arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/memblock.h>
22 #include <linux/pgtable.h>
23
24 #include <asm/fpu.h>
25 #include <asm/page.h>
26 #include <asm/cacheflush.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgalloc.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33
34 #define CREATE_TRACE_POINTS
35 #include "trace.h"
36
37 #ifndef VECTORSPACING
38 #define VECTORSPACING 0x100     /* for EI/VI mode */
39 #endif
40
41 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
42         KVM_GENERIC_VM_STATS()
43 };
44
45 const struct kvm_stats_header kvm_vm_stats_header = {
46         .name_size = KVM_STATS_NAME_SIZE,
47         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
48         .id_offset = sizeof(struct kvm_stats_header),
49         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
50         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
51                        sizeof(kvm_vm_stats_desc),
52 };
53
54 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
55         KVM_GENERIC_VCPU_STATS(),
56         STATS_DESC_COUNTER(VCPU, wait_exits),
57         STATS_DESC_COUNTER(VCPU, cache_exits),
58         STATS_DESC_COUNTER(VCPU, signal_exits),
59         STATS_DESC_COUNTER(VCPU, int_exits),
60         STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
61         STATS_DESC_COUNTER(VCPU, tlbmod_exits),
62         STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
63         STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
64         STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
65         STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
66         STATS_DESC_COUNTER(VCPU, syscall_exits),
67         STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
68         STATS_DESC_COUNTER(VCPU, break_inst_exits),
69         STATS_DESC_COUNTER(VCPU, trap_inst_exits),
70         STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
71         STATS_DESC_COUNTER(VCPU, fpe_exits),
72         STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
73         STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
74         STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
75         STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
76         STATS_DESC_COUNTER(VCPU, vz_hc_exits),
77         STATS_DESC_COUNTER(VCPU, vz_grr_exits),
78         STATS_DESC_COUNTER(VCPU, vz_gva_exits),
79         STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
80         STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
81         STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
82 #ifdef CONFIG_CPU_LOONGSON64
83         STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
84 #endif
85 };
86
87 const struct kvm_stats_header kvm_vcpu_stats_header = {
88         .name_size = KVM_STATS_NAME_SIZE,
89         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
90         .id_offset = sizeof(struct kvm_stats_header),
91         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
92         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
93                        sizeof(kvm_vcpu_stats_desc),
94 };
95
96 bool kvm_trace_guest_mode_change;
97
98 int kvm_guest_mode_change_trace_reg(void)
99 {
100         kvm_trace_guest_mode_change = true;
101         return 0;
102 }
103
104 void kvm_guest_mode_change_trace_unreg(void)
105 {
106         kvm_trace_guest_mode_change = false;
107 }
108
109 /*
110  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
111  * Config7, so we are "runnable" if interrupts are pending
112  */
113 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
114 {
115         return !!(vcpu->arch.pending_exceptions);
116 }
117
118 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
119 {
120         return false;
121 }
122
123 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
124 {
125         return 1;
126 }
127
128 int kvm_arch_hardware_enable(void)
129 {
130         return kvm_mips_callbacks->hardware_enable();
131 }
132
133 void kvm_arch_hardware_disable(void)
134 {
135         kvm_mips_callbacks->hardware_disable();
136 }
137
138 extern void kvm_init_loongson_ipi(struct kvm *kvm);
139
140 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
141 {
142         switch (type) {
143         case KVM_VM_MIPS_AUTO:
144                 break;
145         case KVM_VM_MIPS_VZ:
146                 break;
147         default:
148                 /* Unsupported KVM type */
149                 return -EINVAL;
150         }
151
152         /* Allocate page table to map GPA -> RPA */
153         kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
154         if (!kvm->arch.gpa_mm.pgd)
155                 return -ENOMEM;
156
157 #ifdef CONFIG_CPU_LOONGSON64
158         kvm_init_loongson_ipi(kvm);
159 #endif
160
161         return 0;
162 }
163
164 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
165 {
166         /* It should always be safe to remove after flushing the whole range */
167         WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
168         pgd_free(NULL, kvm->arch.gpa_mm.pgd);
169 }
170
171 void kvm_arch_destroy_vm(struct kvm *kvm)
172 {
173         kvm_destroy_vcpus(kvm);
174         kvm_mips_free_gpa_pt(kvm);
175 }
176
177 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
178                         unsigned long arg)
179 {
180         return -ENOIOCTLCMD;
181 }
182
183 void kvm_arch_flush_shadow_all(struct kvm *kvm)
184 {
185         /* Flush whole GPA */
186         kvm_mips_flush_gpa_pt(kvm, 0, ~0);
187         kvm_flush_remote_tlbs(kvm);
188 }
189
190 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
191                                    struct kvm_memory_slot *slot)
192 {
193         /*
194          * The slot has been made invalid (ready for moving or deletion), so we
195          * need to ensure that it can no longer be accessed by any guest VCPUs.
196          */
197
198         spin_lock(&kvm->mmu_lock);
199         /* Flush slot from GPA */
200         kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
201                               slot->base_gfn + slot->npages - 1);
202         kvm_flush_remote_tlbs_memslot(kvm, slot);
203         spin_unlock(&kvm->mmu_lock);
204 }
205
206 int kvm_arch_prepare_memory_region(struct kvm *kvm,
207                                    const struct kvm_memory_slot *old,
208                                    struct kvm_memory_slot *new,
209                                    enum kvm_mr_change change)
210 {
211         return 0;
212 }
213
214 void kvm_arch_commit_memory_region(struct kvm *kvm,
215                                    struct kvm_memory_slot *old,
216                                    const struct kvm_memory_slot *new,
217                                    enum kvm_mr_change change)
218 {
219         int needs_flush;
220
221         /*
222          * If dirty page logging is enabled, write protect all pages in the slot
223          * ready for dirty logging.
224          *
225          * There is no need to do this in any of the following cases:
226          * CREATE:      No dirty mappings will already exist.
227          * MOVE/DELETE: The old mappings will already have been cleaned up by
228          *              kvm_arch_flush_shadow_memslot()
229          */
230         if (change == KVM_MR_FLAGS_ONLY &&
231             (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
232              new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
233                 spin_lock(&kvm->mmu_lock);
234                 /* Write protect GPA page table entries */
235                 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
236                                         new->base_gfn + new->npages - 1);
237                 if (needs_flush)
238                         kvm_flush_remote_tlbs_memslot(kvm, new);
239                 spin_unlock(&kvm->mmu_lock);
240         }
241 }
242
243 static inline void dump_handler(const char *symbol, void *start, void *end)
244 {
245         u32 *p;
246
247         pr_debug("LEAF(%s)\n", symbol);
248
249         pr_debug("\t.set push\n");
250         pr_debug("\t.set noreorder\n");
251
252         for (p = start; p < (u32 *)end; ++p)
253                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
254
255         pr_debug("\t.set\tpop\n");
256
257         pr_debug("\tEND(%s)\n", symbol);
258 }
259
260 /* low level hrtimer wake routine */
261 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
262 {
263         struct kvm_vcpu *vcpu;
264
265         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
266
267         kvm_mips_callbacks->queue_timer_int(vcpu);
268
269         vcpu->arch.wait = 0;
270         rcuwait_wake_up(&vcpu->wait);
271
272         return kvm_mips_count_timeout(vcpu);
273 }
274
275 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
276 {
277         return 0;
278 }
279
280 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
281 {
282         int err, size;
283         void *gebase, *p, *handler, *refill_start, *refill_end;
284         int i;
285
286         kvm_debug("kvm @ %p: create cpu %d at %p\n",
287                   vcpu->kvm, vcpu->vcpu_id, vcpu);
288
289         err = kvm_mips_callbacks->vcpu_init(vcpu);
290         if (err)
291                 return err;
292
293         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
294                      HRTIMER_MODE_REL);
295         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
296
297         /*
298          * Allocate space for host mode exception handlers that handle
299          * guest mode exits
300          */
301         if (cpu_has_veic || cpu_has_vint)
302                 size = 0x200 + VECTORSPACING * 64;
303         else
304                 size = 0x4000;
305
306         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
307
308         if (!gebase) {
309                 err = -ENOMEM;
310                 goto out_uninit_vcpu;
311         }
312         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
313                   ALIGN(size, PAGE_SIZE), gebase);
314
315         /*
316          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
317          * limits us to the low 512MB of physical address space. If the memory
318          * we allocate is out of range, just give up now.
319          */
320         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
321                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
322                         gebase);
323                 err = -ENOMEM;
324                 goto out_free_gebase;
325         }
326
327         /* Save new ebase */
328         vcpu->arch.guest_ebase = gebase;
329
330         /* Build guest exception vectors dynamically in unmapped memory */
331         handler = gebase + 0x2000;
332
333         /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
334         refill_start = gebase;
335         if (IS_ENABLED(CONFIG_64BIT))
336                 refill_start += 0x080;
337         refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
338
339         /* General Exception Entry point */
340         kvm_mips_build_exception(gebase + 0x180, handler);
341
342         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
343         for (i = 0; i < 8; i++) {
344                 kvm_debug("L1 Vectored handler @ %p\n",
345                           gebase + 0x200 + (i * VECTORSPACING));
346                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
347                                          handler);
348         }
349
350         /* General exit handler */
351         p = handler;
352         p = kvm_mips_build_exit(p);
353
354         /* Guest entry routine */
355         vcpu->arch.vcpu_run = p;
356         p = kvm_mips_build_vcpu_run(p);
357
358         /* Dump the generated code */
359         pr_debug("#include <asm/asm.h>\n");
360         pr_debug("#include <asm/regdef.h>\n");
361         pr_debug("\n");
362         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
363         dump_handler("kvm_tlb_refill", refill_start, refill_end);
364         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
365         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
366
367         /* Invalidate the icache for these ranges */
368         flush_icache_range((unsigned long)gebase,
369                            (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
370
371         /* Init */
372         vcpu->arch.last_sched_cpu = -1;
373         vcpu->arch.last_exec_cpu = -1;
374
375         /* Initial guest state */
376         err = kvm_mips_callbacks->vcpu_setup(vcpu);
377         if (err)
378                 goto out_free_gebase;
379
380         return 0;
381
382 out_free_gebase:
383         kfree(gebase);
384 out_uninit_vcpu:
385         kvm_mips_callbacks->vcpu_uninit(vcpu);
386         return err;
387 }
388
389 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
390 {
391         hrtimer_cancel(&vcpu->arch.comparecount_timer);
392
393         kvm_mips_dump_stats(vcpu);
394
395         kvm_mmu_free_memory_caches(vcpu);
396         kfree(vcpu->arch.guest_ebase);
397
398         kvm_mips_callbacks->vcpu_uninit(vcpu);
399 }
400
401 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
402                                         struct kvm_guest_debug *dbg)
403 {
404         return -ENOIOCTLCMD;
405 }
406
407 /*
408  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
409  * the vCPU is running.
410  *
411  * This must be noinstr as instrumentation may make use of RCU, and this is not
412  * safe during the EQS.
413  */
414 static int noinstr kvm_mips_vcpu_enter_exit(struct kvm_vcpu *vcpu)
415 {
416         int ret;
417
418         guest_state_enter_irqoff();
419         ret = kvm_mips_callbacks->vcpu_run(vcpu);
420         guest_state_exit_irqoff();
421
422         return ret;
423 }
424
425 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
426 {
427         int r = -EINTR;
428
429         vcpu_load(vcpu);
430
431         kvm_sigset_activate(vcpu);
432
433         if (vcpu->mmio_needed) {
434                 if (!vcpu->mmio_is_write)
435                         kvm_mips_complete_mmio_load(vcpu);
436                 vcpu->mmio_needed = 0;
437         }
438
439         if (vcpu->run->immediate_exit)
440                 goto out;
441
442         lose_fpu(1);
443
444         local_irq_disable();
445         guest_timing_enter_irqoff();
446         trace_kvm_enter(vcpu);
447
448         /*
449          * Make sure the read of VCPU requests in vcpu_run() callback is not
450          * reordered ahead of the write to vcpu->mode, or we could miss a TLB
451          * flush request while the requester sees the VCPU as outside of guest
452          * mode and not needing an IPI.
453          */
454         smp_store_mb(vcpu->mode, IN_GUEST_MODE);
455
456         r = kvm_mips_vcpu_enter_exit(vcpu);
457
458         /*
459          * We must ensure that any pending interrupts are taken before
460          * we exit guest timing so that timer ticks are accounted as
461          * guest time. Transiently unmask interrupts so that any
462          * pending interrupts are taken.
463          *
464          * TODO: is there a barrier which ensures that pending interrupts are
465          * recognised? Currently this just hopes that the CPU takes any pending
466          * interrupts between the enable and disable.
467          */
468         local_irq_enable();
469         local_irq_disable();
470
471         trace_kvm_out(vcpu);
472         guest_timing_exit_irqoff();
473         local_irq_enable();
474
475 out:
476         kvm_sigset_deactivate(vcpu);
477
478         vcpu_put(vcpu);
479         return r;
480 }
481
482 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
483                              struct kvm_mips_interrupt *irq)
484 {
485         int intr = (int)irq->irq;
486         struct kvm_vcpu *dvcpu = NULL;
487
488         if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
489             intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
490             intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
491             intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
492                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
493                           (int)intr);
494
495         if (irq->cpu == -1)
496                 dvcpu = vcpu;
497         else
498                 dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu);
499
500         if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
501                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
502
503         } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
504                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
505         } else {
506                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
507                         irq->cpu, irq->irq);
508                 return -EINVAL;
509         }
510
511         dvcpu->arch.wait = 0;
512
513         rcuwait_wake_up(&dvcpu->wait);
514
515         return 0;
516 }
517
518 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
519                                     struct kvm_mp_state *mp_state)
520 {
521         return -ENOIOCTLCMD;
522 }
523
524 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
525                                     struct kvm_mp_state *mp_state)
526 {
527         return -ENOIOCTLCMD;
528 }
529
530 static u64 kvm_mips_get_one_regs[] = {
531         KVM_REG_MIPS_R0,
532         KVM_REG_MIPS_R1,
533         KVM_REG_MIPS_R2,
534         KVM_REG_MIPS_R3,
535         KVM_REG_MIPS_R4,
536         KVM_REG_MIPS_R5,
537         KVM_REG_MIPS_R6,
538         KVM_REG_MIPS_R7,
539         KVM_REG_MIPS_R8,
540         KVM_REG_MIPS_R9,
541         KVM_REG_MIPS_R10,
542         KVM_REG_MIPS_R11,
543         KVM_REG_MIPS_R12,
544         KVM_REG_MIPS_R13,
545         KVM_REG_MIPS_R14,
546         KVM_REG_MIPS_R15,
547         KVM_REG_MIPS_R16,
548         KVM_REG_MIPS_R17,
549         KVM_REG_MIPS_R18,
550         KVM_REG_MIPS_R19,
551         KVM_REG_MIPS_R20,
552         KVM_REG_MIPS_R21,
553         KVM_REG_MIPS_R22,
554         KVM_REG_MIPS_R23,
555         KVM_REG_MIPS_R24,
556         KVM_REG_MIPS_R25,
557         KVM_REG_MIPS_R26,
558         KVM_REG_MIPS_R27,
559         KVM_REG_MIPS_R28,
560         KVM_REG_MIPS_R29,
561         KVM_REG_MIPS_R30,
562         KVM_REG_MIPS_R31,
563
564 #ifndef CONFIG_CPU_MIPSR6
565         KVM_REG_MIPS_HI,
566         KVM_REG_MIPS_LO,
567 #endif
568         KVM_REG_MIPS_PC,
569 };
570
571 static u64 kvm_mips_get_one_regs_fpu[] = {
572         KVM_REG_MIPS_FCR_IR,
573         KVM_REG_MIPS_FCR_CSR,
574 };
575
576 static u64 kvm_mips_get_one_regs_msa[] = {
577         KVM_REG_MIPS_MSA_IR,
578         KVM_REG_MIPS_MSA_CSR,
579 };
580
581 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
582 {
583         unsigned long ret;
584
585         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
586         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
587                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
588                 /* odd doubles */
589                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
590                         ret += 16;
591         }
592         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
593                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
594         ret += kvm_mips_callbacks->num_regs(vcpu);
595
596         return ret;
597 }
598
599 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
600 {
601         u64 index;
602         unsigned int i;
603
604         if (copy_to_user(indices, kvm_mips_get_one_regs,
605                          sizeof(kvm_mips_get_one_regs)))
606                 return -EFAULT;
607         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
608
609         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
610                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
611                                  sizeof(kvm_mips_get_one_regs_fpu)))
612                         return -EFAULT;
613                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
614
615                 for (i = 0; i < 32; ++i) {
616                         index = KVM_REG_MIPS_FPR_32(i);
617                         if (copy_to_user(indices, &index, sizeof(index)))
618                                 return -EFAULT;
619                         ++indices;
620
621                         /* skip odd doubles if no F64 */
622                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
623                                 continue;
624
625                         index = KVM_REG_MIPS_FPR_64(i);
626                         if (copy_to_user(indices, &index, sizeof(index)))
627                                 return -EFAULT;
628                         ++indices;
629                 }
630         }
631
632         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
633                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
634                                  sizeof(kvm_mips_get_one_regs_msa)))
635                         return -EFAULT;
636                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
637
638                 for (i = 0; i < 32; ++i) {
639                         index = KVM_REG_MIPS_VEC_128(i);
640                         if (copy_to_user(indices, &index, sizeof(index)))
641                                 return -EFAULT;
642                         ++indices;
643                 }
644         }
645
646         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
647 }
648
649 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
650                             const struct kvm_one_reg *reg)
651 {
652         struct mips_coproc *cop0 = &vcpu->arch.cop0;
653         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
654         int ret;
655         s64 v;
656         s64 vs[2];
657         unsigned int idx;
658
659         switch (reg->id) {
660         /* General purpose registers */
661         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
662                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
663                 break;
664 #ifndef CONFIG_CPU_MIPSR6
665         case KVM_REG_MIPS_HI:
666                 v = (long)vcpu->arch.hi;
667                 break;
668         case KVM_REG_MIPS_LO:
669                 v = (long)vcpu->arch.lo;
670                 break;
671 #endif
672         case KVM_REG_MIPS_PC:
673                 v = (long)vcpu->arch.pc;
674                 break;
675
676         /* Floating point registers */
677         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
678                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
679                         return -EINVAL;
680                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
681                 /* Odd singles in top of even double when FR=0 */
682                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
683                         v = get_fpr32(&fpu->fpr[idx], 0);
684                 else
685                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
686                 break;
687         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
688                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
689                         return -EINVAL;
690                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
691                 /* Can't access odd doubles in FR=0 mode */
692                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
693                         return -EINVAL;
694                 v = get_fpr64(&fpu->fpr[idx], 0);
695                 break;
696         case KVM_REG_MIPS_FCR_IR:
697                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
698                         return -EINVAL;
699                 v = boot_cpu_data.fpu_id;
700                 break;
701         case KVM_REG_MIPS_FCR_CSR:
702                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
703                         return -EINVAL;
704                 v = fpu->fcr31;
705                 break;
706
707         /* MIPS SIMD Architecture (MSA) registers */
708         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
709                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
710                         return -EINVAL;
711                 /* Can't access MSA registers in FR=0 mode */
712                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
713                         return -EINVAL;
714                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
715 #ifdef CONFIG_CPU_LITTLE_ENDIAN
716                 /* least significant byte first */
717                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
718                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
719 #else
720                 /* most significant byte first */
721                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
722                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
723 #endif
724                 break;
725         case KVM_REG_MIPS_MSA_IR:
726                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
727                         return -EINVAL;
728                 v = boot_cpu_data.msa_id;
729                 break;
730         case KVM_REG_MIPS_MSA_CSR:
731                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
732                         return -EINVAL;
733                 v = fpu->msacsr;
734                 break;
735
736         /* registers to be handled specially */
737         default:
738                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
739                 if (ret)
740                         return ret;
741                 break;
742         }
743         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
744                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
745
746                 return put_user(v, uaddr64);
747         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
748                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
749                 u32 v32 = (u32)v;
750
751                 return put_user(v32, uaddr32);
752         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
753                 void __user *uaddr = (void __user *)(long)reg->addr;
754
755                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
756         } else {
757                 return -EINVAL;
758         }
759 }
760
761 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
762                             const struct kvm_one_reg *reg)
763 {
764         struct mips_coproc *cop0 = &vcpu->arch.cop0;
765         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
766         s64 v;
767         s64 vs[2];
768         unsigned int idx;
769
770         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
771                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
772
773                 if (get_user(v, uaddr64) != 0)
774                         return -EFAULT;
775         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
776                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
777                 s32 v32;
778
779                 if (get_user(v32, uaddr32) != 0)
780                         return -EFAULT;
781                 v = (s64)v32;
782         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
783                 void __user *uaddr = (void __user *)(long)reg->addr;
784
785                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
786         } else {
787                 return -EINVAL;
788         }
789
790         switch (reg->id) {
791         /* General purpose registers */
792         case KVM_REG_MIPS_R0:
793                 /* Silently ignore requests to set $0 */
794                 break;
795         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
796                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
797                 break;
798 #ifndef CONFIG_CPU_MIPSR6
799         case KVM_REG_MIPS_HI:
800                 vcpu->arch.hi = v;
801                 break;
802         case KVM_REG_MIPS_LO:
803                 vcpu->arch.lo = v;
804                 break;
805 #endif
806         case KVM_REG_MIPS_PC:
807                 vcpu->arch.pc = v;
808                 break;
809
810         /* Floating point registers */
811         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
812                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
813                         return -EINVAL;
814                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
815                 /* Odd singles in top of even double when FR=0 */
816                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
817                         set_fpr32(&fpu->fpr[idx], 0, v);
818                 else
819                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
820                 break;
821         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
822                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
823                         return -EINVAL;
824                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
825                 /* Can't access odd doubles in FR=0 mode */
826                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
827                         return -EINVAL;
828                 set_fpr64(&fpu->fpr[idx], 0, v);
829                 break;
830         case KVM_REG_MIPS_FCR_IR:
831                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
832                         return -EINVAL;
833                 /* Read-only */
834                 break;
835         case KVM_REG_MIPS_FCR_CSR:
836                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
837                         return -EINVAL;
838                 fpu->fcr31 = v;
839                 break;
840
841         /* MIPS SIMD Architecture (MSA) registers */
842         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
843                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
844                         return -EINVAL;
845                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
846 #ifdef CONFIG_CPU_LITTLE_ENDIAN
847                 /* least significant byte first */
848                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
849                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
850 #else
851                 /* most significant byte first */
852                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
853                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
854 #endif
855                 break;
856         case KVM_REG_MIPS_MSA_IR:
857                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
858                         return -EINVAL;
859                 /* Read-only */
860                 break;
861         case KVM_REG_MIPS_MSA_CSR:
862                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
863                         return -EINVAL;
864                 fpu->msacsr = v;
865                 break;
866
867         /* registers to be handled specially */
868         default:
869                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
870         }
871         return 0;
872 }
873
874 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
875                                      struct kvm_enable_cap *cap)
876 {
877         int r = 0;
878
879         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
880                 return -EINVAL;
881         if (cap->flags)
882                 return -EINVAL;
883         if (cap->args[0])
884                 return -EINVAL;
885
886         switch (cap->cap) {
887         case KVM_CAP_MIPS_FPU:
888                 vcpu->arch.fpu_enabled = true;
889                 break;
890         case KVM_CAP_MIPS_MSA:
891                 vcpu->arch.msa_enabled = true;
892                 break;
893         default:
894                 r = -EINVAL;
895                 break;
896         }
897
898         return r;
899 }
900
901 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
902                                unsigned long arg)
903 {
904         struct kvm_vcpu *vcpu = filp->private_data;
905         void __user *argp = (void __user *)arg;
906
907         if (ioctl == KVM_INTERRUPT) {
908                 struct kvm_mips_interrupt irq;
909
910                 if (copy_from_user(&irq, argp, sizeof(irq)))
911                         return -EFAULT;
912                 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
913                           irq.irq);
914
915                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
916         }
917
918         return -ENOIOCTLCMD;
919 }
920
921 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
922                          unsigned long arg)
923 {
924         struct kvm_vcpu *vcpu = filp->private_data;
925         void __user *argp = (void __user *)arg;
926         long r;
927
928         vcpu_load(vcpu);
929
930         switch (ioctl) {
931         case KVM_SET_ONE_REG:
932         case KVM_GET_ONE_REG: {
933                 struct kvm_one_reg reg;
934
935                 r = -EFAULT;
936                 if (copy_from_user(&reg, argp, sizeof(reg)))
937                         break;
938                 if (ioctl == KVM_SET_ONE_REG)
939                         r = kvm_mips_set_reg(vcpu, &reg);
940                 else
941                         r = kvm_mips_get_reg(vcpu, &reg);
942                 break;
943         }
944         case KVM_GET_REG_LIST: {
945                 struct kvm_reg_list __user *user_list = argp;
946                 struct kvm_reg_list reg_list;
947                 unsigned n;
948
949                 r = -EFAULT;
950                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
951                         break;
952                 n = reg_list.n;
953                 reg_list.n = kvm_mips_num_regs(vcpu);
954                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
955                         break;
956                 r = -E2BIG;
957                 if (n < reg_list.n)
958                         break;
959                 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
960                 break;
961         }
962         case KVM_ENABLE_CAP: {
963                 struct kvm_enable_cap cap;
964
965                 r = -EFAULT;
966                 if (copy_from_user(&cap, argp, sizeof(cap)))
967                         break;
968                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
969                 break;
970         }
971         default:
972                 r = -ENOIOCTLCMD;
973         }
974
975         vcpu_put(vcpu);
976         return r;
977 }
978
979 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
980 {
981
982 }
983
984 int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
985 {
986         kvm_mips_callbacks->prepare_flush_shadow(kvm);
987         return 1;
988 }
989
990 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
991 {
992         int r;
993
994         switch (ioctl) {
995         default:
996                 r = -ENOIOCTLCMD;
997         }
998
999         return r;
1000 }
1001
1002 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1003                                   struct kvm_sregs *sregs)
1004 {
1005         return -ENOIOCTLCMD;
1006 }
1007
1008 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1009                                   struct kvm_sregs *sregs)
1010 {
1011         return -ENOIOCTLCMD;
1012 }
1013
1014 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1015 {
1016 }
1017
1018 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1019 {
1020         return -ENOIOCTLCMD;
1021 }
1022
1023 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1024 {
1025         return -ENOIOCTLCMD;
1026 }
1027
1028 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1029 {
1030         return VM_FAULT_SIGBUS;
1031 }
1032
1033 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1034 {
1035         int r;
1036
1037         switch (ext) {
1038         case KVM_CAP_ONE_REG:
1039         case KVM_CAP_ENABLE_CAP:
1040         case KVM_CAP_READONLY_MEM:
1041         case KVM_CAP_SYNC_MMU:
1042         case KVM_CAP_IMMEDIATE_EXIT:
1043                 r = 1;
1044                 break;
1045         case KVM_CAP_NR_VCPUS:
1046                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
1047                 break;
1048         case KVM_CAP_MAX_VCPUS:
1049                 r = KVM_MAX_VCPUS;
1050                 break;
1051         case KVM_CAP_MAX_VCPU_ID:
1052                 r = KVM_MAX_VCPU_IDS;
1053                 break;
1054         case KVM_CAP_MIPS_FPU:
1055                 /* We don't handle systems with inconsistent cpu_has_fpu */
1056                 r = !!raw_cpu_has_fpu;
1057                 break;
1058         case KVM_CAP_MIPS_MSA:
1059                 /*
1060                  * We don't support MSA vector partitioning yet:
1061                  * 1) It would require explicit support which can't be tested
1062                  *    yet due to lack of support in current hardware.
1063                  * 2) It extends the state that would need to be saved/restored
1064                  *    by e.g. QEMU for migration.
1065                  *
1066                  * When vector partitioning hardware becomes available, support
1067                  * could be added by requiring a flag when enabling
1068                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1069                  * to save/restore the appropriate extra state.
1070                  */
1071                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1072                 break;
1073         default:
1074                 r = kvm_mips_callbacks->check_extension(kvm, ext);
1075                 break;
1076         }
1077         return r;
1078 }
1079
1080 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1081 {
1082         return kvm_mips_pending_timer(vcpu) ||
1083                 kvm_read_c0_guest_cause(&vcpu->arch.cop0) & C_TI;
1084 }
1085
1086 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1087 {
1088         int i;
1089         struct mips_coproc *cop0;
1090
1091         if (!vcpu)
1092                 return -1;
1093
1094         kvm_debug("VCPU Register Dump:\n");
1095         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1096         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1097
1098         for (i = 0; i < 32; i += 4) {
1099                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1100                        vcpu->arch.gprs[i],
1101                        vcpu->arch.gprs[i + 1],
1102                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1103         }
1104         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1105         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1106
1107         cop0 = &vcpu->arch.cop0;
1108         kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1109                   kvm_read_c0_guest_status(cop0),
1110                   kvm_read_c0_guest_cause(cop0));
1111
1112         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1113
1114         return 0;
1115 }
1116
1117 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1118 {
1119         int i;
1120
1121         vcpu_load(vcpu);
1122
1123         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1124                 vcpu->arch.gprs[i] = regs->gpr[i];
1125         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1126         vcpu->arch.hi = regs->hi;
1127         vcpu->arch.lo = regs->lo;
1128         vcpu->arch.pc = regs->pc;
1129
1130         vcpu_put(vcpu);
1131         return 0;
1132 }
1133
1134 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1135 {
1136         int i;
1137
1138         vcpu_load(vcpu);
1139
1140         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1141                 regs->gpr[i] = vcpu->arch.gprs[i];
1142
1143         regs->hi = vcpu->arch.hi;
1144         regs->lo = vcpu->arch.lo;
1145         regs->pc = vcpu->arch.pc;
1146
1147         vcpu_put(vcpu);
1148         return 0;
1149 }
1150
1151 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1152                                   struct kvm_translation *tr)
1153 {
1154         return 0;
1155 }
1156
1157 static void kvm_mips_set_c0_status(void)
1158 {
1159         u32 status = read_c0_status();
1160
1161         if (cpu_has_dsp)
1162                 status |= (ST0_MX);
1163
1164         write_c0_status(status);
1165         ehb();
1166 }
1167
1168 /*
1169  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1170  */
1171 static int __kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1172 {
1173         struct kvm_run *run = vcpu->run;
1174         u32 cause = vcpu->arch.host_cp0_cause;
1175         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1176         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1177         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1178         enum emulation_result er = EMULATE_DONE;
1179         u32 inst;
1180         int ret = RESUME_GUEST;
1181
1182         vcpu->mode = OUTSIDE_GUEST_MODE;
1183
1184         /* Set a default exit reason */
1185         run->exit_reason = KVM_EXIT_UNKNOWN;
1186         run->ready_for_interrupt_injection = 1;
1187
1188         /*
1189          * Set the appropriate status bits based on host CPU features,
1190          * before we hit the scheduler
1191          */
1192         kvm_mips_set_c0_status();
1193
1194         local_irq_enable();
1195
1196         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1197                         cause, opc, run, vcpu);
1198         trace_kvm_exit(vcpu, exccode);
1199
1200         switch (exccode) {
1201         case EXCCODE_INT:
1202                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1203
1204                 ++vcpu->stat.int_exits;
1205
1206                 if (need_resched())
1207                         cond_resched();
1208
1209                 ret = RESUME_GUEST;
1210                 break;
1211
1212         case EXCCODE_CPU:
1213                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1214
1215                 ++vcpu->stat.cop_unusable_exits;
1216                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1217                 /* XXXKYMA: Might need to return to user space */
1218                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1219                         ret = RESUME_HOST;
1220                 break;
1221
1222         case EXCCODE_MOD:
1223                 ++vcpu->stat.tlbmod_exits;
1224                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1225                 break;
1226
1227         case EXCCODE_TLBS:
1228                 kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1229                           cause, kvm_read_c0_guest_status(&vcpu->arch.cop0), opc,
1230                           badvaddr);
1231
1232                 ++vcpu->stat.tlbmiss_st_exits;
1233                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1234                 break;
1235
1236         case EXCCODE_TLBL:
1237                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1238                           cause, opc, badvaddr);
1239
1240                 ++vcpu->stat.tlbmiss_ld_exits;
1241                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1242                 break;
1243
1244         case EXCCODE_ADES:
1245                 ++vcpu->stat.addrerr_st_exits;
1246                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1247                 break;
1248
1249         case EXCCODE_ADEL:
1250                 ++vcpu->stat.addrerr_ld_exits;
1251                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1252                 break;
1253
1254         case EXCCODE_SYS:
1255                 ++vcpu->stat.syscall_exits;
1256                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1257                 break;
1258
1259         case EXCCODE_RI:
1260                 ++vcpu->stat.resvd_inst_exits;
1261                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1262                 break;
1263
1264         case EXCCODE_BP:
1265                 ++vcpu->stat.break_inst_exits;
1266                 ret = kvm_mips_callbacks->handle_break(vcpu);
1267                 break;
1268
1269         case EXCCODE_TR:
1270                 ++vcpu->stat.trap_inst_exits;
1271                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1272                 break;
1273
1274         case EXCCODE_MSAFPE:
1275                 ++vcpu->stat.msa_fpe_exits;
1276                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1277                 break;
1278
1279         case EXCCODE_FPE:
1280                 ++vcpu->stat.fpe_exits;
1281                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1282                 break;
1283
1284         case EXCCODE_MSADIS:
1285                 ++vcpu->stat.msa_disabled_exits;
1286                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1287                 break;
1288
1289         case EXCCODE_GE:
1290                 /* defer exit accounting to handler */
1291                 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1292                 break;
1293
1294         default:
1295                 if (cause & CAUSEF_BD)
1296                         opc += 1;
1297                 inst = 0;
1298                 kvm_get_badinstr(opc, vcpu, &inst);
1299                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1300                         exccode, opc, inst, badvaddr,
1301                         kvm_read_c0_guest_status(&vcpu->arch.cop0));
1302                 kvm_arch_vcpu_dump_regs(vcpu);
1303                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1304                 ret = RESUME_HOST;
1305                 break;
1306
1307         }
1308
1309         local_irq_disable();
1310
1311         if (ret == RESUME_GUEST)
1312                 kvm_vz_acquire_htimer(vcpu);
1313
1314         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1315                 kvm_mips_deliver_interrupts(vcpu, cause);
1316
1317         if (!(ret & RESUME_HOST)) {
1318                 /* Only check for signals if not already exiting to userspace */
1319                 if (signal_pending(current)) {
1320                         run->exit_reason = KVM_EXIT_INTR;
1321                         ret = (-EINTR << 2) | RESUME_HOST;
1322                         ++vcpu->stat.signal_exits;
1323                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1324                 }
1325         }
1326
1327         if (ret == RESUME_GUEST) {
1328                 trace_kvm_reenter(vcpu);
1329
1330                 /*
1331                  * Make sure the read of VCPU requests in vcpu_reenter()
1332                  * callback is not reordered ahead of the write to vcpu->mode,
1333                  * or we could miss a TLB flush request while the requester sees
1334                  * the VCPU as outside of guest mode and not needing an IPI.
1335                  */
1336                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1337
1338                 kvm_mips_callbacks->vcpu_reenter(vcpu);
1339
1340                 /*
1341                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1342                  * is live), restore FCR31 / MSACSR.
1343                  *
1344                  * This should be before returning to the guest exception
1345                  * vector, as it may well cause an [MSA] FP exception if there
1346                  * are pending exception bits unmasked. (see
1347                  * kvm_mips_csr_die_notifier() for how that is handled).
1348                  */
1349                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1350                     read_c0_status() & ST0_CU1)
1351                         __kvm_restore_fcsr(&vcpu->arch);
1352
1353                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1354                     read_c0_config5() & MIPS_CONF5_MSAEN)
1355                         __kvm_restore_msacsr(&vcpu->arch);
1356         }
1357         return ret;
1358 }
1359
1360 int noinstr kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1361 {
1362         int ret;
1363
1364         guest_state_exit_irqoff();
1365         ret = __kvm_mips_handle_exit(vcpu);
1366         guest_state_enter_irqoff();
1367
1368         return ret;
1369 }
1370
1371 /* Enable FPU for guest and restore context */
1372 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1373 {
1374         struct mips_coproc *cop0 = &vcpu->arch.cop0;
1375         unsigned int sr, cfg5;
1376
1377         preempt_disable();
1378
1379         sr = kvm_read_c0_guest_status(cop0);
1380
1381         /*
1382          * If MSA state is already live, it is undefined how it interacts with
1383          * FR=0 FPU state, and we don't want to hit reserved instruction
1384          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1385          * play it safe and save it first.
1386          */
1387         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1388             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1389                 kvm_lose_fpu(vcpu);
1390
1391         /*
1392          * Enable FPU for guest
1393          * We set FR and FRE according to guest context
1394          */
1395         change_c0_status(ST0_CU1 | ST0_FR, sr);
1396         if (cpu_has_fre) {
1397                 cfg5 = kvm_read_c0_guest_config5(cop0);
1398                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1399         }
1400         enable_fpu_hazard();
1401
1402         /* If guest FPU state not active, restore it now */
1403         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1404                 __kvm_restore_fpu(&vcpu->arch);
1405                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1406                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1407         } else {
1408                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1409         }
1410
1411         preempt_enable();
1412 }
1413
1414 #ifdef CONFIG_CPU_HAS_MSA
1415 /* Enable MSA for guest and restore context */
1416 void kvm_own_msa(struct kvm_vcpu *vcpu)
1417 {
1418         struct mips_coproc *cop0 = &vcpu->arch.cop0;
1419         unsigned int sr, cfg5;
1420
1421         preempt_disable();
1422
1423         /*
1424          * Enable FPU if enabled in guest, since we're restoring FPU context
1425          * anyway. We set FR and FRE according to guest context.
1426          */
1427         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1428                 sr = kvm_read_c0_guest_status(cop0);
1429
1430                 /*
1431                  * If FR=0 FPU state is already live, it is undefined how it
1432                  * interacts with MSA state, so play it safe and save it first.
1433                  */
1434                 if (!(sr & ST0_FR) &&
1435                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1436                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1437                         kvm_lose_fpu(vcpu);
1438
1439                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1440                 if (sr & ST0_CU1 && cpu_has_fre) {
1441                         cfg5 = kvm_read_c0_guest_config5(cop0);
1442                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1443                 }
1444         }
1445
1446         /* Enable MSA for guest */
1447         set_c0_config5(MIPS_CONF5_MSAEN);
1448         enable_fpu_hazard();
1449
1450         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1451         case KVM_MIPS_AUX_FPU:
1452                 /*
1453                  * Guest FPU state already loaded, only restore upper MSA state
1454                  */
1455                 __kvm_restore_msa_upper(&vcpu->arch);
1456                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1457                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1458                 break;
1459         case 0:
1460                 /* Neither FPU or MSA already active, restore full MSA state */
1461                 __kvm_restore_msa(&vcpu->arch);
1462                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1463                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1464                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1465                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1466                               KVM_TRACE_AUX_FPU_MSA);
1467                 break;
1468         default:
1469                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1470                 break;
1471         }
1472
1473         preempt_enable();
1474 }
1475 #endif
1476
1477 /* Drop FPU & MSA without saving it */
1478 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1479 {
1480         preempt_disable();
1481         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1482                 disable_msa();
1483                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1484                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1485         }
1486         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1487                 clear_c0_status(ST0_CU1 | ST0_FR);
1488                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1489                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1490         }
1491         preempt_enable();
1492 }
1493
1494 /* Save and disable FPU & MSA */
1495 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1496 {
1497         /*
1498          * With T&E, FPU & MSA get disabled in root context (hardware) when it
1499          * is disabled in guest context (software), but the register state in
1500          * the hardware may still be in use.
1501          * This is why we explicitly re-enable the hardware before saving.
1502          */
1503
1504         preempt_disable();
1505         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1506                 __kvm_save_msa(&vcpu->arch);
1507                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1508
1509                 /* Disable MSA & FPU */
1510                 disable_msa();
1511                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1512                         clear_c0_status(ST0_CU1 | ST0_FR);
1513                         disable_fpu_hazard();
1514                 }
1515                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1516         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1517                 __kvm_save_fpu(&vcpu->arch);
1518                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1519                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1520
1521                 /* Disable FPU */
1522                 clear_c0_status(ST0_CU1 | ST0_FR);
1523                 disable_fpu_hazard();
1524         }
1525         preempt_enable();
1526 }
1527
1528 /*
1529  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1530  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1531  * exception if cause bits are set in the value being written.
1532  */
1533 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1534                                    unsigned long cmd, void *ptr)
1535 {
1536         struct die_args *args = (struct die_args *)ptr;
1537         struct pt_regs *regs = args->regs;
1538         unsigned long pc;
1539
1540         /* Only interested in FPE and MSAFPE */
1541         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1542                 return NOTIFY_DONE;
1543
1544         /* Return immediately if guest context isn't active */
1545         if (!(current->flags & PF_VCPU))
1546                 return NOTIFY_DONE;
1547
1548         /* Should never get here from user mode */
1549         BUG_ON(user_mode(regs));
1550
1551         pc = instruction_pointer(regs);
1552         switch (cmd) {
1553         case DIE_FP:
1554                 /* match 2nd instruction in __kvm_restore_fcsr */
1555                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1556                         return NOTIFY_DONE;
1557                 break;
1558         case DIE_MSAFP:
1559                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1560                 if (!cpu_has_msa ||
1561                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1562                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1563                         return NOTIFY_DONE;
1564                 break;
1565         }
1566
1567         /* Move PC forward a little and continue executing */
1568         instruction_pointer(regs) += 4;
1569
1570         return NOTIFY_STOP;
1571 }
1572
1573 static struct notifier_block kvm_mips_csr_die_notifier = {
1574         .notifier_call = kvm_mips_csr_die_notify,
1575 };
1576
1577 static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1578         [MIPS_EXC_INT_TIMER] = C_IRQ5,
1579         [MIPS_EXC_INT_IO_1]  = C_IRQ0,
1580         [MIPS_EXC_INT_IPI_1] = C_IRQ1,
1581         [MIPS_EXC_INT_IPI_2] = C_IRQ2,
1582 };
1583
1584 static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1585         [MIPS_EXC_INT_TIMER] = C_IRQ5,
1586         [MIPS_EXC_INT_IO_1]  = C_IRQ0,
1587         [MIPS_EXC_INT_IO_2]  = C_IRQ1,
1588         [MIPS_EXC_INT_IPI_1] = C_IRQ4,
1589 };
1590
1591 u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1592
1593 u32 kvm_irq_to_priority(u32 irq)
1594 {
1595         int i;
1596
1597         for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1598                 if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1599                         return i;
1600         }
1601
1602         return MIPS_EXC_MAX;
1603 }
1604
1605 static int __init kvm_mips_init(void)
1606 {
1607         int ret;
1608
1609         if (cpu_has_mmid) {
1610                 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1611                 return -EOPNOTSUPP;
1612         }
1613
1614         ret = kvm_mips_entry_setup();
1615         if (ret)
1616                 return ret;
1617
1618         ret = kvm_mips_emulation_init();
1619         if (ret)
1620                 return ret;
1621
1622
1623         if (boot_cpu_type() == CPU_LOONGSON64)
1624                 kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1625
1626         register_die_notifier(&kvm_mips_csr_die_notifier);
1627
1628         ret = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1629         if (ret) {
1630                 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1631                 return ret;
1632         }
1633         return 0;
1634 }
1635
1636 static void __exit kvm_mips_exit(void)
1637 {
1638         kvm_exit();
1639
1640         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1641 }
1642
1643 module_init(kvm_mips_init);
1644 module_exit(kvm_mips_exit);
1645
1646 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);