GNU Linux-libre 4.19.268-gnu1
[releases.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/bootmem.h>
22
23 #include <asm/fpu.h>
24 #include <asm/page.h>
25 #include <asm/cacheflush.h>
26 #include <asm/mmu_context.h>
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33 #include "commpage.h"
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #ifndef VECTORSPACING
39 #define VECTORSPACING 0x100     /* for EI/VI mode */
40 #endif
41
42 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43 struct kvm_stats_debugfs_item debugfs_entries[] = {
44         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
45         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
46         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
47         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
48         { "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
49         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
50         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
51         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
52         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
53         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
54         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
55         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
56         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
57         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
58         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
59         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
60         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
61         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
62 #ifdef CONFIG_KVM_MIPS_VZ
63         { "vz_gpsi",      VCPU_STAT(vz_gpsi_exits),      KVM_STAT_VCPU },
64         { "vz_gsfc",      VCPU_STAT(vz_gsfc_exits),      KVM_STAT_VCPU },
65         { "vz_hc",        VCPU_STAT(vz_hc_exits),        KVM_STAT_VCPU },
66         { "vz_grr",       VCPU_STAT(vz_grr_exits),       KVM_STAT_VCPU },
67         { "vz_gva",       VCPU_STAT(vz_gva_exits),       KVM_STAT_VCPU },
68         { "vz_ghfc",      VCPU_STAT(vz_ghfc_exits),      KVM_STAT_VCPU },
69         { "vz_gpa",       VCPU_STAT(vz_gpa_exits),       KVM_STAT_VCPU },
70         { "vz_resvd",     VCPU_STAT(vz_resvd_exits),     KVM_STAT_VCPU },
71 #endif
72         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
73         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
74         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
75         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
76         {NULL}
77 };
78
79 bool kvm_trace_guest_mode_change;
80
81 int kvm_guest_mode_change_trace_reg(void)
82 {
83         kvm_trace_guest_mode_change = 1;
84         return 0;
85 }
86
87 void kvm_guest_mode_change_trace_unreg(void)
88 {
89         kvm_trace_guest_mode_change = 0;
90 }
91
92 /*
93  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
94  * Config7, so we are "runnable" if interrupts are pending
95  */
96 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
97 {
98         return !!(vcpu->arch.pending_exceptions);
99 }
100
101 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
102 {
103         return false;
104 }
105
106 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
107 {
108         return 1;
109 }
110
111 int kvm_arch_hardware_enable(void)
112 {
113         return kvm_mips_callbacks->hardware_enable();
114 }
115
116 void kvm_arch_hardware_disable(void)
117 {
118         kvm_mips_callbacks->hardware_disable();
119 }
120
121 int kvm_arch_hardware_setup(void)
122 {
123         return 0;
124 }
125
126 void kvm_arch_check_processor_compat(void *rtn)
127 {
128         *(int *)rtn = 0;
129 }
130
131 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132 {
133         switch (type) {
134         case KVM_VM_MIPS_AUTO:
135                 break;
136 #ifdef CONFIG_KVM_MIPS_VZ
137         case KVM_VM_MIPS_VZ:
138 #else
139         case KVM_VM_MIPS_TE:
140 #endif
141                 break;
142         default:
143                 /* Unsupported KVM type */
144                 return -EINVAL;
145         };
146
147         /* Allocate page table to map GPA -> RPA */
148         kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
149         if (!kvm->arch.gpa_mm.pgd)
150                 return -ENOMEM;
151
152         return 0;
153 }
154
155 bool kvm_arch_has_vcpu_debugfs(void)
156 {
157         return false;
158 }
159
160 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
161 {
162         return 0;
163 }
164
165 void kvm_mips_free_vcpus(struct kvm *kvm)
166 {
167         unsigned int i;
168         struct kvm_vcpu *vcpu;
169
170         kvm_for_each_vcpu(i, vcpu, kvm) {
171                 kvm_arch_vcpu_free(vcpu);
172         }
173
174         mutex_lock(&kvm->lock);
175
176         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
177                 kvm->vcpus[i] = NULL;
178
179         atomic_set(&kvm->online_vcpus, 0);
180
181         mutex_unlock(&kvm->lock);
182 }
183
184 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
185 {
186         /* It should always be safe to remove after flushing the whole range */
187         WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
188         pgd_free(NULL, kvm->arch.gpa_mm.pgd);
189 }
190
191 void kvm_arch_destroy_vm(struct kvm *kvm)
192 {
193         kvm_mips_free_vcpus(kvm);
194         kvm_mips_free_gpa_pt(kvm);
195 }
196
197 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
198                         unsigned long arg)
199 {
200         return -ENOIOCTLCMD;
201 }
202
203 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
204                             unsigned long npages)
205 {
206         return 0;
207 }
208
209 void kvm_arch_flush_shadow_all(struct kvm *kvm)
210 {
211         /* Flush whole GPA */
212         kvm_mips_flush_gpa_pt(kvm, 0, ~0);
213
214         /* Let implementation do the rest */
215         kvm_mips_callbacks->flush_shadow_all(kvm);
216 }
217
218 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
219                                    struct kvm_memory_slot *slot)
220 {
221         /*
222          * The slot has been made invalid (ready for moving or deletion), so we
223          * need to ensure that it can no longer be accessed by any guest VCPUs.
224          */
225
226         spin_lock(&kvm->mmu_lock);
227         /* Flush slot from GPA */
228         kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
229                               slot->base_gfn + slot->npages - 1);
230         /* Let implementation do the rest */
231         kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
232         spin_unlock(&kvm->mmu_lock);
233 }
234
235 int kvm_arch_prepare_memory_region(struct kvm *kvm,
236                                    struct kvm_memory_slot *memslot,
237                                    const struct kvm_userspace_memory_region *mem,
238                                    enum kvm_mr_change change)
239 {
240         return 0;
241 }
242
243 void kvm_arch_commit_memory_region(struct kvm *kvm,
244                                    const struct kvm_userspace_memory_region *mem,
245                                    const struct kvm_memory_slot *old,
246                                    const struct kvm_memory_slot *new,
247                                    enum kvm_mr_change change)
248 {
249         int needs_flush;
250
251         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
252                   __func__, kvm, mem->slot, mem->guest_phys_addr,
253                   mem->memory_size, mem->userspace_addr);
254
255         /*
256          * If dirty page logging is enabled, write protect all pages in the slot
257          * ready for dirty logging.
258          *
259          * There is no need to do this in any of the following cases:
260          * CREATE:      No dirty mappings will already exist.
261          * MOVE/DELETE: The old mappings will already have been cleaned up by
262          *              kvm_arch_flush_shadow_memslot()
263          */
264         if (change == KVM_MR_FLAGS_ONLY &&
265             (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
266              new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
267                 spin_lock(&kvm->mmu_lock);
268                 /* Write protect GPA page table entries */
269                 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
270                                         new->base_gfn + new->npages - 1);
271                 /* Let implementation do the rest */
272                 if (needs_flush)
273                         kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
274                 spin_unlock(&kvm->mmu_lock);
275         }
276 }
277
278 static inline void dump_handler(const char *symbol, void *start, void *end)
279 {
280         u32 *p;
281
282         pr_debug("LEAF(%s)\n", symbol);
283
284         pr_debug("\t.set push\n");
285         pr_debug("\t.set noreorder\n");
286
287         for (p = start; p < (u32 *)end; ++p)
288                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
289
290         pr_debug("\t.set\tpop\n");
291
292         pr_debug("\tEND(%s)\n", symbol);
293 }
294
295 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
296 {
297         int err, size;
298         void *gebase, *p, *handler, *refill_start, *refill_end;
299         int i;
300
301         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
302
303         if (!vcpu) {
304                 err = -ENOMEM;
305                 goto out;
306         }
307
308         err = kvm_vcpu_init(vcpu, kvm, id);
309
310         if (err)
311                 goto out_free_cpu;
312
313         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
314
315         /*
316          * Allocate space for host mode exception handlers that handle
317          * guest mode exits
318          */
319         if (cpu_has_veic || cpu_has_vint)
320                 size = 0x200 + VECTORSPACING * 64;
321         else
322                 size = 0x4000;
323
324         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
325
326         if (!gebase) {
327                 err = -ENOMEM;
328                 goto out_uninit_cpu;
329         }
330         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
331                   ALIGN(size, PAGE_SIZE), gebase);
332
333         /*
334          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
335          * limits us to the low 512MB of physical address space. If the memory
336          * we allocate is out of range, just give up now.
337          */
338         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
339                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
340                         gebase);
341                 err = -ENOMEM;
342                 goto out_free_gebase;
343         }
344
345         /* Save new ebase */
346         vcpu->arch.guest_ebase = gebase;
347
348         /* Build guest exception vectors dynamically in unmapped memory */
349         handler = gebase + 0x2000;
350
351         /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
352         refill_start = gebase;
353         if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
354                 refill_start += 0x080;
355         refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
356
357         /* General Exception Entry point */
358         kvm_mips_build_exception(gebase + 0x180, handler);
359
360         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
361         for (i = 0; i < 8; i++) {
362                 kvm_debug("L1 Vectored handler @ %p\n",
363                           gebase + 0x200 + (i * VECTORSPACING));
364                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
365                                          handler);
366         }
367
368         /* General exit handler */
369         p = handler;
370         p = kvm_mips_build_exit(p);
371
372         /* Guest entry routine */
373         vcpu->arch.vcpu_run = p;
374         p = kvm_mips_build_vcpu_run(p);
375
376         /* Dump the generated code */
377         pr_debug("#include <asm/asm.h>\n");
378         pr_debug("#include <asm/regdef.h>\n");
379         pr_debug("\n");
380         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
381         dump_handler("kvm_tlb_refill", refill_start, refill_end);
382         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
383         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
384
385         /* Invalidate the icache for these ranges */
386         flush_icache_range((unsigned long)gebase,
387                            (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
388
389         /*
390          * Allocate comm page for guest kernel, a TLB will be reserved for
391          * mapping GVA @ 0xFFFF8000 to this page
392          */
393         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
394
395         if (!vcpu->arch.kseg0_commpage) {
396                 err = -ENOMEM;
397                 goto out_free_gebase;
398         }
399
400         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
401         kvm_mips_commpage_init(vcpu);
402
403         /* Init */
404         vcpu->arch.last_sched_cpu = -1;
405         vcpu->arch.last_exec_cpu = -1;
406
407         return vcpu;
408
409 out_free_gebase:
410         kfree(gebase);
411
412 out_uninit_cpu:
413         kvm_vcpu_uninit(vcpu);
414
415 out_free_cpu:
416         kfree(vcpu);
417
418 out:
419         return ERR_PTR(err);
420 }
421
422 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
423 {
424         hrtimer_cancel(&vcpu->arch.comparecount_timer);
425
426         kvm_vcpu_uninit(vcpu);
427
428         kvm_mips_dump_stats(vcpu);
429
430         kvm_mmu_free_memory_caches(vcpu);
431         kfree(vcpu->arch.guest_ebase);
432         kfree(vcpu->arch.kseg0_commpage);
433         kfree(vcpu);
434 }
435
436 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
437 {
438         kvm_arch_vcpu_free(vcpu);
439 }
440
441 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
442                                         struct kvm_guest_debug *dbg)
443 {
444         return -ENOIOCTLCMD;
445 }
446
447 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
448 {
449         int r = -EINTR;
450
451         vcpu_load(vcpu);
452
453         kvm_sigset_activate(vcpu);
454
455         if (vcpu->mmio_needed) {
456                 if (!vcpu->mmio_is_write)
457                         kvm_mips_complete_mmio_load(vcpu, run);
458                 vcpu->mmio_needed = 0;
459         }
460
461         if (run->immediate_exit)
462                 goto out;
463
464         lose_fpu(1);
465
466         local_irq_disable();
467         guest_enter_irqoff();
468         trace_kvm_enter(vcpu);
469
470         /*
471          * Make sure the read of VCPU requests in vcpu_run() callback is not
472          * reordered ahead of the write to vcpu->mode, or we could miss a TLB
473          * flush request while the requester sees the VCPU as outside of guest
474          * mode and not needing an IPI.
475          */
476         smp_store_mb(vcpu->mode, IN_GUEST_MODE);
477
478         r = kvm_mips_callbacks->vcpu_run(run, vcpu);
479
480         trace_kvm_out(vcpu);
481         guest_exit_irqoff();
482         local_irq_enable();
483
484 out:
485         kvm_sigset_deactivate(vcpu);
486
487         vcpu_put(vcpu);
488         return r;
489 }
490
491 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
492                              struct kvm_mips_interrupt *irq)
493 {
494         int intr = (int)irq->irq;
495         struct kvm_vcpu *dvcpu = NULL;
496
497         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
498                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
499                           (int)intr);
500
501         if (irq->cpu == -1)
502                 dvcpu = vcpu;
503         else
504                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
505
506         if (intr == 2 || intr == 3 || intr == 4) {
507                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
508
509         } else if (intr == -2 || intr == -3 || intr == -4) {
510                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
511         } else {
512                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
513                         irq->cpu, irq->irq);
514                 return -EINVAL;
515         }
516
517         dvcpu->arch.wait = 0;
518
519         if (swq_has_sleeper(&dvcpu->wq))
520                 swake_up_one(&dvcpu->wq);
521
522         return 0;
523 }
524
525 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
526                                     struct kvm_mp_state *mp_state)
527 {
528         return -ENOIOCTLCMD;
529 }
530
531 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
532                                     struct kvm_mp_state *mp_state)
533 {
534         return -ENOIOCTLCMD;
535 }
536
537 static u64 kvm_mips_get_one_regs[] = {
538         KVM_REG_MIPS_R0,
539         KVM_REG_MIPS_R1,
540         KVM_REG_MIPS_R2,
541         KVM_REG_MIPS_R3,
542         KVM_REG_MIPS_R4,
543         KVM_REG_MIPS_R5,
544         KVM_REG_MIPS_R6,
545         KVM_REG_MIPS_R7,
546         KVM_REG_MIPS_R8,
547         KVM_REG_MIPS_R9,
548         KVM_REG_MIPS_R10,
549         KVM_REG_MIPS_R11,
550         KVM_REG_MIPS_R12,
551         KVM_REG_MIPS_R13,
552         KVM_REG_MIPS_R14,
553         KVM_REG_MIPS_R15,
554         KVM_REG_MIPS_R16,
555         KVM_REG_MIPS_R17,
556         KVM_REG_MIPS_R18,
557         KVM_REG_MIPS_R19,
558         KVM_REG_MIPS_R20,
559         KVM_REG_MIPS_R21,
560         KVM_REG_MIPS_R22,
561         KVM_REG_MIPS_R23,
562         KVM_REG_MIPS_R24,
563         KVM_REG_MIPS_R25,
564         KVM_REG_MIPS_R26,
565         KVM_REG_MIPS_R27,
566         KVM_REG_MIPS_R28,
567         KVM_REG_MIPS_R29,
568         KVM_REG_MIPS_R30,
569         KVM_REG_MIPS_R31,
570
571 #ifndef CONFIG_CPU_MIPSR6
572         KVM_REG_MIPS_HI,
573         KVM_REG_MIPS_LO,
574 #endif
575         KVM_REG_MIPS_PC,
576 };
577
578 static u64 kvm_mips_get_one_regs_fpu[] = {
579         KVM_REG_MIPS_FCR_IR,
580         KVM_REG_MIPS_FCR_CSR,
581 };
582
583 static u64 kvm_mips_get_one_regs_msa[] = {
584         KVM_REG_MIPS_MSA_IR,
585         KVM_REG_MIPS_MSA_CSR,
586 };
587
588 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
589 {
590         unsigned long ret;
591
592         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
593         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
594                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
595                 /* odd doubles */
596                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
597                         ret += 16;
598         }
599         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
600                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
601         ret += kvm_mips_callbacks->num_regs(vcpu);
602
603         return ret;
604 }
605
606 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
607 {
608         u64 index;
609         unsigned int i;
610
611         if (copy_to_user(indices, kvm_mips_get_one_regs,
612                          sizeof(kvm_mips_get_one_regs)))
613                 return -EFAULT;
614         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
615
616         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
617                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
618                                  sizeof(kvm_mips_get_one_regs_fpu)))
619                         return -EFAULT;
620                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
621
622                 for (i = 0; i < 32; ++i) {
623                         index = KVM_REG_MIPS_FPR_32(i);
624                         if (copy_to_user(indices, &index, sizeof(index)))
625                                 return -EFAULT;
626                         ++indices;
627
628                         /* skip odd doubles if no F64 */
629                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
630                                 continue;
631
632                         index = KVM_REG_MIPS_FPR_64(i);
633                         if (copy_to_user(indices, &index, sizeof(index)))
634                                 return -EFAULT;
635                         ++indices;
636                 }
637         }
638
639         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
640                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
641                                  sizeof(kvm_mips_get_one_regs_msa)))
642                         return -EFAULT;
643                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
644
645                 for (i = 0; i < 32; ++i) {
646                         index = KVM_REG_MIPS_VEC_128(i);
647                         if (copy_to_user(indices, &index, sizeof(index)))
648                                 return -EFAULT;
649                         ++indices;
650                 }
651         }
652
653         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
654 }
655
656 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
657                             const struct kvm_one_reg *reg)
658 {
659         struct mips_coproc *cop0 = vcpu->arch.cop0;
660         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
661         int ret;
662         s64 v;
663         s64 vs[2];
664         unsigned int idx;
665
666         switch (reg->id) {
667         /* General purpose registers */
668         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
669                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
670                 break;
671 #ifndef CONFIG_CPU_MIPSR6
672         case KVM_REG_MIPS_HI:
673                 v = (long)vcpu->arch.hi;
674                 break;
675         case KVM_REG_MIPS_LO:
676                 v = (long)vcpu->arch.lo;
677                 break;
678 #endif
679         case KVM_REG_MIPS_PC:
680                 v = (long)vcpu->arch.pc;
681                 break;
682
683         /* Floating point registers */
684         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
685                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
686                         return -EINVAL;
687                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
688                 /* Odd singles in top of even double when FR=0 */
689                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
690                         v = get_fpr32(&fpu->fpr[idx], 0);
691                 else
692                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
693                 break;
694         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
695                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
696                         return -EINVAL;
697                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
698                 /* Can't access odd doubles in FR=0 mode */
699                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
700                         return -EINVAL;
701                 v = get_fpr64(&fpu->fpr[idx], 0);
702                 break;
703         case KVM_REG_MIPS_FCR_IR:
704                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
705                         return -EINVAL;
706                 v = boot_cpu_data.fpu_id;
707                 break;
708         case KVM_REG_MIPS_FCR_CSR:
709                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
710                         return -EINVAL;
711                 v = fpu->fcr31;
712                 break;
713
714         /* MIPS SIMD Architecture (MSA) registers */
715         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
716                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
717                         return -EINVAL;
718                 /* Can't access MSA registers in FR=0 mode */
719                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
720                         return -EINVAL;
721                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
722 #ifdef CONFIG_CPU_LITTLE_ENDIAN
723                 /* least significant byte first */
724                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
725                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
726 #else
727                 /* most significant byte first */
728                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
729                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
730 #endif
731                 break;
732         case KVM_REG_MIPS_MSA_IR:
733                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
734                         return -EINVAL;
735                 v = boot_cpu_data.msa_id;
736                 break;
737         case KVM_REG_MIPS_MSA_CSR:
738                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
739                         return -EINVAL;
740                 v = fpu->msacsr;
741                 break;
742
743         /* registers to be handled specially */
744         default:
745                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
746                 if (ret)
747                         return ret;
748                 break;
749         }
750         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
751                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
752
753                 return put_user(v, uaddr64);
754         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
755                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
756                 u32 v32 = (u32)v;
757
758                 return put_user(v32, uaddr32);
759         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
760                 void __user *uaddr = (void __user *)(long)reg->addr;
761
762                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
763         } else {
764                 return -EINVAL;
765         }
766 }
767
768 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
769                             const struct kvm_one_reg *reg)
770 {
771         struct mips_coproc *cop0 = vcpu->arch.cop0;
772         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
773         s64 v;
774         s64 vs[2];
775         unsigned int idx;
776
777         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
778                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
779
780                 if (get_user(v, uaddr64) != 0)
781                         return -EFAULT;
782         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
783                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
784                 s32 v32;
785
786                 if (get_user(v32, uaddr32) != 0)
787                         return -EFAULT;
788                 v = (s64)v32;
789         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
790                 void __user *uaddr = (void __user *)(long)reg->addr;
791
792                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
793         } else {
794                 return -EINVAL;
795         }
796
797         switch (reg->id) {
798         /* General purpose registers */
799         case KVM_REG_MIPS_R0:
800                 /* Silently ignore requests to set $0 */
801                 break;
802         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
803                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
804                 break;
805 #ifndef CONFIG_CPU_MIPSR6
806         case KVM_REG_MIPS_HI:
807                 vcpu->arch.hi = v;
808                 break;
809         case KVM_REG_MIPS_LO:
810                 vcpu->arch.lo = v;
811                 break;
812 #endif
813         case KVM_REG_MIPS_PC:
814                 vcpu->arch.pc = v;
815                 break;
816
817         /* Floating point registers */
818         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
819                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
820                         return -EINVAL;
821                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
822                 /* Odd singles in top of even double when FR=0 */
823                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
824                         set_fpr32(&fpu->fpr[idx], 0, v);
825                 else
826                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
827                 break;
828         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
829                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
830                         return -EINVAL;
831                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
832                 /* Can't access odd doubles in FR=0 mode */
833                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
834                         return -EINVAL;
835                 set_fpr64(&fpu->fpr[idx], 0, v);
836                 break;
837         case KVM_REG_MIPS_FCR_IR:
838                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
839                         return -EINVAL;
840                 /* Read-only */
841                 break;
842         case KVM_REG_MIPS_FCR_CSR:
843                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
844                         return -EINVAL;
845                 fpu->fcr31 = v;
846                 break;
847
848         /* MIPS SIMD Architecture (MSA) registers */
849         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
850                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
851                         return -EINVAL;
852                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
853 #ifdef CONFIG_CPU_LITTLE_ENDIAN
854                 /* least significant byte first */
855                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
856                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
857 #else
858                 /* most significant byte first */
859                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
860                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
861 #endif
862                 break;
863         case KVM_REG_MIPS_MSA_IR:
864                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
865                         return -EINVAL;
866                 /* Read-only */
867                 break;
868         case KVM_REG_MIPS_MSA_CSR:
869                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
870                         return -EINVAL;
871                 fpu->msacsr = v;
872                 break;
873
874         /* registers to be handled specially */
875         default:
876                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
877         }
878         return 0;
879 }
880
881 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
882                                      struct kvm_enable_cap *cap)
883 {
884         int r = 0;
885
886         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
887                 return -EINVAL;
888         if (cap->flags)
889                 return -EINVAL;
890         if (cap->args[0])
891                 return -EINVAL;
892
893         switch (cap->cap) {
894         case KVM_CAP_MIPS_FPU:
895                 vcpu->arch.fpu_enabled = true;
896                 break;
897         case KVM_CAP_MIPS_MSA:
898                 vcpu->arch.msa_enabled = true;
899                 break;
900         default:
901                 r = -EINVAL;
902                 break;
903         }
904
905         return r;
906 }
907
908 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
909                                unsigned long arg)
910 {
911         struct kvm_vcpu *vcpu = filp->private_data;
912         void __user *argp = (void __user *)arg;
913
914         if (ioctl == KVM_INTERRUPT) {
915                 struct kvm_mips_interrupt irq;
916
917                 if (copy_from_user(&irq, argp, sizeof(irq)))
918                         return -EFAULT;
919                 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
920                           irq.irq);
921
922                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
923         }
924
925         return -ENOIOCTLCMD;
926 }
927
928 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
929                          unsigned long arg)
930 {
931         struct kvm_vcpu *vcpu = filp->private_data;
932         void __user *argp = (void __user *)arg;
933         long r;
934
935         vcpu_load(vcpu);
936
937         switch (ioctl) {
938         case KVM_SET_ONE_REG:
939         case KVM_GET_ONE_REG: {
940                 struct kvm_one_reg reg;
941
942                 r = -EFAULT;
943                 if (copy_from_user(&reg, argp, sizeof(reg)))
944                         break;
945                 if (ioctl == KVM_SET_ONE_REG)
946                         r = kvm_mips_set_reg(vcpu, &reg);
947                 else
948                         r = kvm_mips_get_reg(vcpu, &reg);
949                 break;
950         }
951         case KVM_GET_REG_LIST: {
952                 struct kvm_reg_list __user *user_list = argp;
953                 struct kvm_reg_list reg_list;
954                 unsigned n;
955
956                 r = -EFAULT;
957                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
958                         break;
959                 n = reg_list.n;
960                 reg_list.n = kvm_mips_num_regs(vcpu);
961                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
962                         break;
963                 r = -E2BIG;
964                 if (n < reg_list.n)
965                         break;
966                 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
967                 break;
968         }
969         case KVM_ENABLE_CAP: {
970                 struct kvm_enable_cap cap;
971
972                 r = -EFAULT;
973                 if (copy_from_user(&cap, argp, sizeof(cap)))
974                         break;
975                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
976                 break;
977         }
978         default:
979                 r = -ENOIOCTLCMD;
980         }
981
982         vcpu_put(vcpu);
983         return r;
984 }
985
986 /**
987  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
988  * @kvm: kvm instance
989  * @log: slot id and address to which we copy the log
990  *
991  * Steps 1-4 below provide general overview of dirty page logging. See
992  * kvm_get_dirty_log_protect() function description for additional details.
993  *
994  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
995  * always flush the TLB (step 4) even if previous step failed  and the dirty
996  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
997  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
998  * writes will be marked dirty for next log read.
999  *
1000  *   1. Take a snapshot of the bit and clear it if needed.
1001  *   2. Write protect the corresponding page.
1002  *   3. Copy the snapshot to the userspace.
1003  *   4. Flush TLB's if needed.
1004  */
1005 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1006 {
1007         struct kvm_memslots *slots;
1008         struct kvm_memory_slot *memslot;
1009         bool is_dirty = false;
1010         int r;
1011
1012         mutex_lock(&kvm->slots_lock);
1013
1014         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1015
1016         if (is_dirty) {
1017                 slots = kvm_memslots(kvm);
1018                 memslot = id_to_memslot(slots, log->slot);
1019
1020                 /* Let implementation handle TLB/GVA invalidation */
1021                 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1022         }
1023
1024         mutex_unlock(&kvm->slots_lock);
1025         return r;
1026 }
1027
1028 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1029 {
1030         long r;
1031
1032         switch (ioctl) {
1033         default:
1034                 r = -ENOIOCTLCMD;
1035         }
1036
1037         return r;
1038 }
1039
1040 int kvm_arch_init(void *opaque)
1041 {
1042         if (kvm_mips_callbacks) {
1043                 kvm_err("kvm: module already exists\n");
1044                 return -EEXIST;
1045         }
1046
1047         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1048 }
1049
1050 void kvm_arch_exit(void)
1051 {
1052         kvm_mips_callbacks = NULL;
1053 }
1054
1055 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1056                                   struct kvm_sregs *sregs)
1057 {
1058         return -ENOIOCTLCMD;
1059 }
1060
1061 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1062                                   struct kvm_sregs *sregs)
1063 {
1064         return -ENOIOCTLCMD;
1065 }
1066
1067 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1068 {
1069 }
1070
1071 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1072 {
1073         return -ENOIOCTLCMD;
1074 }
1075
1076 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1077 {
1078         return -ENOIOCTLCMD;
1079 }
1080
1081 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1082 {
1083         return VM_FAULT_SIGBUS;
1084 }
1085
1086 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1087 {
1088         int r;
1089
1090         switch (ext) {
1091         case KVM_CAP_ONE_REG:
1092         case KVM_CAP_ENABLE_CAP:
1093         case KVM_CAP_READONLY_MEM:
1094         case KVM_CAP_SYNC_MMU:
1095         case KVM_CAP_IMMEDIATE_EXIT:
1096                 r = 1;
1097                 break;
1098         case KVM_CAP_NR_VCPUS:
1099                 r = num_online_cpus();
1100                 break;
1101         case KVM_CAP_MAX_VCPUS:
1102                 r = KVM_MAX_VCPUS;
1103                 break;
1104         case KVM_CAP_MAX_VCPU_ID:
1105                 r = KVM_MAX_VCPU_ID;
1106                 break;
1107         case KVM_CAP_MIPS_FPU:
1108                 /* We don't handle systems with inconsistent cpu_has_fpu */
1109                 r = !!raw_cpu_has_fpu;
1110                 break;
1111         case KVM_CAP_MIPS_MSA:
1112                 /*
1113                  * We don't support MSA vector partitioning yet:
1114                  * 1) It would require explicit support which can't be tested
1115                  *    yet due to lack of support in current hardware.
1116                  * 2) It extends the state that would need to be saved/restored
1117                  *    by e.g. QEMU for migration.
1118                  *
1119                  * When vector partitioning hardware becomes available, support
1120                  * could be added by requiring a flag when enabling
1121                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1122                  * to save/restore the appropriate extra state.
1123                  */
1124                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1125                 break;
1126         default:
1127                 r = kvm_mips_callbacks->check_extension(kvm, ext);
1128                 break;
1129         }
1130         return r;
1131 }
1132
1133 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1134 {
1135         return kvm_mips_pending_timer(vcpu) ||
1136                 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1137 }
1138
1139 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1140 {
1141         int i;
1142         struct mips_coproc *cop0;
1143
1144         if (!vcpu)
1145                 return -1;
1146
1147         kvm_debug("VCPU Register Dump:\n");
1148         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1149         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1150
1151         for (i = 0; i < 32; i += 4) {
1152                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1153                        vcpu->arch.gprs[i],
1154                        vcpu->arch.gprs[i + 1],
1155                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1156         }
1157         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1158         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1159
1160         cop0 = vcpu->arch.cop0;
1161         kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1162                   kvm_read_c0_guest_status(cop0),
1163                   kvm_read_c0_guest_cause(cop0));
1164
1165         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1166
1167         return 0;
1168 }
1169
1170 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1171 {
1172         int i;
1173
1174         vcpu_load(vcpu);
1175
1176         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1177                 vcpu->arch.gprs[i] = regs->gpr[i];
1178         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1179         vcpu->arch.hi = regs->hi;
1180         vcpu->arch.lo = regs->lo;
1181         vcpu->arch.pc = regs->pc;
1182
1183         vcpu_put(vcpu);
1184         return 0;
1185 }
1186
1187 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1188 {
1189         int i;
1190
1191         vcpu_load(vcpu);
1192
1193         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1194                 regs->gpr[i] = vcpu->arch.gprs[i];
1195
1196         regs->hi = vcpu->arch.hi;
1197         regs->lo = vcpu->arch.lo;
1198         regs->pc = vcpu->arch.pc;
1199
1200         vcpu_put(vcpu);
1201         return 0;
1202 }
1203
1204 static void kvm_mips_comparecount_func(unsigned long data)
1205 {
1206         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1207
1208         kvm_mips_callbacks->queue_timer_int(vcpu);
1209
1210         vcpu->arch.wait = 0;
1211         if (swq_has_sleeper(&vcpu->wq))
1212                 swake_up_one(&vcpu->wq);
1213 }
1214
1215 /* low level hrtimer wake routine */
1216 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1217 {
1218         struct kvm_vcpu *vcpu;
1219
1220         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1221         kvm_mips_comparecount_func((unsigned long) vcpu);
1222         return kvm_mips_count_timeout(vcpu);
1223 }
1224
1225 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1226 {
1227         int err;
1228
1229         err = kvm_mips_callbacks->vcpu_init(vcpu);
1230         if (err)
1231                 return err;
1232
1233         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1234                      HRTIMER_MODE_REL);
1235         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1236         return 0;
1237 }
1238
1239 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1240 {
1241         kvm_mips_callbacks->vcpu_uninit(vcpu);
1242 }
1243
1244 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1245                                   struct kvm_translation *tr)
1246 {
1247         return 0;
1248 }
1249
1250 /* Initial guest state */
1251 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1252 {
1253         return kvm_mips_callbacks->vcpu_setup(vcpu);
1254 }
1255
1256 static void kvm_mips_set_c0_status(void)
1257 {
1258         u32 status = read_c0_status();
1259
1260         if (cpu_has_dsp)
1261                 status |= (ST0_MX);
1262
1263         write_c0_status(status);
1264         ehb();
1265 }
1266
1267 /*
1268  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1269  */
1270 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1271 {
1272         u32 cause = vcpu->arch.host_cp0_cause;
1273         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1274         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1275         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1276         enum emulation_result er = EMULATE_DONE;
1277         u32 inst;
1278         int ret = RESUME_GUEST;
1279
1280         vcpu->mode = OUTSIDE_GUEST_MODE;
1281
1282         /* re-enable HTW before enabling interrupts */
1283         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1284                 htw_start();
1285
1286         /* Set a default exit reason */
1287         run->exit_reason = KVM_EXIT_UNKNOWN;
1288         run->ready_for_interrupt_injection = 1;
1289
1290         /*
1291          * Set the appropriate status bits based on host CPU features,
1292          * before we hit the scheduler
1293          */
1294         kvm_mips_set_c0_status();
1295
1296         local_irq_enable();
1297
1298         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1299                         cause, opc, run, vcpu);
1300         trace_kvm_exit(vcpu, exccode);
1301
1302         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1303                 /*
1304                  * Do a privilege check, if in UM most of these exit conditions
1305                  * end up causing an exception to be delivered to the Guest
1306                  * Kernel
1307                  */
1308                 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1309                 if (er == EMULATE_PRIV_FAIL) {
1310                         goto skip_emul;
1311                 } else if (er == EMULATE_FAIL) {
1312                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1313                         ret = RESUME_HOST;
1314                         goto skip_emul;
1315                 }
1316         }
1317
1318         switch (exccode) {
1319         case EXCCODE_INT:
1320                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1321
1322                 ++vcpu->stat.int_exits;
1323
1324                 if (need_resched())
1325                         cond_resched();
1326
1327                 ret = RESUME_GUEST;
1328                 break;
1329
1330         case EXCCODE_CPU:
1331                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1332
1333                 ++vcpu->stat.cop_unusable_exits;
1334                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1335                 /* XXXKYMA: Might need to return to user space */
1336                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1337                         ret = RESUME_HOST;
1338                 break;
1339
1340         case EXCCODE_MOD:
1341                 ++vcpu->stat.tlbmod_exits;
1342                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1343                 break;
1344
1345         case EXCCODE_TLBS:
1346                 kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1347                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1348                           badvaddr);
1349
1350                 ++vcpu->stat.tlbmiss_st_exits;
1351                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1352                 break;
1353
1354         case EXCCODE_TLBL:
1355                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1356                           cause, opc, badvaddr);
1357
1358                 ++vcpu->stat.tlbmiss_ld_exits;
1359                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1360                 break;
1361
1362         case EXCCODE_ADES:
1363                 ++vcpu->stat.addrerr_st_exits;
1364                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1365                 break;
1366
1367         case EXCCODE_ADEL:
1368                 ++vcpu->stat.addrerr_ld_exits;
1369                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1370                 break;
1371
1372         case EXCCODE_SYS:
1373                 ++vcpu->stat.syscall_exits;
1374                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1375                 break;
1376
1377         case EXCCODE_RI:
1378                 ++vcpu->stat.resvd_inst_exits;
1379                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1380                 break;
1381
1382         case EXCCODE_BP:
1383                 ++vcpu->stat.break_inst_exits;
1384                 ret = kvm_mips_callbacks->handle_break(vcpu);
1385                 break;
1386
1387         case EXCCODE_TR:
1388                 ++vcpu->stat.trap_inst_exits;
1389                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1390                 break;
1391
1392         case EXCCODE_MSAFPE:
1393                 ++vcpu->stat.msa_fpe_exits;
1394                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1395                 break;
1396
1397         case EXCCODE_FPE:
1398                 ++vcpu->stat.fpe_exits;
1399                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1400                 break;
1401
1402         case EXCCODE_MSADIS:
1403                 ++vcpu->stat.msa_disabled_exits;
1404                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1405                 break;
1406
1407         case EXCCODE_GE:
1408                 /* defer exit accounting to handler */
1409                 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1410                 break;
1411
1412         default:
1413                 if (cause & CAUSEF_BD)
1414                         opc += 1;
1415                 inst = 0;
1416                 kvm_get_badinstr(opc, vcpu, &inst);
1417                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1418                         exccode, opc, inst, badvaddr,
1419                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1420                 kvm_arch_vcpu_dump_regs(vcpu);
1421                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1422                 ret = RESUME_HOST;
1423                 break;
1424
1425         }
1426
1427 skip_emul:
1428         local_irq_disable();
1429
1430         if (ret == RESUME_GUEST)
1431                 kvm_vz_acquire_htimer(vcpu);
1432
1433         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1434                 kvm_mips_deliver_interrupts(vcpu, cause);
1435
1436         if (!(ret & RESUME_HOST)) {
1437                 /* Only check for signals if not already exiting to userspace */
1438                 if (signal_pending(current)) {
1439                         run->exit_reason = KVM_EXIT_INTR;
1440                         ret = (-EINTR << 2) | RESUME_HOST;
1441                         ++vcpu->stat.signal_exits;
1442                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1443                 }
1444         }
1445
1446         if (ret == RESUME_GUEST) {
1447                 trace_kvm_reenter(vcpu);
1448
1449                 /*
1450                  * Make sure the read of VCPU requests in vcpu_reenter()
1451                  * callback is not reordered ahead of the write to vcpu->mode,
1452                  * or we could miss a TLB flush request while the requester sees
1453                  * the VCPU as outside of guest mode and not needing an IPI.
1454                  */
1455                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1456
1457                 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1458
1459                 /*
1460                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1461                  * is live), restore FCR31 / MSACSR.
1462                  *
1463                  * This should be before returning to the guest exception
1464                  * vector, as it may well cause an [MSA] FP exception if there
1465                  * are pending exception bits unmasked. (see
1466                  * kvm_mips_csr_die_notifier() for how that is handled).
1467                  */
1468                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1469                     read_c0_status() & ST0_CU1)
1470                         __kvm_restore_fcsr(&vcpu->arch);
1471
1472                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1473                     read_c0_config5() & MIPS_CONF5_MSAEN)
1474                         __kvm_restore_msacsr(&vcpu->arch);
1475         }
1476
1477         /* Disable HTW before returning to guest or host */
1478         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1479                 htw_stop();
1480
1481         return ret;
1482 }
1483
1484 /* Enable FPU for guest and restore context */
1485 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1486 {
1487         struct mips_coproc *cop0 = vcpu->arch.cop0;
1488         unsigned int sr, cfg5;
1489
1490         preempt_disable();
1491
1492         sr = kvm_read_c0_guest_status(cop0);
1493
1494         /*
1495          * If MSA state is already live, it is undefined how it interacts with
1496          * FR=0 FPU state, and we don't want to hit reserved instruction
1497          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1498          * play it safe and save it first.
1499          *
1500          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1501          * get called when guest CU1 is set, however we can't trust the guest
1502          * not to clobber the status register directly via the commpage.
1503          */
1504         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1505             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1506                 kvm_lose_fpu(vcpu);
1507
1508         /*
1509          * Enable FPU for guest
1510          * We set FR and FRE according to guest context
1511          */
1512         change_c0_status(ST0_CU1 | ST0_FR, sr);
1513         if (cpu_has_fre) {
1514                 cfg5 = kvm_read_c0_guest_config5(cop0);
1515                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1516         }
1517         enable_fpu_hazard();
1518
1519         /* If guest FPU state not active, restore it now */
1520         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1521                 __kvm_restore_fpu(&vcpu->arch);
1522                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1523                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1524         } else {
1525                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1526         }
1527
1528         preempt_enable();
1529 }
1530
1531 #ifdef CONFIG_CPU_HAS_MSA
1532 /* Enable MSA for guest and restore context */
1533 void kvm_own_msa(struct kvm_vcpu *vcpu)
1534 {
1535         struct mips_coproc *cop0 = vcpu->arch.cop0;
1536         unsigned int sr, cfg5;
1537
1538         preempt_disable();
1539
1540         /*
1541          * Enable FPU if enabled in guest, since we're restoring FPU context
1542          * anyway. We set FR and FRE according to guest context.
1543          */
1544         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1545                 sr = kvm_read_c0_guest_status(cop0);
1546
1547                 /*
1548                  * If FR=0 FPU state is already live, it is undefined how it
1549                  * interacts with MSA state, so play it safe and save it first.
1550                  */
1551                 if (!(sr & ST0_FR) &&
1552                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1553                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1554                         kvm_lose_fpu(vcpu);
1555
1556                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1557                 if (sr & ST0_CU1 && cpu_has_fre) {
1558                         cfg5 = kvm_read_c0_guest_config5(cop0);
1559                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1560                 }
1561         }
1562
1563         /* Enable MSA for guest */
1564         set_c0_config5(MIPS_CONF5_MSAEN);
1565         enable_fpu_hazard();
1566
1567         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1568         case KVM_MIPS_AUX_FPU:
1569                 /*
1570                  * Guest FPU state already loaded, only restore upper MSA state
1571                  */
1572                 __kvm_restore_msa_upper(&vcpu->arch);
1573                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1574                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1575                 break;
1576         case 0:
1577                 /* Neither FPU or MSA already active, restore full MSA state */
1578                 __kvm_restore_msa(&vcpu->arch);
1579                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1580                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1581                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1582                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1583                               KVM_TRACE_AUX_FPU_MSA);
1584                 break;
1585         default:
1586                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1587                 break;
1588         }
1589
1590         preempt_enable();
1591 }
1592 #endif
1593
1594 /* Drop FPU & MSA without saving it */
1595 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1596 {
1597         preempt_disable();
1598         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1599                 disable_msa();
1600                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1601                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1602         }
1603         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1604                 clear_c0_status(ST0_CU1 | ST0_FR);
1605                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1606                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1607         }
1608         preempt_enable();
1609 }
1610
1611 /* Save and disable FPU & MSA */
1612 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1613 {
1614         /*
1615          * With T&E, FPU & MSA get disabled in root context (hardware) when it
1616          * is disabled in guest context (software), but the register state in
1617          * the hardware may still be in use.
1618          * This is why we explicitly re-enable the hardware before saving.
1619          */
1620
1621         preempt_disable();
1622         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1623                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1624                         set_c0_config5(MIPS_CONF5_MSAEN);
1625                         enable_fpu_hazard();
1626                 }
1627
1628                 __kvm_save_msa(&vcpu->arch);
1629                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1630
1631                 /* Disable MSA & FPU */
1632                 disable_msa();
1633                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1634                         clear_c0_status(ST0_CU1 | ST0_FR);
1635                         disable_fpu_hazard();
1636                 }
1637                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1638         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1639                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1640                         set_c0_status(ST0_CU1);
1641                         enable_fpu_hazard();
1642                 }
1643
1644                 __kvm_save_fpu(&vcpu->arch);
1645                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1646                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1647
1648                 /* Disable FPU */
1649                 clear_c0_status(ST0_CU1 | ST0_FR);
1650                 disable_fpu_hazard();
1651         }
1652         preempt_enable();
1653 }
1654
1655 /*
1656  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1657  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1658  * exception if cause bits are set in the value being written.
1659  */
1660 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1661                                    unsigned long cmd, void *ptr)
1662 {
1663         struct die_args *args = (struct die_args *)ptr;
1664         struct pt_regs *regs = args->regs;
1665         unsigned long pc;
1666
1667         /* Only interested in FPE and MSAFPE */
1668         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1669                 return NOTIFY_DONE;
1670
1671         /* Return immediately if guest context isn't active */
1672         if (!(current->flags & PF_VCPU))
1673                 return NOTIFY_DONE;
1674
1675         /* Should never get here from user mode */
1676         BUG_ON(user_mode(regs));
1677
1678         pc = instruction_pointer(regs);
1679         switch (cmd) {
1680         case DIE_FP:
1681                 /* match 2nd instruction in __kvm_restore_fcsr */
1682                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1683                         return NOTIFY_DONE;
1684                 break;
1685         case DIE_MSAFP:
1686                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1687                 if (!cpu_has_msa ||
1688                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1689                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1690                         return NOTIFY_DONE;
1691                 break;
1692         }
1693
1694         /* Move PC forward a little and continue executing */
1695         instruction_pointer(regs) += 4;
1696
1697         return NOTIFY_STOP;
1698 }
1699
1700 static struct notifier_block kvm_mips_csr_die_notifier = {
1701         .notifier_call = kvm_mips_csr_die_notify,
1702 };
1703
1704 static int __init kvm_mips_init(void)
1705 {
1706         int ret;
1707
1708         ret = kvm_mips_entry_setup();
1709         if (ret)
1710                 return ret;
1711
1712         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1713
1714         if (ret)
1715                 return ret;
1716
1717         register_die_notifier(&kvm_mips_csr_die_notifier);
1718
1719         return 0;
1720 }
1721
1722 static void __exit kvm_mips_exit(void)
1723 {
1724         kvm_exit();
1725
1726         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1727 }
1728
1729 module_init(kvm_mips_init);
1730 module_exit(kvm_mips_exit);
1731
1732 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);