
86
87 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
88 {
89         return 1;
90 }
91
92 int kvm_arch_hardware_enable(void)
93 {
94         return 0;
95 }
96
97 int kvm_arch_hardware_setup(void)
98 {
99         return 0;
100 }
101
102 void kvm_arch_check_processor_compat(void *rtn)
103 {
104         *(int *)rtn = 0;
105 }
106
107 static void kvm_mips_init_tlbs(struct kvm *kvm)
108 {
109         unsigned long wired;
110
111         /*
112          * Add a wired entry to the TLB, it is used to map the commpage to
113          * the Guest kernel
114          */
115         wired = read_c0_wired();
116         write_c0_wired(wired + 1);
117         mtc0_tlbw_hazard();
118         kvm->arch.commpage_tlb = wired;
119
120         kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
121                   kvm->arch.commpage_tlb);
122 }
123
124 static void kvm_mips_init_vm_percpu(void *arg)
125 {
126         struct kvm *kvm = (struct kvm *)arg;
127
128         kvm_mips_init_tlbs(kvm);
129         kvm_mips_callbacks->vm_init(kvm);
130
131 }
132
133 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
134 {
135         if (atomic_inc_return(&kvm_mips_instance) == 1) {
136                 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
137                           __func__);
138                 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
139         }
140
141         return 0;
142 }
143
144 bool kvm_arch_has_vcpu_debugfs(void)
145 {
146         return false;
147 }
148
149 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
150 {
151         return 0;
152 }
153
154 void kvm_mips_free_vcpus(struct kvm *kvm)
155 {
156         unsigned int i;
157         struct kvm_vcpu *vcpu;
158
159         /* Put the pages we reserved for the guest pmap */
160         for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
161                 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
162                         kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
163         }
164         kfree(kvm->arch.guest_pmap);
165
166         kvm_for_each_vcpu(i, vcpu, kvm) {
167                 kvm_arch_vcpu_free(vcpu);
168         }
169
170         mutex_lock(&kvm->lock);
171
172         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
173                 kvm->vcpus[i] = NULL;
174
175         atomic_set(&kvm->online_vcpus, 0);
176
177         mutex_unlock(&kvm->lock);
178 }
179
180 static void kvm_mips_uninit_tlbs(void *arg)
181 {
182         /* Restore wired count */
183         write_c0_wired(0);
184         mtc0_tlbw_hazard();
185         /* Clear out all the TLBs */
186         kvm_local_flush_tlb_all();
187 }
188
189 void kvm_arch_destroy_vm(struct kvm *kvm)
190 {
191         kvm_mips_free_vcpus(kvm);
192
193         /* If this is the last instance, restore wired count */
194         if (atomic_dec_return(&kvm_mips_instance) == 0) {
195                 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
196                           __func__);
197                 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
198         }
199 }
200
201 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
202                         unsigned long arg)
203 {
204         return -ENOIOCTLCMD;
205 }
206
207 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
208                             unsigned long npages)
209 {
210         return 0;
211 }
212
213 int kvm_arch_prepare_memory_region(struct kvm *kvm,
214                                    struct kvm_memory_slot *memslot,
215                                    const struct kvm_userspace_memory_region *mem,
216                                    enum kvm_mr_change change)
217 {
218         return 0;
219 }
220
221 void kvm_arch_commit_memory_region(struct kvm *kvm,
222                                    const struct kvm_userspace_memory_region *mem,
223                                    const struct kvm_memory_slot *old,
224                                    const struct kvm_memory_slot *new,
225                                    enum kvm_mr_change change)
226 {
227         unsigned long npages = 0;
228         int i;
229
230         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
231                   __func__, kvm, mem->slot, mem->guest_phys_addr,
232                   mem->memory_size, mem->userspace_addr);
233
234         /* Setup Guest PMAP table */
235         if (!kvm->arch.guest_pmap) {
236                 if (mem->slot == 0)
237                         npages = mem->memory_size >> PAGE_SHIFT;
238
239                 if (npages) {
240                         kvm->arch.guest_pmap_npages = npages;
241                         kvm->arch.guest_pmap =
242                             kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
243
244                         if (!kvm->arch.guest_pmap) {
245                                 kvm_err("Failed to allocate guest PMAP\n");
246                                 return;
247                         }
248
249                         kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
250                                   npages, kvm->arch.guest_pmap);
251
252                         /* Now setup the page table */
253                         for (i = 0; i < npages; i++)
254                                 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
255                 }
256         }
257 }
258
259 static inline void dump_handler(const char *symbol, void *start, void *end)
260 {
261         u32 *p;
262
263         pr_debug("LEAF(%s)\n", symbol);
264
265         pr_debug("\t.set push\n");
266         pr_debug("\t.set noreorder\n");
267
268         for (p = start; p < (u32 *)end; ++p)
269                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
270
271         pr_debug("\t.set\tpop\n");
272
273         pr_debug("\tEND(%s)\n", symbol);
274 }
275
276 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
277 {
278         int err, size;
279         void *gebase, *p, *handler;
280         int i;
281
282         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
283
284         if (!vcpu) {
285                 err = -ENOMEM;
286                 goto out;
287         }
288
289         err = kvm_vcpu_init(vcpu, kvm, id);
290
291         if (err)
292                 goto out_free_cpu;
293
294         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
295
296         /*
297          * Allocate space for host mode exception handlers that handle
298          * guest mode exits
299          */
300         if (cpu_has_veic || cpu_has_vint)
301                 size = 0x200 + VECTORSPACING * 64;
302         else
303                 size = 0x4000;
304
305         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
306
307         if (!gebase) {
308                 err = -ENOMEM;
309                 goto out_uninit_cpu;
310         }
311         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
312                   ALIGN(size, PAGE_SIZE), gebase);
313
314         /*
315          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
316          * limits us to the low 512MB of physical address space. If the memory
317          * we allocate is out of range, just give up now.
318          */
319         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
320                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
321                         gebase);
322                 err = -ENOMEM;
323                 goto out_free_gebase;
324         }
325
326         /* Save new ebase */
327         vcpu->arch.guest_ebase = gebase;
328
329         /* Build guest exception vectors dynamically in unmapped memory */
330         handler = gebase + 0x2000;
331
332         /* TLB Refill, EXL = 0 */
333         kvm_mips_build_exception(gebase, handler);
334
335         /* General Exception Entry point */
336         kvm_mips_build_exception(gebase + 0x180, handler);
337
338         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
339         for (i = 0; i < 8; i++) {
340                 kvm_debug("L1 Vectored handler @ %p\n",
341                           gebase + 0x200 + (i * VECTORSPACING));
342                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
343                                          handler);
344         }
345
346         /* General exit handler */
347         p = handler;
348         p = kvm_mips_build_exit(p);
349
350         /* Guest entry routine */
351         vcpu->arch.vcpu_run = p;
352         p = kvm_mips_build_vcpu_run(p);
353
354         /* Dump the generated code */
355         pr_debug("#include <asm/asm.h>\n");
356         pr_debug("#include <asm/regdef.h>\n");
357         pr_debug("\n");
358         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
359         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
360         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
361
362         /* Invalidate the icache for these ranges */
363         flush_icache_range((unsigned long)gebase,
364                            (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
365
366         /*
367          * Allocate comm page for guest kernel, a TLB will be reserved for
368          * mapping GVA @ 0xFFFF8000 to this page
369          */
370         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
371
372         if (!vcpu->arch.kseg0_commpage) {
373                 err = -ENOMEM;
374                 goto out_free_gebase;
375         }
376
377         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
378         kvm_mips_commpage_init(vcpu);
379
380         /* Init */
381         vcpu->arch.last_sched_cpu = -1;
382
383         /* Start off the timer */
384         kvm_mips_init_count(vcpu);
385
386         return vcpu;
387
388 out_free_gebase:
389         kfree(gebase);
390
391 out_uninit_cpu:
392         kvm_vcpu_uninit(vcpu);
393
394 out_free_cpu:
395         kfree(vcpu);
396
397 out:
398         return ERR_PTR(err);
399 }
400
401 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
402 {
403         hrtimer_cancel(&vcpu->arch.comparecount_timer);
404
405         kvm_vcpu_uninit(vcpu);
406
407         kvm_mips_dump_stats(vcpu);
408
409         kfree(vcpu->arch.guest_ebase);
410         kfree(vcpu->arch.kseg0_commpage);
411         kfree(vcpu);
412 }
413
414 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
415 {
416         kvm_arch_vcpu_free(vcpu);
417 }
418
419 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
420                                         struct kvm_guest_debug *dbg)
421 {
422         return -ENOIOCTLCMD;
423 }
424
425 /* Must be called with preemption disabled, just before entering guest */
426 static void kvm_mips_check_asids(struct kvm_vcpu *vcpu)
427 {
428         struct mips_coproc *cop0 = vcpu->arch.cop0;
429         int i, cpu = smp_processor_id();
430         unsigned int gasid;
431
432         /*
433          * Lazy host ASID regeneration for guest user mode.
434          * If the guest ASID has changed since the last guest usermode
435          * execution, regenerate the host ASID so as to invalidate stale TLB
436          * entries.
437          */
438         if (!KVM_GUEST_KERNEL_MODE(vcpu)) {
439                 gasid = kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID;
440                 if (gasid != vcpu->arch.last_user_gasid) {
441                         kvm_get_new_mmu_context(&vcpu->arch.guest_user_mm, cpu,
442                                                 vcpu);
443                         vcpu->arch.guest_user_asid[cpu] =
444                                 vcpu->arch.guest_user_mm.context.asid[cpu];
445                         for_each_possible_cpu(i)
446                                 if (i != cpu)
447                                         vcpu->arch.guest_user_asid[cpu] = 0;
448                         vcpu->arch.last_user_gasid = gasid;
449                 }
450         }
451 }
452
453 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
454 {
455         int r = 0;
456         sigset_t sigsaved;
457
458         if (vcpu->sigset_active)
459                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
460
461         if (vcpu->mmio_needed) {
462                 if (!vcpu->mmio_is_write)
463                         kvm_mips_complete_mmio_load(vcpu, run);
464                 vcpu->mmio_needed = 0;
465         }
466
467         lose_fpu(1);
468
469         local_irq_disable();
470         /* Check if we have any exceptions/interrupts pending */
471         kvm_mips_deliver_interrupts(vcpu,
472                                     kvm_read_c0_guest_cause(vcpu->arch.cop0));
473
474         guest_enter_irqoff();
475
476         /* Disable hardware page table walking while in guest */
477         htw_stop();
478
479         trace_kvm_enter(vcpu);
480
481         kvm_mips_check_asids(vcpu);
482
483         r = vcpu->arch.vcpu_run(run, vcpu);
484         trace_kvm_out(vcpu);
485
486         /* Re-enable HTW before enabling interrupts */
487         htw_start();
488
489         guest_exit_irqoff();
490         local_irq_enable();
491
492         if (vcpu->sigset_active)
493                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
494
495         return r;
496 }
497
498 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
499                              struct kvm_mips_interrupt *irq)
500 {
501         int intr = (int)irq->irq;
502         struct kvm_vcpu *dvcpu = NULL;
503
504         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
505                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
506                           (int)intr);
507
508         if (irq->cpu == -1)
509                 dvcpu = vcpu;
510         else
511                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
512
513         if (intr == 2 || intr == 3 || intr == 4) {
514                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
515
516         } else if (intr == -2 || intr == -3 || intr == -4) {
517                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
518         } else {
519                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
520                         irq->cpu, irq->irq);
521                 return -EINVAL;
522         }
523
524         dvcpu->arch.wait = 0;
525
526         if (swait_active(&dvcpu->wq))
527                 swake_up(&dvcpu->wq);
528
529         return 0;
530 }
531
532 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
533                                     struct kvm_mp_state *mp_state)
534 {
535         return -ENOIOCTLCMD;
536 }
537
538 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
539                                     struct kvm_mp_state *mp_state)
540 {
541         return -ENOIOCTLCMD;
542 }
543
544 static u64 kvm_mips_get_one_regs[] = {
545         KVM_REG_MIPS_R0,
546         KVM_REG_MIPS_R1,
547         KVM_REG_MIPS_R2,
548         KVM_REG_MIPS_R3,
549         KVM_REG_MIPS_R4,
550         KVM_REG_MIPS_R5,
551         KVM_REG_MIPS_R6,
552         KVM_REG_MIPS_R7,
553         KVM_REG_MIPS_R8,
554         KVM_REG_MIPS_R9,
555         KVM_REG_MIPS_R10,
556         KVM_REG_MIPS_R11,
557         KVM_REG_MIPS_R12,
558         KVM_REG_MIPS_R13,
559         KVM_REG_MIPS_R14,
560         KVM_REG_MIPS_R15,
561         KVM_REG_MIPS_R16,
562         KVM_REG_MIPS_R17,
563         KVM_REG_MIPS_R18,
564         KVM_REG_MIPS_R19,
565         KVM_REG_MIPS_R20,
566         KVM_REG_MIPS_R21,
567         KVM_REG_MIPS_R22,
568         KVM_REG_MIPS_R23,
569         KVM_REG_MIPS_R24,
570         KVM_REG_MIPS_R25,
571         KVM_REG_MIPS_R26,
572         KVM_REG_MIPS_R27,
573         KVM_REG_MIPS_R28,
574         KVM_REG_MIPS_R29,
575         KVM_REG_MIPS_R30,
576         KVM_REG_MIPS_R31,
577
578 #ifndef CONFIG_CPU_MIPSR6
579         KVM_REG_MIPS_HI,
580         KVM_REG_MIPS_LO,
581 #endif
582         KVM_REG_MIPS_PC,
583
584         KVM_REG_MIPS_CP0_INDEX,
585         KVM_REG_MIPS_CP0_CONTEXT,
586         KVM_REG_MIPS_CP0_USERLOCAL,
587         KVM_REG_MIPS_CP0_PAGEMASK,
588         KVM_REG_MIPS_CP0_WIRED,
589         KVM_REG_MIPS_CP0_HWRENA,
590         KVM_REG_MIPS_CP0_BADVADDR,
591         KVM_REG_MIPS_CP0_COUNT,
592         KVM_REG_MIPS_CP0_ENTRYHI,
593         KVM_REG_MIPS_CP0_COMPARE,
594         KVM_REG_MIPS_CP0_STATUS,
595         KVM_REG_MIPS_CP0_CAUSE,
596         KVM_REG_MIPS_CP0_EPC,
597         KVM_REG_MIPS_CP0_PRID,
598         KVM_REG_MIPS_CP0_CONFIG,
599         KVM_REG_MIPS_CP0_CONFIG1,
600         KVM_REG_MIPS_CP0_CONFIG2,
601         KVM_REG_MIPS_CP0_CONFIG3,
602         KVM_REG_MIPS_CP0_CONFIG4,
603         KVM_REG_MIPS_CP0_CONFIG5,
604         KVM_REG_MIPS_CP0_CONFIG7,
605         KVM_REG_MIPS_CP0_ERROREPC,
606
607         KVM_REG_MIPS_COUNT_CTL,
608         KVM_REG_MIPS_COUNT_RESUME,
609         KVM_REG_MIPS_COUNT_HZ,
610 };
611
612 static u64 kvm_mips_get_one_regs_fpu[] = {
613         KVM_REG_MIPS_FCR_IR,
614         KVM_REG_MIPS_FCR_CSR,
615 };
616
617 static u64 kvm_mips_get_one_regs_msa[] = {
618         KVM_REG_MIPS_MSA_IR,
619         KVM_REG_MIPS_MSA_CSR,
620 };
621
622 static u64 kvm_mips_get_one_regs_kscratch[] = {
623         KVM_REG_MIPS_CP0_KSCRATCH1,
624         KVM_REG_MIPS_CP0_KSCRATCH2,
625         KVM_REG_MIPS_CP0_KSCRATCH3,
626         KVM_REG_MIPS_CP0_KSCRATCH4,
627         KVM_REG_MIPS_CP0_KSCRATCH5,
628         KVM_REG_MIPS_CP0_KSCRATCH6,
629 };
630
631 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
632 {
633         unsigned long ret;
634
635         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
636         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
637                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
638                 /* odd doubles */
639                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
640                         ret += 16;
641         }
642         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
643                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
644         ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
645         ret += kvm_mips_callbacks->num_regs(vcpu);
646
647         return ret;
648 }
649
650 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
651 {
652         u64 index;
653         unsigned int i;
654
655         if (copy_to_user(indices, kvm_mips_get_one_regs,
656                          sizeof(kvm_mips_get_one_regs)))
657                 return -EFAULT;
658         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
659
660         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
661                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
662                                  sizeof(kvm_mips_get_one_regs_fpu)))
663                         return -EFAULT;
664                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
665
666                 for (i = 0; i < 32; ++i) {
667                         index = KVM_REG_MIPS_FPR_32(i);
668                         if (copy_to_user(indices, &index, sizeof(index)))
669                                 return -EFAULT;
670                         ++indices;
671
672                         /* skip odd doubles if no F64 */
673                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
674                                 continue;
675
676                         index = KVM_REG_MIPS_FPR_64(i);
677                         if (copy_to_user(indices, &index, sizeof(index)))
678                                 return -EFAULT;
679                         ++indices;
680                 }
681         }
682
683         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
684                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
685                                  sizeof(kvm_mips_get_one_regs_msa)))
686                         return -EFAULT;
687                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
688
689                 for (i = 0; i < 32; ++i) {
690                         index = KVM_REG_MIPS_VEC_128(i);
691                         if (copy_to_user(indices, &index, sizeof(index)))
692                                 return -EFAULT;
693                         ++indices;
694                 }
695         }
696
697         for (i = 0; i < 6; ++i) {
698                 if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
699                         continue;
700
701                 if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
702                                  sizeof(kvm_mips_get_one_regs_kscratch[i])))
703                         return -EFAULT;
704                 ++indices;
705         }
706
707         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
708 }
709
710 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
711                             const struct kvm_one_reg *reg)
712 {
713         struct mips_coproc *cop0 = vcpu->arch.cop0;
714         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
715         int ret;
716         s64 v;
717         s64 vs[2];
718         unsigned int idx;
719
720         switch (reg->id) {
721         /* General purpose registers */
722         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
723                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
724                 break;
725 #ifndef CONFIG_CPU_MIPSR6
726         case KVM_REG_MIPS_HI:
727                 v = (long)vcpu->arch.hi;
728                 break;
729         case KVM_REG_MIPS_LO:
730                 v = (long)vcpu->arch.lo;
731                 break;
732 #endif
733         case KVM_REG_MIPS_PC:
734                 v = (long)vcpu->arch.pc;
735                 break;
736
737         /* Floating point registers */
738         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
739                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
740                         return -EINVAL;
741                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
742                 /* Odd singles in top of even double when FR=0 */
743                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
744                         v = get_fpr32(&fpu->fpr[idx], 0);
745                 else
746                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
747                 break;
748         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
749                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
750                         return -EINVAL;
751                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
752                 /* Can't access odd doubles in FR=0 mode */
753                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
754                         return -EINVAL;
755                 v = get_fpr64(&fpu->fpr[idx], 0);
756                 break;
757         case KVM_REG_MIPS_FCR_IR:
758                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
759                         return -EINVAL;
760                 v = boot_cpu_data.fpu_id;
761                 break;
762         case KVM_REG_MIPS_FCR_CSR:
763                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
764                         return -EINVAL;
765                 v = fpu->fcr31;
766                 break;
767
768         /* MIPS SIMD Architecture (MSA) registers */
769         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
770                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
771                         return -EINVAL;
772                 /* Can't access MSA registers in FR=0 mode */
773                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
774                         return -EINVAL;
775                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
776 #ifdef CONFIG_CPU_LITTLE_ENDIAN
777                 /* least significant byte first */
778                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
779                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
780 #else
781                 /* most significant byte first */
782                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
783                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
784 #endif
785                 break;
786         case KVM_REG_MIPS_MSA_IR:
787                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
788                         return -EINVAL;
789                 v = boot_cpu_data.msa_id;
790                 break;
791         case KVM_REG_MIPS_MSA_CSR:
792                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
793                         return -EINVAL;
794                 v = fpu->msacsr;
795                 break;
796
797         /* Co-processor 0 registers */
798         case KVM_REG_MIPS_CP0_INDEX:
799                 v = (long)kvm_read_c0_guest_index(cop0);
800                 break;
801         case KVM_REG_MIPS_CP0_CONTEXT:
802                 v = (long)kvm_read_c0_guest_context(cop0);
803                 break;
804         case KVM_REG_MIPS_CP0_USERLOCAL:
805                 v = (long)kvm_read_c0_guest_userlocal(cop0);
806                 break;
807         case KVM_REG_MIPS_CP0_PAGEMASK:
808                 v = (long)kvm_read_c0_guest_pagemask(cop0);
809                 break;
810         case KVM_REG_MIPS_CP0_WIRED:
811                 v = (long)kvm_read_c0_guest_wired(cop0);
812                 break;
813         case KVM_REG_MIPS_CP0_HWRENA:
814                 v = (long)kvm_read_c0_guest_hwrena(cop0);
815                 break;
816         case KVM_REG_MIPS_CP0_BADVADDR:
817                 v = (long)kvm_read_c0_guest_badvaddr(cop0);
818                 break;
819         case KVM_REG_MIPS_CP0_ENTRYHI:
820                 v = (long)kvm_read_c0_guest_entryhi(cop0);
821                 break;
822         case KVM_REG_MIPS_CP0_COMPARE:
823                 v = (long)kvm_read_c0_guest_compare(cop0);
824                 break;
825         case KVM_REG_MIPS_CP0_STATUS:
826                 v = (long)kvm_read_c0_guest_status(cop0);
827                 break;
828         case KVM_REG_MIPS_CP0_CAUSE:
829                 v = (long)kvm_read_c0_guest_cause(cop0);
830                 break;
831         case KVM_REG_MIPS_CP0_EPC:
832                 v = (long)kvm_read_c0_guest_epc(cop0);
833                 break;
834         case KVM_REG_MIPS_CP0_PRID:
835                 v = (long)kvm_read_c0_guest_prid(cop0);
836                 break;
837         case KVM_REG_MIPS_CP0_CONFIG:
838                 v = (long)kvm_read_c0_guest_config(cop0);
839                 break;
840         case KVM_REG_MIPS_CP0_CONFIG1:
841                 v = (long)kvm_read_c0_guest_config1(cop0);
842                 break;
843         case KVM_REG_MIPS_CP0_CONFIG2:
844                 v = (long)kvm_read_c0_guest_config2(cop0);
845                 break;
846         case KVM_REG_MIPS_CP0_CONFIG3:
847                 v = (long)kvm_read_c0_guest_config3(cop0);
848                 break;
849         case KVM_REG_MIPS_CP0_CONFIG4:
850                 v = (long)kvm_read_c0_guest_config4(cop0);
851                 break;
852         case KVM_REG_MIPS_CP0_CONFIG5:
853                 v = (long)kvm_read_c0_guest_config5(cop0);
854                 break;
855         case KVM_REG_MIPS_CP0_CONFIG7:
856                 v = (long)kvm_read_c0_guest_config7(cop0);
857                 break;
858         case KVM_REG_MIPS_CP0_ERROREPC:
859                 v = (long)kvm_read_c0_guest_errorepc(cop0);
860                 break;
861         case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
862                 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
863                 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
864                         return -EINVAL;
865                 switch (idx) {
866                 case 2:
867                         v = (long)kvm_read_c0_guest_kscratch1(cop0);
868                         break;
869                 case 3:
870                         v = (long)kvm_read_c0_guest_kscratch2(cop0);
871                         break;
872                 case 4:
873                         v = (long)kvm_read_c0_guest_kscratch3(cop0);
874                         break;
875                 case 5:
876                         v = (long)kvm_read_c0_guest_kscratch4(cop0);
877                         break;
878                 case 6:
879                         v = (long)kvm_read_c0_guest_kscratch5(cop0);
880                         break;
881                 case 7:
882                         v = (long)kvm_read_c0_guest_kscratch6(cop0);
883                         break;
884                 }
885                 break;
886         /* registers to be handled specially */
887         default:
888                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
889                 if (ret)
890                         return ret;
891                 break;
892         }
893         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
894                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
895
896                 return put_user(v, uaddr64);
897         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
898                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
899                 u32 v32 = (u32)v;
900
901                 return put_user(v32, uaddr32);
902         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
903                 void __user *uaddr = (void __user *)(long)reg->addr;
904
905                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
906         } else {
907                 return -EINVAL;
908         }
909 }
910
911 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
912                             const struct kvm_one_reg *reg)
913 {
914         struct mips_coproc *cop0 = vcpu->arch.cop0;
915         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
916         s64 v;
917         s64 vs[2];
918         unsigned int idx;
919
920         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
921                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
922
923                 if (get_user(v, uaddr64) != 0)
924                         return -EFAULT;
925         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
926                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
927                 s32 v32;
928
929                 if (get_user(v32, uaddr32) != 0)
930                         return -EFAULT;
931                 v = (s64)v32;
932         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
933                 void __user *uaddr = (void __user *)(long)reg->addr;
934
935                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
936         } else {
937                 return -EINVAL;
938         }
939
940         switch (reg->id) {
941         /* General purpose registers */
942         case KVM_REG_MIPS_R0:
943                 /* Silently ignore requests to set $0 */
944                 break;
945         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
946                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
947                 break;
948 #ifndef CONFIG_CPU_MIPSR6
949         case KVM_REG_MIPS_HI:
950                 vcpu->arch.hi = v;
951                 break;
952         case KVM_REG_MIPS_LO:
953                 vcpu->arch.lo = v;
954                 break;
955 #endif
956         case KVM_REG_MIPS_PC:
957                 vcpu->arch.pc = v;
958                 break;
959
960         /* Floating point registers */
961         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
962                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
963                         return -EINVAL;
964                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
965                 /* Odd singles in top of even double when FR=0 */
966                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
967                         set_fpr32(&fpu->fpr[idx], 0, v);
968                 else
969                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
970                 break;
971         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
972                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
973                         return -EINVAL;
974                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
975                 /* Can't access odd doubles in FR=0 mode */
976                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
977                         return -EINVAL;
978                 set_fpr64(&fpu->fpr[idx], 0, v);
979                 break;
980         case KVM_REG_MIPS_FCR_IR:
981                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
982                         return -EINVAL;
983                 /* Read-only */
984                 break;
985         case KVM_REG_MIPS_FCR_CSR:
986                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
987                         return -EINVAL;
988                 fpu->fcr31 = v;
989                 break;
990
991         /* MIPS SIMD Architecture (MSA) registers */
992         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
993                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
994                         return -EINVAL;
995                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
996 #ifdef CONFIG_CPU_LITTLE_ENDIAN
997                 /* least significant byte first */
998                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
999                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
1000 #else
1001                 /* most significant byte first */
1002                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
1003                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
1004 #endif
1005                 break;
1006         case KVM_REG_MIPS_MSA_IR:
1007                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
1008                         return -EINVAL;
1009                 /* Read-only */
1010                 break;
1011         case KVM_REG_MIPS_MSA_CSR:
1012                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
1013                         return -EINVAL;
1014                 fpu->msacsr = v;
1015                 break;
1016
1017         /* Co-processor 0 registers */
1018         case KVM_REG_MIPS_CP0_INDEX:
1019                 kvm_write_c0_guest_index(cop0, v);
1020                 break;
1021         case KVM_REG_MIPS_CP0_CONTEXT:
1022                 kvm_write_c0_guest_context(cop0, v);
1023                 break;
1024         case KVM_REG_MIPS_CP0_USERLOCAL:
1025                 kvm_write_c0_guest_userlocal(cop0, v);
1026                 break;
1027         case KVM_REG_MIPS_CP0_PAGEMASK:
1028                 kvm_write_c0_guest_pagemask(cop0, v);
1029                 break;
1030         case KVM_REG_MIPS_CP0_WIRED:
1031                 kvm_write_c0_guest_wired(cop0, v);
1032                 break;
1033         case KVM_REG_MIPS_CP0_HWRENA:
1034                 kvm_write_c0_guest_hwrena(cop0, v);
1035                 break;
1036         case KVM_REG_MIPS_CP0_BADVADDR:
1037                 kvm_write_c0_guest_badvaddr(cop0, v);
1038                 break;
1039         case KVM_REG_MIPS_CP0_ENTRYHI:
1040                 kvm_write_c0_guest_entryhi(cop0, v);
1041                 break;
1042         case KVM_REG_MIPS_CP0_STATUS:
1043                 kvm_write_c0_guest_status(cop0, v);
1044                 break;
1045         case KVM_REG_MIPS_CP0_EPC:
1046                 kvm_write_c0_guest_epc(cop0, v);
1047                 break;
1048         case KVM_REG_MIPS_CP0_PRID:
1049                 kvm_write_c0_guest_prid(cop0, v);
1050                 break;
1051         case KVM_REG_MIPS_CP0_ERROREPC:
1052                 kvm_write_c0_guest_errorepc(cop0, v);
1053                 break;
1054         case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
1055                 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
1056                 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
1057                         return -EINVAL;
1058                 switch (idx) {
1059                 case 2:
1060                         kvm_write_c0_guest_kscratch1(cop0, v);
1061                         break;
1062                 case 3:
1063                         kvm_write_c0_guest_kscratch2(cop0, v);
1064                         break;
1065                 case 4:
1066                         kvm_write_c0_guest_kscratch3(cop0, v);
1067                         break;
1068                 case 5:
1069                         kvm_write_c0_guest_kscratch4(cop0, v);
1070                         break;
1071                 case 6:
1072                         kvm_write_c0_guest_kscratch5(cop0, v);
1073                         break;
1074                 case 7:
1075                         kvm_write_c0_guest_kscratch6(cop0, v);
1076                         break;
1077                 }
1078                 break;
1079         /* registers to be handled specially */
1080         default:
1081                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
1082         }
1083         return 0;
1084 }
1085
1086 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1087                                      struct kvm_enable_cap *cap)
1088 {
1089         int r = 0;
1090
1091         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
1092                 return -EINVAL;
1093         if (cap->flags)
1094                 return -EINVAL;
1095         if (cap->args[0])
1096                 return -EINVAL;
1097
1098         switch (cap->cap) {
1099         case KVM_CAP_MIPS_FPU:
1100                 vcpu->arch.fpu_enabled = true;
1101                 break;
1102         case KVM_CAP_MIPS_MSA:
1103                 vcpu->arch.msa_enabled = true;
1104                 break;
1105         default:
1106                 r = -EINVAL;
1107                 break;
1108         }
1109
1110         return r;
1111 }
1112
1113 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
1114                          unsigned long arg)
1115 {
1116         struct kvm_vcpu *vcpu = filp->private_data;
1117         void __user *argp = (void __user *)arg;
1118         long r;
1119
1120         switch (ioctl) {
1121         case KVM_SET_ONE_REG:
1122         case KVM_GET_ONE_REG: {
1123                 struct kvm_one_reg reg;
1124
1125                 if (copy_from_user(&reg, argp, sizeof(reg)))
1126                         return -EFAULT;
1127                 if (ioctl == KVM_SET_ONE_REG)
1128                         return kvm_mips_set_reg(vcpu, &reg);
1129                 else
1130                         return kvm_mips_get_reg(vcpu, &reg);
1131         }
1132         case KVM_GET_REG_LIST: {
1133                 struct kvm_reg_list __user *user_list = argp;
1134                 struct kvm_reg_list reg_list;
1135                 unsigned n;
1136
1137                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1138                         return -EFAULT;
1139                 n = reg_list.n;
1140                 reg_list.n = kvm_mips_num_regs(vcpu);
1141                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1142                         return -EFAULT;
1143                 if (n < reg_list.n)
1144                         return -E2BIG;
1145                 return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
1146         }
1147         case KVM_NMI:
1148                 /* Treat the NMI as a CPU reset */
1149                 r = kvm_mips_reset_vcpu(vcpu);
1150                 break;
1151         case KVM_INTERRUPT:
1152                 {
1153                         struct kvm_mips_interrupt irq;
1154
1155                         r = -EFAULT;
1156                         if (copy_from_user(&irq, argp, sizeof(irq)))
1157                                 goto out;
1158
1159                         kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
1160                                   irq.irq);
1161
1162                         r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1163                         break;
1164                 }
1165         case KVM_ENABLE_CAP: {
1166                 struct kvm_enable_cap cap;
1167
1168                 r = -EFAULT;
1169                 if (copy_from_user(&cap, argp, sizeof(cap)))
1170                         goto out;
1171                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1172                 break;
1173         }
1174         default:
1175                 r = -ENOIOCTLCMD;
1176         }
1177
1178 out:
1179         return r;
1180 }
1181
1182 /* Get (and clear) the dirty memory log for a memory slot. */
1183 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1184 {
1185         struct kvm_memslots *slots;
1186         struct kvm_memory_slot *memslot;
1187         unsigned long ga, ga_end;
1188         int is_dirty = 0;
1189         int r;
1190         unsigned long n;
1191
1192         mutex_lock(&kvm->slots_lock);
1193
1194         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1195         if (r)
1196                 goto out;
1197
1198         /* If nothing is dirty, don't bother messing with page tables. */
1199         if (is_dirty) {
1200                 slots = kvm_memslots(kvm);
1201                 memslot = id_to_memslot(slots, log->slot);
1202
1203                 ga = memslot->base_gfn << PAGE_SHIFT;
1204                 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1205
1206                 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1207                          ga_end);
1208
1209                 n = kvm_dirty_bitmap_bytes(memslot);
1210                 memset(memslot->dirty_bitmap, 0, n);
1211         }
1212
1213         r = 0;
1214 out:
1215         mutex_unlock(&kvm->slots_lock);
1216         return r;
1217
1218 }
1219
1220 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1221 {
1222         long r;
1223
1224         switch (ioctl) {
1225         default:
1226                 r = -ENOIOCTLCMD;
1227         }
1228
1229         return r;
1230 }
1231
1232 int kvm_arch_init(void *opaque)
1233 {
1234         if (kvm_mips_callbacks) {
1235                 kvm_err("kvm: module already exists\n");
1236                 return -EEXIST;
1237         }
1238
1239         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1240 }
1241
1242 void kvm_arch_exit(void)
1243 {
1244         kvm_mips_callbacks = NULL;
1245 }
1246
1247 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1248                                   struct kvm_sregs *sregs)
1249 {
1250         return -ENOIOCTLCMD;
1251 }
1252
1253 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1254                                   struct kvm_sregs *sregs)
1255 {
1256         return -ENOIOCTLCMD;
1257 }
1258
1259 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1260 {
1261 }
1262
1263 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1264 {
1265         return -ENOIOCTLCMD;
1266 }
1267
1268 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1269 {
1270         return -ENOIOCTLCMD;
1271 }
1272
1273 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1274 {
1275         return VM_FAULT_SIGBUS;
1276 }
1277
1278 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1279 {
1280         int r;
1281
1282         switch (ext) {
1283         case KVM_CAP_ONE_REG:
1284         case KVM_CAP_ENABLE_CAP:
1285                 r = 1;
1286                 break;
1287         case KVM_CAP_COALESCED_MMIO:
1288                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1289                 break;
1290         case KVM_CAP_MIPS_FPU:
1291                 /* We don't handle systems with inconsistent cpu_has_fpu */
1292                 r = !!raw_cpu_has_fpu;
1293                 break;
1294         case KVM_CAP_MIPS_MSA:
1295                 /*
1296                  * We don't support MSA vector partitioning yet:
1297                  * 1) It would require explicit support which can't be tested
1298                  *    yet due to lack of support in current hardware.
1299                  * 2) It extends the state that would need to be saved/restored
1300                  *    by e.g. QEMU for migration.
1301                  *
1302                  * When vector partitioning hardware becomes available, support
1303                  * could be added by requiring a flag when enabling
1304                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1305                  * to save/restore the appropriate extra state.
1306                  */
1307                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1308                 break;
1309         default:
1310                 r = 0;
1311                 break;
1312         }
1313         return r;
1314 }
1315
1316 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1317 {
1318         return kvm_mips_pending_timer(vcpu);
1319 }
1320
1321 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1322 {
1323         int i;
1324         struct mips_coproc *cop0;
1325
1326         if (!vcpu)
1327                 return -1;
1328
1329         kvm_debug("VCPU Register Dump:\n");
1330         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1331         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1332
1333         for (i = 0; i < 32; i += 4) {
1334                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1335                        vcpu->arch.gprs[i],
1336                        vcpu->arch.gprs[i + 1],
1337                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1338         }
1339         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1340         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1341
1342         cop0 = vcpu->arch.cop0;
1343         kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1344                   kvm_read_c0_guest_status(cop0),
1345                   kvm_read_c0_guest_cause(cop0));
1346
1347         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1348
1349         return 0;
1350 }
1351
1352 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1353 {
1354         int i;
1355
1356         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1357                 vcpu->arch.gprs[i] = regs->gpr[i];
1358         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1359         vcpu->arch.hi = regs->hi;
1360         vcpu->arch.lo = regs->lo;
1361         vcpu->arch.pc = regs->pc;
1362
1363         return 0;
1364 }
1365
1366 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1367 {
1368         int i;
1369
1370         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1371                 regs->gpr[i] = vcpu->arch.gprs[i];
1372
1373         regs->hi = vcpu->arch.hi;
1374         regs->lo = vcpu->arch.lo;
1375         regs->pc = vcpu->arch.pc;
1376
1377         return 0;
1378 }
1379
1380 static void kvm_mips_comparecount_func(unsigned long data)
1381 {
1382         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1383
1384         kvm_mips_callbacks->queue_timer_int(vcpu);
1385
1386         vcpu->arch.wait = 0;
1387         if (swait_active(&vcpu->wq))
1388                 swake_up(&vcpu->wq);
1389 }
1390
1391 /* low level hrtimer wake routine */
1392 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1393 {
1394         struct kvm_vcpu *vcpu;
1395
1396         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1397         kvm_mips_comparecount_func((unsigned long) vcpu);
1398         return kvm_mips_count_timeout(vcpu);
1399 }
1400
1401 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1402 {
1403         kvm_mips_callbacks->vcpu_init(vcpu);
1404         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1405                      HRTIMER_MODE_REL);
1406         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1407         return 0;
1408 }
1409
1410 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1411                                   struct kvm_translation *tr)
1412 {
1413         return 0;
1414 }
1415
1416 /* Initial guest state */
1417 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1418 {
1419         return kvm_mips_callbacks->vcpu_setup(vcpu);
1420 }
1421
1422 static void kvm_mips_set_c0_status(void)
1423 {
1424         u32 status = read_c0_status();
1425
1426         if (cpu_has_dsp)
1427                 status |= (ST0_MX);
1428
1429         write_c0_status(status);
1430         ehb();
1431 }
1432
1433 /*
1434  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1435  */
1436 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1437 {
1438         u32 cause = vcpu->arch.host_cp0_cause;
1439         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1440         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1441         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1442         enum emulation_result er = EMULATE_DONE;
1443         int ret = RESUME_GUEST;
1444
1445         /* re-enable HTW before enabling interrupts */
1446         htw_start();
1447
1448         /* Set a default exit reason */
1449         run->exit_reason = KVM_EXIT_UNKNOWN;
1450         run->ready_for_interrupt_injection = 1;
1451
1452         /*
1453          * Set the appropriate status bits based on host CPU features,
1454          * before we hit the scheduler
1455          */
1456         kvm_mips_set_c0_status();
1457
1458         local_irq_enable();
1459
1460         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1461                         cause, opc, run, vcpu);
1462         trace_kvm_exit(vcpu, exccode);
1463
1464         /*
1465          * Do a privilege check, if in UM most of these exit conditions end up
1466          * causing an exception to be delivered to the Guest Kernel
1467          */
1468         er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1469         if (er == EMULATE_PRIV_FAIL) {
1470                 goto skip_emul;
1471         } else if (er == EMULATE_FAIL) {
1472                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1473                 ret = RESUME_HOST;
1474                 goto skip_emul;
1475         }
1476
1477         switch (exccode) {
1478         case EXCCODE_INT:
1479                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1480
1481                 ++vcpu->stat.int_exits;
1482
1483                 if (need_resched())
1484                         cond_resched();
1485
1486                 ret = RESUME_GUEST;
1487                 break;
1488
1489         case EXCCODE_CPU:
1490                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1491
1492                 ++vcpu->stat.cop_unusable_exits;
1493                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1494                 /* XXXKYMA: Might need to return to user space */
1495                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1496                         ret = RESUME_HOST;
1497                 break;
1498
1499         case EXCCODE_MOD:
1500                 ++vcpu->stat.tlbmod_exits;
1501                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1502                 break;
1503
1504         case EXCCODE_TLBS:
1505                 kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1506                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1507                           badvaddr);
1508
1509                 ++vcpu->stat.tlbmiss_st_exits;
1510                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1511                 break;
1512
1513         case EXCCODE_TLBL:
1514                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1515                           cause, opc, badvaddr);
1516
1517                 ++vcpu->stat.tlbmiss_ld_exits;
1518                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1519                 break;
1520
1521         case EXCCODE_ADES:
1522                 ++vcpu->stat.addrerr_st_exits;
1523                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1524                 break;
1525
1526         case EXCCODE_ADEL:
1527                 ++vcpu->stat.addrerr_ld_exits;
1528                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1529                 break;
1530
1531         case EXCCODE_SYS:
1532                 ++vcpu->stat.syscall_exits;
1533                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1534                 break;
1535
1536         case EXCCODE_RI:
1537                 ++vcpu->stat.resvd_inst_exits;
1538                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1539                 break;
1540
1541         case EXCCODE_BP:
1542                 ++vcpu->stat.break_inst_exits;
1543                 ret = kvm_mips_callbacks->handle_break(vcpu);
1544                 break;
1545
1546         case EXCCODE_TR:
1547                 ++vcpu->stat.trap_inst_exits;
1548                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1549                 break;
1550
1551         case EXCCODE_MSAFPE:
1552                 ++vcpu->stat.msa_fpe_exits;
1553                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1554                 break;
1555
1556         case EXCCODE_FPE:
1557                 ++vcpu->stat.fpe_exits;
1558                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1559                 break;
1560
1561         case EXCCODE_MSADIS:
1562                 ++vcpu->stat.msa_disabled_exits;
1563                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1564                 break;
1565
1566         default:
1567                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1568                         exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1569                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1570                 kvm_arch_vcpu_dump_regs(vcpu);
1571                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1572                 ret = RESUME_HOST;
1573                 break;
1574
1575         }
1576
1577 skip_emul:
1578         local_irq_disable();
1579
1580         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1581                 kvm_mips_deliver_interrupts(vcpu, cause);
1582
1583         if (!(ret & RESUME_HOST)) {
1584                 /* Only check for signals if not already exiting to userspace */
1585                 if (signal_pending(current)) {
1586                         run->exit_reason = KVM_EXIT_INTR;
1587                         ret = (-EINTR << 2) | RESUME_HOST;
1588                         ++vcpu->stat.signal_exits;
1589                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1590                 }
1591         }
1592
1593         if (ret == RESUME_GUEST) {
1594                 trace_kvm_reenter(vcpu);
1595
1596                 kvm_mips_check_asids(vcpu);
1597
1598                 /*
1599                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1600                  * is live), restore FCR31 / MSACSR.
1601                  *
1602                  * This should be before returning to the guest exception
1603                  * vector, as it may well cause an [MSA] FP exception if there
1604                  * are pending exception bits unmasked. (see
1605                  * kvm_mips_csr_die_notifier() for how that is handled).
1606                  */
1607                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1608                     read_c0_status() & ST0_CU1)
1609                         __kvm_restore_fcsr(&vcpu->arch);
1610
1611                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1612                     read_c0_config5() & MIPS_CONF5_MSAEN)
1613                         __kvm_restore_msacsr(&vcpu->arch);
1614         }
1615
1616         /* Disable HTW before returning to guest or host */
1617         htw_stop();
1618
1619         return ret;
1620 }
1621
1622 /* Enable FPU for guest and restore context */
1623 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1624 {
1625         struct mips_coproc *cop0 = vcpu->arch.cop0;
1626         unsigned int sr, cfg5;
1627
1628         preempt_disable();
1629
1630         sr = kvm_read_c0_guest_status(cop0);
1631
1632         /*
1633          * If MSA state is already live, it is undefined how it interacts with
1634          * FR=0 FPU state, and we don't want to hit reserved instruction
1635          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1636          * play it safe and save it first.
1637          *
1638          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1639          * get called when guest CU1 is set, however we can't trust the guest
1640          * not to clobber the status register directly via the commpage.
1641          */
1642         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1643             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1644                 kvm_lose_fpu(vcpu);
1645
1646         /*
1647          * Enable FPU for guest
1648          * We set FR and FRE according to guest context
1649          */
1650         change_c0_status(ST0_CU1 | ST0_FR, sr);
1651         if (cpu_has_fre) {
1652                 cfg5 = kvm_read_c0_guest_config5(cop0);
1653                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1654         }
1655         enable_fpu_hazard();
1656
1657         /* If guest FPU state not active, restore it now */
1658         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1659                 __kvm_restore_fpu(&vcpu->arch);
1660                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1661                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1662         } else {
1663                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1664         }
1665
1666         preempt_enable();
1667 }
1668
1669 #ifdef CONFIG_CPU_HAS_MSA
1670 /* Enable MSA for guest and restore context */
1671 void kvm_own_msa(struct kvm_vcpu *vcpu)
1672 {
1673         struct mips_coproc *cop0 = vcpu->arch.cop0;
1674         unsigned int sr, cfg5;
1675
1676         preempt_disable();
1677
1678         /*
1679          * Enable FPU if enabled in guest, since we're restoring FPU context
1680          * anyway. We set FR and FRE according to guest context.
1681          */
1682         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1683                 sr = kvm_read_c0_guest_status(cop0);
1684
1685                 /*
1686                  * If FR=0 FPU state is already live, it is undefined how it
1687                  * interacts with MSA state, so play it safe and save it first.
1688                  */
1689                 if (!(sr & ST0_FR) &&
1690                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1691                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1692                         kvm_lose_fpu(vcpu);
1693
1694                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1695                 if (sr & ST0_CU1 && cpu_has_fre) {
1696                         cfg5 = kvm_read_c0_guest_config5(cop0);
1697                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1698                 }
1699         }
1700
1701         /* Enable MSA for guest */
1702         set_c0_config5(MIPS_CONF5_MSAEN);
1703         enable_fpu_hazard();
1704
1705         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1706         case KVM_MIPS_AUX_FPU:
1707                 /*
1708                  * Guest FPU state already loaded, only restore upper MSA state
1709                  */
1710                 __kvm_restore_msa_upper(&vcpu->arch);
1711                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1712                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1713                 break;
1714         case 0:
1715                 /* Neither FPU or MSA already active, restore full MSA state */
1716                 __kvm_restore_msa(&vcpu->arch);
1717                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1718                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1719                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1720                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1721                               KVM_TRACE_AUX_FPU_MSA);
1722                 break;
1723         default:
1724                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1725                 break;
1726         }
1727
1728         preempt_enable();
1729 }
1730 #endif
1731
1732 /* Drop FPU & MSA without saving it */
1733 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1734 {
1735         preempt_disable();
1736         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1737                 disable_msa();
1738                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1739                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1740         }
1741         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1742                 clear_c0_status(ST0_CU1 | ST0_FR);
1743                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1744                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1745         }
1746         preempt_enable();
1747 }
1748
1749 /* Save and disable FPU & MSA */
1750 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1751 {
1752         /*
1753          * FPU & MSA get disabled in root context (hardware) when it is disabled
1754          * in guest context (software), but the register state in the hardware
1755          * may still be in use. This is why we explicitly re-enable the hardware
1756          * before saving.
1757          */
1758
1759         preempt_disable();
1760         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1761                 set_c0_config5(MIPS_CONF5_MSAEN);
1762                 enable_fpu_hazard();
1763
1764                 __kvm_save_msa(&vcpu->arch);
1765                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1766
1767                 /* Disable MSA & FPU */
1768                 disable_msa();
1769                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1770                         clear_c0_status(ST0_CU1 | ST0_FR);
1771                         disable_fpu_hazard();
1772                 }
1773                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1774         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1775                 set_c0_status(ST0_CU1);
1776                 enable_fpu_hazard();
1777
1778                 __kvm_save_fpu(&vcpu->arch);
1779                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1780                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1781
1782                 /* Disable FPU */
1783                 clear_c0_status(ST0_CU1 | ST0_FR);
1784                 disable_fpu_hazard();
1785         }
1786         preempt_enable();
1787 }
1788
1789 /*
1790  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1791  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1792  * exception if cause bits are set in the value being written.
1793  */
1794 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1795                                    unsigned long cmd, void *ptr)
1796 {
1797         struct die_args *args = (struct die_args *)ptr;
1798         struct pt_regs *regs = args->regs;
1799         unsigned long pc;
1800
1801         /* Only interested in FPE and MSAFPE */
1802         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1803                 return NOTIFY_DONE;
1804
1805         /* Return immediately if guest context isn't active */
1806         if (!(current->flags & PF_VCPU))
1807                 return NOTIFY_DONE;
1808
1809         /* Should never get here from user mode */
1810         BUG_ON(user_mode(regs));
1811
1812         pc = instruction_pointer(regs);
1813         switch (cmd) {
1814         case DIE_FP:
1815                 /* match 2nd instruction in __kvm_restore_fcsr */
1816                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1817                         return NOTIFY_DONE;
1818                 break;
1819         case DIE_MSAFP:
1820                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1821                 if (!cpu_has_msa ||
1822                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1823                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1824                         return NOTIFY_DONE;
1825                 break;
1826         }
1827
1828         /* Move PC forward a little and continue executing */
1829         instruction_pointer(regs) += 4;
1830
1831         return NOTIFY_STOP;
1832 }
1833
1834 static struct notifier_block kvm_mips_csr_die_notifier = {
1835         .notifier_call = kvm_mips_csr_die_notify,
1836 };
1837
1838 static int __init kvm_mips_init(void)
1839 {
1840         int ret;
1841
1842         ret = kvm_mips_entry_setup();
1843         if (ret)
1844                 return ret;
1845
1846         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1847
1848         if (ret)
1849                 return ret;
1850
1851         register_die_notifier(&kvm_mips_csr_die_notifier);
1852
1853         return 0;
1854 }
1855
1856 static void __exit kvm_mips_exit(void)
1857 {
1858         kvm_exit();
1859
1860         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1861 }
1862
1863 module_init(kvm_mips_init);
1864 module_exit(kvm_mips_exit);
1865
1866 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);