GNU Linux-libre 4.14.302-gnu1
[releases.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/bootmem.h>
22
23 #include <asm/fpu.h>
24 #include <asm/page.h>
25 #include <asm/cacheflush.h>
26 #include <asm/mmu_context.h>
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33 #include "commpage.h"
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #ifndef VECTORSPACING
39 #define VECTORSPACING 0x100     /* for EI/VI mode */
40 #endif
41
42 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43 struct kvm_stats_debugfs_item debugfs_entries[] = {
44         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
45         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
46         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
47         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
48         { "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
49         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
50         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
51         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
52         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
53         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
54         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
55         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
56         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
57         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
58         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
59         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
60         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
61         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
62 #ifdef CONFIG_KVM_MIPS_VZ
63         { "vz_gpsi",      VCPU_STAT(vz_gpsi_exits),      KVM_STAT_VCPU },
64         { "vz_gsfc",      VCPU_STAT(vz_gsfc_exits),      KVM_STAT_VCPU },
65         { "vz_hc",        VCPU_STAT(vz_hc_exits),        KVM_STAT_VCPU },
66         { "vz_grr",       VCPU_STAT(vz_grr_exits),       KVM_STAT_VCPU },
67         { "vz_gva",       VCPU_STAT(vz_gva_exits),       KVM_STAT_VCPU },
68         { "vz_ghfc",      VCPU_STAT(vz_ghfc_exits),      KVM_STAT_VCPU },
69         { "vz_gpa",       VCPU_STAT(vz_gpa_exits),       KVM_STAT_VCPU },
70         { "vz_resvd",     VCPU_STAT(vz_resvd_exits),     KVM_STAT_VCPU },
71 #endif
72         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
73         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
74         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
75         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
76         {NULL}
77 };
78
79 bool kvm_trace_guest_mode_change;
80
81 int kvm_guest_mode_change_trace_reg(void)
82 {
83         kvm_trace_guest_mode_change = 1;
84         return 0;
85 }
86
87 void kvm_guest_mode_change_trace_unreg(void)
88 {
89         kvm_trace_guest_mode_change = 0;
90 }
91
92 /*
93  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
94  * Config7, so we are "runnable" if interrupts are pending
95  */
96 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
97 {
98         return !!(vcpu->arch.pending_exceptions);
99 }
100
101 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
102 {
103         return false;
104 }
105
106 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
107 {
108         return 1;
109 }
110
111 int kvm_arch_hardware_enable(void)
112 {
113         return kvm_mips_callbacks->hardware_enable();
114 }
115
116 void kvm_arch_hardware_disable(void)
117 {
118         kvm_mips_callbacks->hardware_disable();
119 }
120
121 int kvm_arch_hardware_setup(void)
122 {
123         return 0;
124 }
125
126 void kvm_arch_check_processor_compat(void *rtn)
127 {
128         *(int *)rtn = 0;
129 }
130
131 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132 {
133         switch (type) {
134         case KVM_VM_MIPS_AUTO:
135                 break;
136 #ifdef CONFIG_KVM_MIPS_VZ
137         case KVM_VM_MIPS_VZ:
138 #else
139         case KVM_VM_MIPS_TE:
140 #endif
141                 break;
142         default:
143                 /* Unsupported KVM type */
144                 return -EINVAL;
145         };
146
147         /* Allocate page table to map GPA -> RPA */
148         kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
149         if (!kvm->arch.gpa_mm.pgd)
150                 return -ENOMEM;
151
152         return 0;
153 }
154
155 bool kvm_arch_has_vcpu_debugfs(void)
156 {
157         return false;
158 }
159
160 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
161 {
162         return 0;
163 }
164
165 void kvm_mips_free_vcpus(struct kvm *kvm)
166 {
167         unsigned int i;
168         struct kvm_vcpu *vcpu;
169
170         kvm_for_each_vcpu(i, vcpu, kvm) {
171                 kvm_arch_vcpu_free(vcpu);
172         }
173
174         mutex_lock(&kvm->lock);
175
176         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
177                 kvm->vcpus[i] = NULL;
178
179         atomic_set(&kvm->online_vcpus, 0);
180
181         mutex_unlock(&kvm->lock);
182 }
183
184 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
185 {
186         /* It should always be safe to remove after flushing the whole range */
187         WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
188         pgd_free(NULL, kvm->arch.gpa_mm.pgd);
189 }
190
191 void kvm_arch_destroy_vm(struct kvm *kvm)
192 {
193         kvm_mips_free_vcpus(kvm);
194         kvm_mips_free_gpa_pt(kvm);
195 }
196
197 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
198                         unsigned long arg)
199 {
200         return -ENOIOCTLCMD;
201 }
202
203 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
204                             unsigned long npages)
205 {
206         return 0;
207 }
208
209 void kvm_arch_flush_shadow_all(struct kvm *kvm)
210 {
211         /* Flush whole GPA */
212         kvm_mips_flush_gpa_pt(kvm, 0, ~0);
213
214         /* Let implementation do the rest */
215         kvm_mips_callbacks->flush_shadow_all(kvm);
216 }
217
218 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
219                                    struct kvm_memory_slot *slot)
220 {
221         /*
222          * The slot has been made invalid (ready for moving or deletion), so we
223          * need to ensure that it can no longer be accessed by any guest VCPUs.
224          */
225
226         spin_lock(&kvm->mmu_lock);
227         /* Flush slot from GPA */
228         kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
229                               slot->base_gfn + slot->npages - 1);
230         /* Let implementation do the rest */
231         kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
232         spin_unlock(&kvm->mmu_lock);
233 }
234
235 int kvm_arch_prepare_memory_region(struct kvm *kvm,
236                                    struct kvm_memory_slot *memslot,
237                                    const struct kvm_userspace_memory_region *mem,
238                                    enum kvm_mr_change change)
239 {
240         return 0;
241 }
242
243 void kvm_arch_commit_memory_region(struct kvm *kvm,
244                                    const struct kvm_userspace_memory_region *mem,
245                                    const struct kvm_memory_slot *old,
246                                    const struct kvm_memory_slot *new,
247                                    enum kvm_mr_change change)
248 {
249         int needs_flush;
250
251         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
252                   __func__, kvm, mem->slot, mem->guest_phys_addr,
253                   mem->memory_size, mem->userspace_addr);
254
255         /*
256          * If dirty page logging is enabled, write protect all pages in the slot
257          * ready for dirty logging.
258          *
259          * There is no need to do this in any of the following cases:
260          * CREATE:      No dirty mappings will already exist.
261          * MOVE/DELETE: The old mappings will already have been cleaned up by
262          *              kvm_arch_flush_shadow_memslot()
263          */
264         if (change == KVM_MR_FLAGS_ONLY &&
265             (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
266              new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
267                 spin_lock(&kvm->mmu_lock);
268                 /* Write protect GPA page table entries */
269                 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
270                                         new->base_gfn + new->npages - 1);
271                 /* Let implementation do the rest */
272                 if (needs_flush)
273                         kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
274                 spin_unlock(&kvm->mmu_lock);
275         }
276 }
277
278 static inline void dump_handler(const char *symbol, void *start, void *end)
279 {
280         u32 *p;
281
282         pr_debug("LEAF(%s)\n", symbol);
283
284         pr_debug("\t.set push\n");
285         pr_debug("\t.set noreorder\n");
286
287         for (p = start; p < (u32 *)end; ++p)
288                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
289
290         pr_debug("\t.set\tpop\n");
291
292         pr_debug("\tEND(%s)\n", symbol);
293 }
294
295 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
296 {
297         int err, size;
298         void *gebase, *p, *handler, *refill_start, *refill_end;
299         int i;
300
301         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
302
303         if (!vcpu) {
304                 err = -ENOMEM;
305                 goto out;
306         }
307
308         err = kvm_vcpu_init(vcpu, kvm, id);
309
310         if (err)
311                 goto out_free_cpu;
312
313         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
314
315         /*
316          * Allocate space for host mode exception handlers that handle
317          * guest mode exits
318          */
319         if (cpu_has_veic || cpu_has_vint)
320                 size = 0x200 + VECTORSPACING * 64;
321         else
322                 size = 0x4000;
323
324         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
325
326         if (!gebase) {
327                 err = -ENOMEM;
328                 goto out_uninit_cpu;
329         }
330         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
331                   ALIGN(size, PAGE_SIZE), gebase);
332
333         /*
334          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
335          * limits us to the low 512MB of physical address space. If the memory
336          * we allocate is out of range, just give up now.
337          */
338         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
339                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
340                         gebase);
341                 err = -ENOMEM;
342                 goto out_free_gebase;
343         }
344
345         /* Save new ebase */
346         vcpu->arch.guest_ebase = gebase;
347
348         /* Build guest exception vectors dynamically in unmapped memory */
349         handler = gebase + 0x2000;
350
351         /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
352         refill_start = gebase;
353         if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
354                 refill_start += 0x080;
355         refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
356
357         /* General Exception Entry point */
358         kvm_mips_build_exception(gebase + 0x180, handler);
359
360         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
361         for (i = 0; i < 8; i++) {
362                 kvm_debug("L1 Vectored handler @ %p\n",
363                           gebase + 0x200 + (i * VECTORSPACING));
364                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
365                                          handler);
366         }
367
368         /* General exit handler */
369         p = handler;
370         p = kvm_mips_build_exit(p);
371
372         /* Guest entry routine */
373         vcpu->arch.vcpu_run = p;
374         p = kvm_mips_build_vcpu_run(p);
375
376         /* Dump the generated code */
377         pr_debug("#include <asm/asm.h>\n");
378         pr_debug("#include <asm/regdef.h>\n");
379         pr_debug("\n");
380         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
381         dump_handler("kvm_tlb_refill", refill_start, refill_end);
382         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
383         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
384
385         /* Invalidate the icache for these ranges */
386         flush_icache_range((unsigned long)gebase,
387                            (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
388
389         /*
390          * Allocate comm page for guest kernel, a TLB will be reserved for
391          * mapping GVA @ 0xFFFF8000 to this page
392          */
393         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
394
395         if (!vcpu->arch.kseg0_commpage) {
396                 err = -ENOMEM;
397                 goto out_free_gebase;
398         }
399
400         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
401         kvm_mips_commpage_init(vcpu);
402
403         /* Init */
404         vcpu->arch.last_sched_cpu = -1;
405         vcpu->arch.last_exec_cpu = -1;
406
407         return vcpu;
408
409 out_free_gebase:
410         kfree(gebase);
411
412 out_uninit_cpu:
413         kvm_vcpu_uninit(vcpu);
414
415 out_free_cpu:
416         kfree(vcpu);
417
418 out:
419         return ERR_PTR(err);
420 }
421
422 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
423 {
424         hrtimer_cancel(&vcpu->arch.comparecount_timer);
425
426         kvm_vcpu_uninit(vcpu);
427
428         kvm_mips_dump_stats(vcpu);
429
430         kvm_mmu_free_memory_caches(vcpu);
431         kfree(vcpu->arch.guest_ebase);
432         kfree(vcpu->arch.kseg0_commpage);
433         kfree(vcpu);
434 }
435
436 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
437 {
438         kvm_arch_vcpu_free(vcpu);
439 }
440
441 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
442                                         struct kvm_guest_debug *dbg)
443 {
444         return -ENOIOCTLCMD;
445 }
446
447 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
448 {
449         int r = -EINTR;
450
451         kvm_sigset_activate(vcpu);
452
453         if (vcpu->mmio_needed) {
454                 if (!vcpu->mmio_is_write)
455                         kvm_mips_complete_mmio_load(vcpu, run);
456                 vcpu->mmio_needed = 0;
457         }
458
459         if (run->immediate_exit)
460                 goto out;
461
462         lose_fpu(1);
463
464         local_irq_disable();
465         guest_enter_irqoff();
466         trace_kvm_enter(vcpu);
467
468         /*
469          * Make sure the read of VCPU requests in vcpu_run() callback is not
470          * reordered ahead of the write to vcpu->mode, or we could miss a TLB
471          * flush request while the requester sees the VCPU as outside of guest
472          * mode and not needing an IPI.
473          */
474         smp_store_mb(vcpu->mode, IN_GUEST_MODE);
475
476         r = kvm_mips_callbacks->vcpu_run(run, vcpu);
477
478         trace_kvm_out(vcpu);
479         guest_exit_irqoff();
480         local_irq_enable();
481
482 out:
483         kvm_sigset_deactivate(vcpu);
484
485         return r;
486 }
487
488 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
489                              struct kvm_mips_interrupt *irq)
490 {
491         int intr = (int)irq->irq;
492         struct kvm_vcpu *dvcpu = NULL;
493
494         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
495                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
496                           (int)intr);
497
498         if (irq->cpu == -1)
499                 dvcpu = vcpu;
500         else
501                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
502
503         if (intr == 2 || intr == 3 || intr == 4) {
504                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
505
506         } else if (intr == -2 || intr == -3 || intr == -4) {
507                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
508         } else {
509                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
510                         irq->cpu, irq->irq);
511                 return -EINVAL;
512         }
513
514         dvcpu->arch.wait = 0;
515
516         if (swq_has_sleeper(&dvcpu->wq))
517                 swake_up(&dvcpu->wq);
518
519         return 0;
520 }
521
522 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
523                                     struct kvm_mp_state *mp_state)
524 {
525         return -ENOIOCTLCMD;
526 }
527
528 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
529                                     struct kvm_mp_state *mp_state)
530 {
531         return -ENOIOCTLCMD;
532 }
533
534 static u64 kvm_mips_get_one_regs[] = {
535         KVM_REG_MIPS_R0,
536         KVM_REG_MIPS_R1,
537         KVM_REG_MIPS_R2,
538         KVM_REG_MIPS_R3,
539         KVM_REG_MIPS_R4,
540         KVM_REG_MIPS_R5,
541         KVM_REG_MIPS_R6,
542         KVM_REG_MIPS_R7,
543         KVM_REG_MIPS_R8,
544         KVM_REG_MIPS_R9,
545         KVM_REG_MIPS_R10,
546         KVM_REG_MIPS_R11,
547         KVM_REG_MIPS_R12,
548         KVM_REG_MIPS_R13,
549         KVM_REG_MIPS_R14,
550         KVM_REG_MIPS_R15,
551         KVM_REG_MIPS_R16,
552         KVM_REG_MIPS_R17,
553         KVM_REG_MIPS_R18,
554         KVM_REG_MIPS_R19,
555         KVM_REG_MIPS_R20,
556         KVM_REG_MIPS_R21,
557         KVM_REG_MIPS_R22,
558         KVM_REG_MIPS_R23,
559         KVM_REG_MIPS_R24,
560         KVM_REG_MIPS_R25,
561         KVM_REG_MIPS_R26,
562         KVM_REG_MIPS_R27,
563         KVM_REG_MIPS_R28,
564         KVM_REG_MIPS_R29,
565         KVM_REG_MIPS_R30,
566         KVM_REG_MIPS_R31,
567
568 #ifndef CONFIG_CPU_MIPSR6
569         KVM_REG_MIPS_HI,
570         KVM_REG_MIPS_LO,
571 #endif
572         KVM_REG_MIPS_PC,
573 };
574
575 static u64 kvm_mips_get_one_regs_fpu[] = {
576         KVM_REG_MIPS_FCR_IR,
577         KVM_REG_MIPS_FCR_CSR,
578 };
579
580 static u64 kvm_mips_get_one_regs_msa[] = {
581         KVM_REG_MIPS_MSA_IR,
582         KVM_REG_MIPS_MSA_CSR,
583 };
584
585 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
586 {
587         unsigned long ret;
588
589         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
590         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
591                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
592                 /* odd doubles */
593                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
594                         ret += 16;
595         }
596         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
597                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
598         ret += kvm_mips_callbacks->num_regs(vcpu);
599
600         return ret;
601 }
602
603 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
604 {
605         u64 index;
606         unsigned int i;
607
608         if (copy_to_user(indices, kvm_mips_get_one_regs,
609                          sizeof(kvm_mips_get_one_regs)))
610                 return -EFAULT;
611         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
612
613         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
614                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
615                                  sizeof(kvm_mips_get_one_regs_fpu)))
616                         return -EFAULT;
617                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
618
619                 for (i = 0; i < 32; ++i) {
620                         index = KVM_REG_MIPS_FPR_32(i);
621                         if (copy_to_user(indices, &index, sizeof(index)))
622                                 return -EFAULT;
623                         ++indices;
624
625                         /* skip odd doubles if no F64 */
626                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
627                                 continue;
628
629                         index = KVM_REG_MIPS_FPR_64(i);
630                         if (copy_to_user(indices, &index, sizeof(index)))
631                                 return -EFAULT;
632                         ++indices;
633                 }
634         }
635
636         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
637                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
638                                  sizeof(kvm_mips_get_one_regs_msa)))
639                         return -EFAULT;
640                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
641
642                 for (i = 0; i < 32; ++i) {
643                         index = KVM_REG_MIPS_VEC_128(i);
644                         if (copy_to_user(indices, &index, sizeof(index)))
645                                 return -EFAULT;
646                         ++indices;
647                 }
648         }
649
650         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
651 }
652
653 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
654                             const struct kvm_one_reg *reg)
655 {
656         struct mips_coproc *cop0 = vcpu->arch.cop0;
657         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
658         int ret;
659         s64 v;
660         s64 vs[2];
661         unsigned int idx;
662
663         switch (reg->id) {
664         /* General purpose registers */
665         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
666                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
667                 break;
668 #ifndef CONFIG_CPU_MIPSR6
669         case KVM_REG_MIPS_HI:
670                 v = (long)vcpu->arch.hi;
671                 break;
672         case KVM_REG_MIPS_LO:
673                 v = (long)vcpu->arch.lo;
674                 break;
675 #endif
676         case KVM_REG_MIPS_PC:
677                 v = (long)vcpu->arch.pc;
678                 break;
679
680         /* Floating point registers */
681         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
682                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
683                         return -EINVAL;
684                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
685                 /* Odd singles in top of even double when FR=0 */
686                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
687                         v = get_fpr32(&fpu->fpr[idx], 0);
688                 else
689                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
690                 break;
691         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
692                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
693                         return -EINVAL;
694                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
695                 /* Can't access odd doubles in FR=0 mode */
696                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
697                         return -EINVAL;
698                 v = get_fpr64(&fpu->fpr[idx], 0);
699                 break;
700         case KVM_REG_MIPS_FCR_IR:
701                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
702                         return -EINVAL;
703                 v = boot_cpu_data.fpu_id;
704                 break;
705         case KVM_REG_MIPS_FCR_CSR:
706                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
707                         return -EINVAL;
708                 v = fpu->fcr31;
709                 break;
710
711         /* MIPS SIMD Architecture (MSA) registers */
712         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
713                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
714                         return -EINVAL;
715                 /* Can't access MSA registers in FR=0 mode */
716                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
717                         return -EINVAL;
718                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
719 #ifdef CONFIG_CPU_LITTLE_ENDIAN
720                 /* least significant byte first */
721                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
722                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
723 #else
724                 /* most significant byte first */
725                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
726                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
727 #endif
728                 break;
729         case KVM_REG_MIPS_MSA_IR:
730                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
731                         return -EINVAL;
732                 v = boot_cpu_data.msa_id;
733                 break;
734         case KVM_REG_MIPS_MSA_CSR:
735                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
736                         return -EINVAL;
737                 v = fpu->msacsr;
738                 break;
739
740         /* registers to be handled specially */
741         default:
742                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
743                 if (ret)
744                         return ret;
745                 break;
746         }
747         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
748                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
749
750                 return put_user(v, uaddr64);
751         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
752                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
753                 u32 v32 = (u32)v;
754
755                 return put_user(v32, uaddr32);
756         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
757                 void __user *uaddr = (void __user *)(long)reg->addr;
758
759                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
760         } else {
761                 return -EINVAL;
762         }
763 }
764
765 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
766                             const struct kvm_one_reg *reg)
767 {
768         struct mips_coproc *cop0 = vcpu->arch.cop0;
769         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
770         s64 v;
771         s64 vs[2];
772         unsigned int idx;
773
774         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
775                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
776
777                 if (get_user(v, uaddr64) != 0)
778                         return -EFAULT;
779         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
780                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
781                 s32 v32;
782
783                 if (get_user(v32, uaddr32) != 0)
784                         return -EFAULT;
785                 v = (s64)v32;
786         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
787                 void __user *uaddr = (void __user *)(long)reg->addr;
788
789                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
790         } else {
791                 return -EINVAL;
792         }
793
794         switch (reg->id) {
795         /* General purpose registers */
796         case KVM_REG_MIPS_R0:
797                 /* Silently ignore requests to set $0 */
798                 break;
799         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
800                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
801                 break;
802 #ifndef CONFIG_CPU_MIPSR6
803         case KVM_REG_MIPS_HI:
804                 vcpu->arch.hi = v;
805                 break;
806         case KVM_REG_MIPS_LO:
807                 vcpu->arch.lo = v;
808                 break;
809 #endif
810         case KVM_REG_MIPS_PC:
811                 vcpu->arch.pc = v;
812                 break;
813
814         /* Floating point registers */
815         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
816                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
817                         return -EINVAL;
818                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
819                 /* Odd singles in top of even double when FR=0 */
820                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
821                         set_fpr32(&fpu->fpr[idx], 0, v);
822                 else
823                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
824                 break;
825         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
826                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
827                         return -EINVAL;
828                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
829                 /* Can't access odd doubles in FR=0 mode */
830                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
831                         return -EINVAL;
832                 set_fpr64(&fpu->fpr[idx], 0, v);
833                 break;
834         case KVM_REG_MIPS_FCR_IR:
835                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
836                         return -EINVAL;
837                 /* Read-only */
838                 break;
839         case KVM_REG_MIPS_FCR_CSR:
840                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
841                         return -EINVAL;
842                 fpu->fcr31 = v;
843                 break;
844
845         /* MIPS SIMD Architecture (MSA) registers */
846         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
847                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
848                         return -EINVAL;
849                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
850 #ifdef CONFIG_CPU_LITTLE_ENDIAN
851                 /* least significant byte first */
852                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
853                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
854 #else
855                 /* most significant byte first */
856                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
857                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
858 #endif
859                 break;
860         case KVM_REG_MIPS_MSA_IR:
861                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
862                         return -EINVAL;
863                 /* Read-only */
864                 break;
865         case KVM_REG_MIPS_MSA_CSR:
866                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
867                         return -EINVAL;
868                 fpu->msacsr = v;
869                 break;
870
871         /* registers to be handled specially */
872         default:
873                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
874         }
875         return 0;
876 }
877
878 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
879                                      struct kvm_enable_cap *cap)
880 {
881         int r = 0;
882
883         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
884                 return -EINVAL;
885         if (cap->flags)
886                 return -EINVAL;
887         if (cap->args[0])
888                 return -EINVAL;
889
890         switch (cap->cap) {
891         case KVM_CAP_MIPS_FPU:
892                 vcpu->arch.fpu_enabled = true;
893                 break;
894         case KVM_CAP_MIPS_MSA:
895                 vcpu->arch.msa_enabled = true;
896                 break;
897         default:
898                 r = -EINVAL;
899                 break;
900         }
901
902         return r;
903 }
904
905 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
906                          unsigned long arg)
907 {
908         struct kvm_vcpu *vcpu = filp->private_data;
909         void __user *argp = (void __user *)arg;
910         long r;
911
912         switch (ioctl) {
913         case KVM_SET_ONE_REG:
914         case KVM_GET_ONE_REG: {
915                 struct kvm_one_reg reg;
916
917                 if (copy_from_user(&reg, argp, sizeof(reg)))
918                         return -EFAULT;
919                 if (ioctl == KVM_SET_ONE_REG)
920                         return kvm_mips_set_reg(vcpu, &reg);
921                 else
922                         return kvm_mips_get_reg(vcpu, &reg);
923         }
924         case KVM_GET_REG_LIST: {
925                 struct kvm_reg_list __user *user_list = argp;
926                 struct kvm_reg_list reg_list;
927                 unsigned n;
928
929                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
930                         return -EFAULT;
931                 n = reg_list.n;
932                 reg_list.n = kvm_mips_num_regs(vcpu);
933                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
934                         return -EFAULT;
935                 if (n < reg_list.n)
936                         return -E2BIG;
937                 return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
938         }
939         case KVM_INTERRUPT:
940                 {
941                         struct kvm_mips_interrupt irq;
942
943                         if (copy_from_user(&irq, argp, sizeof(irq)))
944                                 return -EFAULT;
945                         kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
946                                   irq.irq);
947
948                         r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
949                         break;
950                 }
951         case KVM_ENABLE_CAP: {
952                 struct kvm_enable_cap cap;
953
954                 if (copy_from_user(&cap, argp, sizeof(cap)))
955                         return -EFAULT;
956                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
957                 break;
958         }
959         default:
960                 r = -ENOIOCTLCMD;
961         }
962         return r;
963 }
964
965 /**
966  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
967  * @kvm: kvm instance
968  * @log: slot id and address to which we copy the log
969  *
970  * Steps 1-4 below provide general overview of dirty page logging. See
971  * kvm_get_dirty_log_protect() function description for additional details.
972  *
973  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
974  * always flush the TLB (step 4) even if previous step failed  and the dirty
975  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
976  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
977  * writes will be marked dirty for next log read.
978  *
979  *   1. Take a snapshot of the bit and clear it if needed.
980  *   2. Write protect the corresponding page.
981  *   3. Copy the snapshot to the userspace.
982  *   4. Flush TLB's if needed.
983  */
984 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
985 {
986         struct kvm_memslots *slots;
987         struct kvm_memory_slot *memslot;
988         bool is_dirty = false;
989         int r;
990
991         mutex_lock(&kvm->slots_lock);
992
993         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
994
995         if (is_dirty) {
996                 slots = kvm_memslots(kvm);
997                 memslot = id_to_memslot(slots, log->slot);
998
999                 /* Let implementation handle TLB/GVA invalidation */
1000                 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1001         }
1002
1003         mutex_unlock(&kvm->slots_lock);
1004         return r;
1005 }
1006
1007 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1008 {
1009         long r;
1010
1011         switch (ioctl) {
1012         default:
1013                 r = -ENOIOCTLCMD;
1014         }
1015
1016         return r;
1017 }
1018
1019 int kvm_arch_init(void *opaque)
1020 {
1021         if (kvm_mips_callbacks) {
1022                 kvm_err("kvm: module already exists\n");
1023                 return -EEXIST;
1024         }
1025
1026         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1027 }
1028
1029 void kvm_arch_exit(void)
1030 {
1031         kvm_mips_callbacks = NULL;
1032 }
1033
1034 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1035                                   struct kvm_sregs *sregs)
1036 {
1037         return -ENOIOCTLCMD;
1038 }
1039
1040 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1041                                   struct kvm_sregs *sregs)
1042 {
1043         return -ENOIOCTLCMD;
1044 }
1045
1046 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1047 {
1048 }
1049
1050 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1051 {
1052         return -ENOIOCTLCMD;
1053 }
1054
1055 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1056 {
1057         return -ENOIOCTLCMD;
1058 }
1059
1060 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1061 {
1062         return VM_FAULT_SIGBUS;
1063 }
1064
1065 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1066 {
1067         int r;
1068
1069         switch (ext) {
1070         case KVM_CAP_ONE_REG:
1071         case KVM_CAP_ENABLE_CAP:
1072         case KVM_CAP_READONLY_MEM:
1073         case KVM_CAP_SYNC_MMU:
1074         case KVM_CAP_IMMEDIATE_EXIT:
1075                 r = 1;
1076                 break;
1077         case KVM_CAP_NR_VCPUS:
1078                 r = num_online_cpus();
1079                 break;
1080         case KVM_CAP_MAX_VCPUS:
1081                 r = KVM_MAX_VCPUS;
1082                 break;
1083         case KVM_CAP_MAX_VCPU_ID:
1084                 r = KVM_MAX_VCPU_ID;
1085                 break;
1086         case KVM_CAP_MIPS_FPU:
1087                 /* We don't handle systems with inconsistent cpu_has_fpu */
1088                 r = !!raw_cpu_has_fpu;
1089                 break;
1090         case KVM_CAP_MIPS_MSA:
1091                 /*
1092                  * We don't support MSA vector partitioning yet:
1093                  * 1) It would require explicit support which can't be tested
1094                  *    yet due to lack of support in current hardware.
1095                  * 2) It extends the state that would need to be saved/restored
1096                  *    by e.g. QEMU for migration.
1097                  *
1098                  * When vector partitioning hardware becomes available, support
1099                  * could be added by requiring a flag when enabling
1100                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1101                  * to save/restore the appropriate extra state.
1102                  */
1103                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1104                 break;
1105         default:
1106                 r = kvm_mips_callbacks->check_extension(kvm, ext);
1107                 break;
1108         }
1109         return r;
1110 }
1111
1112 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1113 {
1114         return kvm_mips_pending_timer(vcpu) ||
1115                 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1116 }
1117
1118 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1119 {
1120         int i;
1121         struct mips_coproc *cop0;
1122
1123         if (!vcpu)
1124                 return -1;
1125
1126         kvm_debug("VCPU Register Dump:\n");
1127         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1128         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1129
1130         for (i = 0; i < 32; i += 4) {
1131                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1132                        vcpu->arch.gprs[i],
1133                        vcpu->arch.gprs[i + 1],
1134                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1135         }
1136         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1137         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1138
1139         cop0 = vcpu->arch.cop0;
1140         kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1141                   kvm_read_c0_guest_status(cop0),
1142                   kvm_read_c0_guest_cause(cop0));
1143
1144         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1145
1146         return 0;
1147 }
1148
1149 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1150 {
1151         int i;
1152
1153         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1154                 vcpu->arch.gprs[i] = regs->gpr[i];
1155         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1156         vcpu->arch.hi = regs->hi;
1157         vcpu->arch.lo = regs->lo;
1158         vcpu->arch.pc = regs->pc;
1159
1160         return 0;
1161 }
1162
1163 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1164 {
1165         int i;
1166
1167         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1168                 regs->gpr[i] = vcpu->arch.gprs[i];
1169
1170         regs->hi = vcpu->arch.hi;
1171         regs->lo = vcpu->arch.lo;
1172         regs->pc = vcpu->arch.pc;
1173
1174         return 0;
1175 }
1176
1177 static void kvm_mips_comparecount_func(unsigned long data)
1178 {
1179         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1180
1181         kvm_mips_callbacks->queue_timer_int(vcpu);
1182
1183         vcpu->arch.wait = 0;
1184         if (swq_has_sleeper(&vcpu->wq))
1185                 swake_up(&vcpu->wq);
1186 }
1187
1188 /* low level hrtimer wake routine */
1189 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1190 {
1191         struct kvm_vcpu *vcpu;
1192
1193         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1194         kvm_mips_comparecount_func((unsigned long) vcpu);
1195         return kvm_mips_count_timeout(vcpu);
1196 }
1197
1198 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1199 {
1200         int err;
1201
1202         err = kvm_mips_callbacks->vcpu_init(vcpu);
1203         if (err)
1204                 return err;
1205
1206         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1207                      HRTIMER_MODE_REL);
1208         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1209         return 0;
1210 }
1211
1212 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1213 {
1214         kvm_mips_callbacks->vcpu_uninit(vcpu);
1215 }
1216
1217 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1218                                   struct kvm_translation *tr)
1219 {
1220         return 0;
1221 }
1222
1223 /* Initial guest state */
1224 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1225 {
1226         return kvm_mips_callbacks->vcpu_setup(vcpu);
1227 }
1228
1229 static void kvm_mips_set_c0_status(void)
1230 {
1231         u32 status = read_c0_status();
1232
1233         if (cpu_has_dsp)
1234                 status |= (ST0_MX);
1235
1236         write_c0_status(status);
1237         ehb();
1238 }
1239
1240 /*
1241  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1242  */
1243 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1244 {
1245         u32 cause = vcpu->arch.host_cp0_cause;
1246         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1247         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1248         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1249         enum emulation_result er = EMULATE_DONE;
1250         u32 inst;
1251         int ret = RESUME_GUEST;
1252
1253         vcpu->mode = OUTSIDE_GUEST_MODE;
1254
1255         /* re-enable HTW before enabling interrupts */
1256         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1257                 htw_start();
1258
1259         /* Set a default exit reason */
1260         run->exit_reason = KVM_EXIT_UNKNOWN;
1261         run->ready_for_interrupt_injection = 1;
1262
1263         /*
1264          * Set the appropriate status bits based on host CPU features,
1265          * before we hit the scheduler
1266          */
1267         kvm_mips_set_c0_status();
1268
1269         local_irq_enable();
1270
1271         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1272                         cause, opc, run, vcpu);
1273         trace_kvm_exit(vcpu, exccode);
1274
1275         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1276                 /*
1277                  * Do a privilege check, if in UM most of these exit conditions
1278                  * end up causing an exception to be delivered to the Guest
1279                  * Kernel
1280                  */
1281                 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1282                 if (er == EMULATE_PRIV_FAIL) {
1283                         goto skip_emul;
1284                 } else if (er == EMULATE_FAIL) {
1285                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1286                         ret = RESUME_HOST;
1287                         goto skip_emul;
1288                 }
1289         }
1290
1291         switch (exccode) {
1292         case EXCCODE_INT:
1293                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1294
1295                 ++vcpu->stat.int_exits;
1296
1297                 if (need_resched())
1298                         cond_resched();
1299
1300                 ret = RESUME_GUEST;
1301                 break;
1302
1303         case EXCCODE_CPU:
1304                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1305
1306                 ++vcpu->stat.cop_unusable_exits;
1307                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1308                 /* XXXKYMA: Might need to return to user space */
1309                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1310                         ret = RESUME_HOST;
1311                 break;
1312
1313         case EXCCODE_MOD:
1314                 ++vcpu->stat.tlbmod_exits;
1315                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1316                 break;
1317
1318         case EXCCODE_TLBS:
1319                 kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1320                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1321                           badvaddr);
1322
1323                 ++vcpu->stat.tlbmiss_st_exits;
1324                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1325                 break;
1326
1327         case EXCCODE_TLBL:
1328                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1329                           cause, opc, badvaddr);
1330
1331                 ++vcpu->stat.tlbmiss_ld_exits;
1332                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1333                 break;
1334
1335         case EXCCODE_ADES:
1336                 ++vcpu->stat.addrerr_st_exits;
1337                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1338                 break;
1339
1340         case EXCCODE_ADEL:
1341                 ++vcpu->stat.addrerr_ld_exits;
1342                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1343                 break;
1344
1345         case EXCCODE_SYS:
1346                 ++vcpu->stat.syscall_exits;
1347                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1348                 break;
1349
1350         case EXCCODE_RI:
1351                 ++vcpu->stat.resvd_inst_exits;
1352                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1353                 break;
1354
1355         case EXCCODE_BP:
1356                 ++vcpu->stat.break_inst_exits;
1357                 ret = kvm_mips_callbacks->handle_break(vcpu);
1358                 break;
1359
1360         case EXCCODE_TR:
1361                 ++vcpu->stat.trap_inst_exits;
1362                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1363                 break;
1364
1365         case EXCCODE_MSAFPE:
1366                 ++vcpu->stat.msa_fpe_exits;
1367                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1368                 break;
1369
1370         case EXCCODE_FPE:
1371                 ++vcpu->stat.fpe_exits;
1372                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1373                 break;
1374
1375         case EXCCODE_MSADIS:
1376                 ++vcpu->stat.msa_disabled_exits;
1377                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1378                 break;
1379
1380         case EXCCODE_GE:
1381                 /* defer exit accounting to handler */
1382                 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1383                 break;
1384
1385         default:
1386                 if (cause & CAUSEF_BD)
1387                         opc += 1;
1388                 inst = 0;
1389                 kvm_get_badinstr(opc, vcpu, &inst);
1390                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1391                         exccode, opc, inst, badvaddr,
1392                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1393                 kvm_arch_vcpu_dump_regs(vcpu);
1394                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1395                 ret = RESUME_HOST;
1396                 break;
1397
1398         }
1399
1400 skip_emul:
1401         local_irq_disable();
1402
1403         if (ret == RESUME_GUEST)
1404                 kvm_vz_acquire_htimer(vcpu);
1405
1406         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1407                 kvm_mips_deliver_interrupts(vcpu, cause);
1408
1409         if (!(ret & RESUME_HOST)) {
1410                 /* Only check for signals if not already exiting to userspace */
1411                 if (signal_pending(current)) {
1412                         run->exit_reason = KVM_EXIT_INTR;
1413                         ret = (-EINTR << 2) | RESUME_HOST;
1414                         ++vcpu->stat.signal_exits;
1415                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1416                 }
1417         }
1418
1419         if (ret == RESUME_GUEST) {
1420                 trace_kvm_reenter(vcpu);
1421
1422                 /*
1423                  * Make sure the read of VCPU requests in vcpu_reenter()
1424                  * callback is not reordered ahead of the write to vcpu->mode,
1425                  * or we could miss a TLB flush request while the requester sees
1426                  * the VCPU as outside of guest mode and not needing an IPI.
1427                  */
1428                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1429
1430                 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1431
1432                 /*
1433                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1434                  * is live), restore FCR31 / MSACSR.
1435                  *
1436                  * This should be before returning to the guest exception
1437                  * vector, as it may well cause an [MSA] FP exception if there
1438                  * are pending exception bits unmasked. (see
1439                  * kvm_mips_csr_die_notifier() for how that is handled).
1440                  */
1441                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1442                     read_c0_status() & ST0_CU1)
1443                         __kvm_restore_fcsr(&vcpu->arch);
1444
1445                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1446                     read_c0_config5() & MIPS_CONF5_MSAEN)
1447                         __kvm_restore_msacsr(&vcpu->arch);
1448         }
1449
1450         /* Disable HTW before returning to guest or host */
1451         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1452                 htw_stop();
1453
1454         return ret;
1455 }
1456
1457 /* Enable FPU for guest and restore context */
1458 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1459 {
1460         struct mips_coproc *cop0 = vcpu->arch.cop0;
1461         unsigned int sr, cfg5;
1462
1463         preempt_disable();
1464
1465         sr = kvm_read_c0_guest_status(cop0);
1466
1467         /*
1468          * If MSA state is already live, it is undefined how it interacts with
1469          * FR=0 FPU state, and we don't want to hit reserved instruction
1470          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1471          * play it safe and save it first.
1472          *
1473          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1474          * get called when guest CU1 is set, however we can't trust the guest
1475          * not to clobber the status register directly via the commpage.
1476          */
1477         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1478             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1479                 kvm_lose_fpu(vcpu);
1480
1481         /*
1482          * Enable FPU for guest
1483          * We set FR and FRE according to guest context
1484          */
1485         change_c0_status(ST0_CU1 | ST0_FR, sr);
1486         if (cpu_has_fre) {
1487                 cfg5 = kvm_read_c0_guest_config5(cop0);
1488                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1489         }
1490         enable_fpu_hazard();
1491
1492         /* If guest FPU state not active, restore it now */
1493         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1494                 __kvm_restore_fpu(&vcpu->arch);
1495                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1496                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1497         } else {
1498                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1499         }
1500
1501         preempt_enable();
1502 }
1503
1504 #ifdef CONFIG_CPU_HAS_MSA
1505 /* Enable MSA for guest and restore context */
1506 void kvm_own_msa(struct kvm_vcpu *vcpu)
1507 {
1508         struct mips_coproc *cop0 = vcpu->arch.cop0;
1509         unsigned int sr, cfg5;
1510
1511         preempt_disable();
1512
1513         /*
1514          * Enable FPU if enabled in guest, since we're restoring FPU context
1515          * anyway. We set FR and FRE according to guest context.
1516          */
1517         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1518                 sr = kvm_read_c0_guest_status(cop0);
1519
1520                 /*
1521                  * If FR=0 FPU state is already live, it is undefined how it
1522                  * interacts with MSA state, so play it safe and save it first.
1523                  */
1524                 if (!(sr & ST0_FR) &&
1525                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1526                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1527                         kvm_lose_fpu(vcpu);
1528
1529                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1530                 if (sr & ST0_CU1 && cpu_has_fre) {
1531                         cfg5 = kvm_read_c0_guest_config5(cop0);
1532                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1533                 }
1534         }
1535
1536         /* Enable MSA for guest */
1537         set_c0_config5(MIPS_CONF5_MSAEN);
1538         enable_fpu_hazard();
1539
1540         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1541         case KVM_MIPS_AUX_FPU:
1542                 /*
1543                  * Guest FPU state already loaded, only restore upper MSA state
1544                  */
1545                 __kvm_restore_msa_upper(&vcpu->arch);
1546                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1547                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1548                 break;
1549         case 0:
1550                 /* Neither FPU or MSA already active, restore full MSA state */
1551                 __kvm_restore_msa(&vcpu->arch);
1552                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1553                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1554                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1555                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1556                               KVM_TRACE_AUX_FPU_MSA);
1557                 break;
1558         default:
1559                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1560                 break;
1561         }
1562
1563         preempt_enable();
1564 }
1565 #endif
1566
1567 /* Drop FPU & MSA without saving it */
1568 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1569 {
1570         preempt_disable();
1571         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1572                 disable_msa();
1573                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1574                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1575         }
1576         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1577                 clear_c0_status(ST0_CU1 | ST0_FR);
1578                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1579                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1580         }
1581         preempt_enable();
1582 }
1583
1584 /* Save and disable FPU & MSA */
1585 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1586 {
1587         /*
1588          * With T&E, FPU & MSA get disabled in root context (hardware) when it
1589          * is disabled in guest context (software), but the register state in
1590          * the hardware may still be in use.
1591          * This is why we explicitly re-enable the hardware before saving.
1592          */
1593
1594         preempt_disable();
1595         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1596                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1597                         set_c0_config5(MIPS_CONF5_MSAEN);
1598                         enable_fpu_hazard();
1599                 }
1600
1601                 __kvm_save_msa(&vcpu->arch);
1602                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1603
1604                 /* Disable MSA & FPU */
1605                 disable_msa();
1606                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1607                         clear_c0_status(ST0_CU1 | ST0_FR);
1608                         disable_fpu_hazard();
1609                 }
1610                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1611         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1612                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1613                         set_c0_status(ST0_CU1);
1614                         enable_fpu_hazard();
1615                 }
1616
1617                 __kvm_save_fpu(&vcpu->arch);
1618                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1619                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1620
1621                 /* Disable FPU */
1622                 clear_c0_status(ST0_CU1 | ST0_FR);
1623                 disable_fpu_hazard();
1624         }
1625         preempt_enable();
1626 }
1627
1628 /*
1629  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1630  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1631  * exception if cause bits are set in the value being written.
1632  */
1633 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1634                                    unsigned long cmd, void *ptr)
1635 {
1636         struct die_args *args = (struct die_args *)ptr;
1637         struct pt_regs *regs = args->regs;
1638         unsigned long pc;
1639
1640         /* Only interested in FPE and MSAFPE */
1641         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1642                 return NOTIFY_DONE;
1643
1644         /* Return immediately if guest context isn't active */
1645         if (!(current->flags & PF_VCPU))
1646                 return NOTIFY_DONE;
1647
1648         /* Should never get here from user mode */
1649         BUG_ON(user_mode(regs));
1650
1651         pc = instruction_pointer(regs);
1652         switch (cmd) {
1653         case DIE_FP:
1654                 /* match 2nd instruction in __kvm_restore_fcsr */
1655                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1656                         return NOTIFY_DONE;
1657                 break;
1658         case DIE_MSAFP:
1659                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1660                 if (!cpu_has_msa ||
1661                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1662                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1663                         return NOTIFY_DONE;
1664                 break;
1665         }
1666
1667         /* Move PC forward a little and continue executing */
1668         instruction_pointer(regs) += 4;
1669
1670         return NOTIFY_STOP;
1671 }
1672
1673 static struct notifier_block kvm_mips_csr_die_notifier = {
1674         .notifier_call = kvm_mips_csr_die_notify,
1675 };
1676
1677 static int __init kvm_mips_init(void)
1678 {
1679         int ret;
1680
1681         ret = kvm_mips_entry_setup();
1682         if (ret)
1683                 return ret;
1684
1685         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1686
1687         if (ret)
1688                 return ret;
1689
1690         register_die_notifier(&kvm_mips_csr_die_notifier);
1691
1692         return 0;
1693 }
1694
1695 static void __exit kvm_mips_exit(void)
1696 {
1697         kvm_exit();
1698
1699         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1700 }
1701
1702 module_init(kvm_mips_init);
1703 module_exit(kvm_mips_exit);
1704
1705 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);