arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / arch / mips / kvm / emulate.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/memblock.h>
19 #include <linux/random.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cacheops.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
26 #include <asm/inst.h>
27
28 #undef CONFIG_MIPS_MT
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
31
32 #include "interrupt.h"
33
34 #include "trace.h"
35
36 /*
37  * Compute the return address and do emulate branch simulation, if required.
38  * This function should be called only in branch delay slot active.
39  */
40 static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
41                                   unsigned long *out)
42 {
43         unsigned int dspcontrol;
44         union mips_instruction insn;
45         struct kvm_vcpu_arch *arch = &vcpu->arch;
46         long epc = instpc;
47         long nextpc;
48         int err;
49
50         if (epc & 3) {
51                 kvm_err("%s: unaligned epc\n", __func__);
52                 return -EINVAL;
53         }
54
55         /* Read the instruction */
56         err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
57         if (err)
58                 return err;
59
60         switch (insn.i_format.opcode) {
61                 /* jr and jalr are in r_format format. */
62         case spec_op:
63                 switch (insn.r_format.func) {
64                 case jalr_op:
65                         arch->gprs[insn.r_format.rd] = epc + 8;
66                         fallthrough;
67                 case jr_op:
68                         nextpc = arch->gprs[insn.r_format.rs];
69                         break;
70                 default:
71                         return -EINVAL;
72                 }
73                 break;
74
75                 /*
76                  * This group contains:
77                  * bltz_op, bgez_op, bltzl_op, bgezl_op,
78                  * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
79                  */
80         case bcond_op:
81                 switch (insn.i_format.rt) {
82                 case bltz_op:
83                 case bltzl_op:
84                         if ((long)arch->gprs[insn.i_format.rs] < 0)
85                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
86                         else
87                                 epc += 8;
88                         nextpc = epc;
89                         break;
90
91                 case bgez_op:
92                 case bgezl_op:
93                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
94                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
95                         else
96                                 epc += 8;
97                         nextpc = epc;
98                         break;
99
100                 case bltzal_op:
101                 case bltzall_op:
102                         arch->gprs[31] = epc + 8;
103                         if ((long)arch->gprs[insn.i_format.rs] < 0)
104                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
105                         else
106                                 epc += 8;
107                         nextpc = epc;
108                         break;
109
110                 case bgezal_op:
111                 case bgezall_op:
112                         arch->gprs[31] = epc + 8;
113                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
114                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
115                         else
116                                 epc += 8;
117                         nextpc = epc;
118                         break;
119                 case bposge32_op:
120                         if (!cpu_has_dsp) {
121                                 kvm_err("%s: DSP branch but not DSP ASE\n",
122                                         __func__);
123                                 return -EINVAL;
124                         }
125
126                         dspcontrol = rddsp(0x01);
127
128                         if (dspcontrol >= 32)
129                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
130                         else
131                                 epc += 8;
132                         nextpc = epc;
133                         break;
134                 default:
135                         return -EINVAL;
136                 }
137                 break;
138
139                 /* These are unconditional and in j_format. */
140         case jal_op:
141                 arch->gprs[31] = instpc + 8;
142                 fallthrough;
143         case j_op:
144                 epc += 4;
145                 epc >>= 28;
146                 epc <<= 28;
147                 epc |= (insn.j_format.target << 2);
148                 nextpc = epc;
149                 break;
150
151                 /* These are conditional and in i_format. */
152         case beq_op:
153         case beql_op:
154                 if (arch->gprs[insn.i_format.rs] ==
155                     arch->gprs[insn.i_format.rt])
156                         epc = epc + 4 + (insn.i_format.simmediate << 2);
157                 else
158                         epc += 8;
159                 nextpc = epc;
160                 break;
161
162         case bne_op:
163         case bnel_op:
164                 if (arch->gprs[insn.i_format.rs] !=
165                     arch->gprs[insn.i_format.rt])
166                         epc = epc + 4 + (insn.i_format.simmediate << 2);
167                 else
168                         epc += 8;
169                 nextpc = epc;
170                 break;
171
172         case blez_op:   /* POP06 */
173 #ifndef CONFIG_CPU_MIPSR6
174         case blezl_op:  /* removed in R6 */
175 #endif
176                 if (insn.i_format.rt != 0)
177                         goto compact_branch;
178                 if ((long)arch->gprs[insn.i_format.rs] <= 0)
179                         epc = epc + 4 + (insn.i_format.simmediate << 2);
180                 else
181                         epc += 8;
182                 nextpc = epc;
183                 break;
184
185         case bgtz_op:   /* POP07 */
186 #ifndef CONFIG_CPU_MIPSR6
187         case bgtzl_op:  /* removed in R6 */
188 #endif
189                 if (insn.i_format.rt != 0)
190                         goto compact_branch;
191                 if ((long)arch->gprs[insn.i_format.rs] > 0)
192                         epc = epc + 4 + (insn.i_format.simmediate << 2);
193                 else
194                         epc += 8;
195                 nextpc = epc;
196                 break;
197
198                 /* And now the FPA/cp1 branch instructions. */
199         case cop1_op:
200                 kvm_err("%s: unsupported cop1_op\n", __func__);
201                 return -EINVAL;
202
203 #ifdef CONFIG_CPU_MIPSR6
204         /* R6 added the following compact branches with forbidden slots */
205         case blezl_op:  /* POP26 */
206         case bgtzl_op:  /* POP27 */
207                 /* only rt == 0 isn't compact branch */
208                 if (insn.i_format.rt != 0)
209                         goto compact_branch;
210                 return -EINVAL;
211         case pop10_op:
212         case pop30_op:
213                 /* only rs == rt == 0 is reserved, rest are compact branches */
214                 if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
215                         goto compact_branch;
216                 return -EINVAL;
217         case pop66_op:
218         case pop76_op:
219                 /* only rs == 0 isn't compact branch */
220                 if (insn.i_format.rs != 0)
221                         goto compact_branch;
222                 return -EINVAL;
223 compact_branch:
224                 /*
225                  * If we've hit an exception on the forbidden slot, then
226                  * the branch must not have been taken.
227                  */
228                 epc += 8;
229                 nextpc = epc;
230                 break;
231 #else
232 compact_branch:
233                 /* Fall through - Compact branches not supported before R6 */
234 #endif
235         default:
236                 return -EINVAL;
237         }
238
239         *out = nextpc;
240         return 0;
241 }
242
243 enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
244 {
245         int err;
246
247         if (cause & CAUSEF_BD) {
248                 err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
249                                              &vcpu->arch.pc);
250                 if (err)
251                         return EMULATE_FAIL;
252         } else {
253                 vcpu->arch.pc += 4;
254         }
255
256         kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
257
258         return EMULATE_DONE;
259 }
260
261 /**
262  * kvm_get_badinstr() - Get bad instruction encoding.
263  * @opc:        Guest pointer to faulting instruction.
264  * @vcpu:       KVM VCPU information.
265  *
266  * Gets the instruction encoding of the faulting instruction, using the saved
267  * BadInstr register value if it exists, otherwise falling back to reading guest
268  * memory at @opc.
269  *
270  * Returns:     The instruction encoding of the faulting instruction.
271  */
272 int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
273 {
274         if (cpu_has_badinstr) {
275                 *out = vcpu->arch.host_cp0_badinstr;
276                 return 0;
277         } else {
278                 WARN_ONCE(1, "CPU doesn't have BadInstr register\n");
279                 return -EINVAL;
280         }
281 }
282
283 /**
284  * kvm_get_badinstrp() - Get bad prior instruction encoding.
285  * @opc:        Guest pointer to prior faulting instruction.
286  * @vcpu:       KVM VCPU information.
287  *
288  * Gets the instruction encoding of the prior faulting instruction (the branch
289  * containing the delay slot which faulted), using the saved BadInstrP register
290  * value if it exists, otherwise falling back to reading guest memory at @opc.
291  *
292  * Returns:     The instruction encoding of the prior faulting instruction.
293  */
294 int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
295 {
296         if (cpu_has_badinstrp) {
297                 *out = vcpu->arch.host_cp0_badinstrp;
298                 return 0;
299         } else {
300                 WARN_ONCE(1, "CPU doesn't have BadInstrp register\n");
301                 return -EINVAL;
302         }
303 }
304
305 /**
306  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
307  * @vcpu:       Virtual CPU.
308  *
309  * Returns:     1 if the CP0_Count timer is disabled by either the guest
310  *              CP0_Cause.DC bit or the count_ctl.DC bit.
311  *              0 otherwise (in which case CP0_Count timer is running).
312  */
313 int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
314 {
315         struct mips_coproc *cop0 = &vcpu->arch.cop0;
316
317         return  (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
318                 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
319 }
320
321 /**
322  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
323  *
324  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
325  *
326  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
327  */
328 static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
329 {
330         s64 now_ns, periods;
331         u64 delta;
332
333         now_ns = ktime_to_ns(now);
334         delta = now_ns + vcpu->arch.count_dyn_bias;
335
336         if (delta >= vcpu->arch.count_period) {
337                 /* If delta is out of safe range the bias needs adjusting */
338                 periods = div64_s64(now_ns, vcpu->arch.count_period);
339                 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
340                 /* Recalculate delta with new bias */
341                 delta = now_ns + vcpu->arch.count_dyn_bias;
342         }
343
344         /*
345          * We've ensured that:
346          *   delta < count_period
347          *
348          * Therefore the intermediate delta*count_hz will never overflow since
349          * at the boundary condition:
350          *   delta = count_period
351          *   delta = NSEC_PER_SEC * 2^32 / count_hz
352          *   delta * count_hz = NSEC_PER_SEC * 2^32
353          */
354         return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
355 }
356
357 /**
358  * kvm_mips_count_time() - Get effective current time.
359  * @vcpu:       Virtual CPU.
360  *
361  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
362  * except when the master disable bit is set in count_ctl, in which case it is
363  * count_resume, i.e. the time that the count was disabled.
364  *
365  * Returns:     Effective monotonic ktime for CP0_Count.
366  */
367 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
368 {
369         if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
370                 return vcpu->arch.count_resume;
371
372         return ktime_get();
373 }
374
375 /**
376  * kvm_mips_read_count_running() - Read the current count value as if running.
377  * @vcpu:       Virtual CPU.
378  * @now:        Kernel time to read CP0_Count at.
379  *
380  * Returns the current guest CP0_Count register at time @now and handles if the
381  * timer interrupt is pending and hasn't been handled yet.
382  *
383  * Returns:     The current value of the guest CP0_Count register.
384  */
385 static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
386 {
387         struct mips_coproc *cop0 = &vcpu->arch.cop0;
388         ktime_t expires, threshold;
389         u32 count, compare;
390         int running;
391
392         /* Calculate the biased and scaled guest CP0_Count */
393         count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
394         compare = kvm_read_c0_guest_compare(cop0);
395
396         /*
397          * Find whether CP0_Count has reached the closest timer interrupt. If
398          * not, we shouldn't inject it.
399          */
400         if ((s32)(count - compare) < 0)
401                 return count;
402
403         /*
404          * The CP0_Count we're going to return has already reached the closest
405          * timer interrupt. Quickly check if it really is a new interrupt by
406          * looking at whether the interval until the hrtimer expiry time is
407          * less than 1/4 of the timer period.
408          */
409         expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
410         threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
411         if (ktime_before(expires, threshold)) {
412                 /*
413                  * Cancel it while we handle it so there's no chance of
414                  * interference with the timeout handler.
415                  */
416                 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
417
418                 /* Nothing should be waiting on the timeout */
419                 kvm_mips_callbacks->queue_timer_int(vcpu);
420
421                 /*
422                  * Restart the timer if it was running based on the expiry time
423                  * we read, so that we don't push it back 2 periods.
424                  */
425                 if (running) {
426                         expires = ktime_add_ns(expires,
427                                                vcpu->arch.count_period);
428                         hrtimer_start(&vcpu->arch.comparecount_timer, expires,
429                                       HRTIMER_MODE_ABS);
430                 }
431         }
432
433         return count;
434 }
435
436 /**
437  * kvm_mips_read_count() - Read the current count value.
438  * @vcpu:       Virtual CPU.
439  *
440  * Read the current guest CP0_Count value, taking into account whether the timer
441  * is stopped.
442  *
443  * Returns:     The current guest CP0_Count value.
444  */
445 u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
446 {
447         struct mips_coproc *cop0 = &vcpu->arch.cop0;
448
449         /* If count disabled just read static copy of count */
450         if (kvm_mips_count_disabled(vcpu))
451                 return kvm_read_c0_guest_count(cop0);
452
453         return kvm_mips_read_count_running(vcpu, ktime_get());
454 }
455
456 /**
457  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
458  * @vcpu:       Virtual CPU.
459  * @count:      Output pointer for CP0_Count value at point of freeze.
460  *
461  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
462  * at the point it was frozen. It is guaranteed that any pending interrupts at
463  * the point it was frozen are handled, and none after that point.
464  *
465  * This is useful where the time/CP0_Count is needed in the calculation of the
466  * new parameters.
467  *
468  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
469  *
470  * Returns:     The ktime at the point of freeze.
471  */
472 ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
473 {
474         ktime_t now;
475
476         /* stop hrtimer before finding time */
477         hrtimer_cancel(&vcpu->arch.comparecount_timer);
478         now = ktime_get();
479
480         /* find count at this point and handle pending hrtimer */
481         *count = kvm_mips_read_count_running(vcpu, now);
482
483         return now;
484 }
485
486 /**
487  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
488  * @vcpu:       Virtual CPU.
489  * @now:        ktime at point of resume.
490  * @count:      CP0_Count at point of resume.
491  *
492  * Resumes the timer and updates the timer expiry based on @now and @count.
493  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
494  * parameters need to be changed.
495  *
496  * It is guaranteed that a timer interrupt immediately after resume will be
497  * handled, but not if CP_Compare is exactly at @count. That case is already
498  * handled by kvm_mips_freeze_timer().
499  *
500  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
501  */
502 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
503                                     ktime_t now, u32 count)
504 {
505         struct mips_coproc *cop0 = &vcpu->arch.cop0;
506         u32 compare;
507         u64 delta;
508         ktime_t expire;
509
510         /* Calculate timeout (wrap 0 to 2^32) */
511         compare = kvm_read_c0_guest_compare(cop0);
512         delta = (u64)(u32)(compare - count - 1) + 1;
513         delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
514         expire = ktime_add_ns(now, delta);
515
516         /* Update hrtimer to use new timeout */
517         hrtimer_cancel(&vcpu->arch.comparecount_timer);
518         hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
519 }
520
521 /**
522  * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
523  * @vcpu:       Virtual CPU.
524  * @before:     Time before Count was saved, lower bound of drift calculation.
525  * @count:      CP0_Count at point of restore.
526  * @min_drift:  Minimum amount of drift permitted before correction.
527  *              Must be <= 0.
528  *
529  * Restores the timer from a particular @count, accounting for drift. This can
530  * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
531  * to be used for a period of time, but the exact ktime corresponding to the
532  * final Count that must be restored is not known.
533  *
534  * It is gauranteed that a timer interrupt immediately after restore will be
535  * handled, but not if CP0_Compare is exactly at @count. That case should
536  * already be handled when the hardware timer state is saved.
537  *
538  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
539  * stopped).
540  *
541  * Returns:     Amount of correction to count_bias due to drift.
542  */
543 int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
544                              u32 count, int min_drift)
545 {
546         ktime_t now, count_time;
547         u32 now_count, before_count;
548         u64 delta;
549         int drift, ret = 0;
550
551         /* Calculate expected count at before */
552         before_count = vcpu->arch.count_bias +
553                         kvm_mips_ktime_to_count(vcpu, before);
554
555         /*
556          * Detect significantly negative drift, where count is lower than
557          * expected. Some negative drift is expected when hardware counter is
558          * set after kvm_mips_freeze_timer(), and it is harmless to allow the
559          * time to jump forwards a little, within reason. If the drift is too
560          * significant, adjust the bias to avoid a big Guest.CP0_Count jump.
561          */
562         drift = count - before_count;
563         if (drift < min_drift) {
564                 count_time = before;
565                 vcpu->arch.count_bias += drift;
566                 ret = drift;
567                 goto resume;
568         }
569
570         /* Calculate expected count right now */
571         now = ktime_get();
572         now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
573
574         /*
575          * Detect positive drift, where count is higher than expected, and
576          * adjust the bias to avoid guest time going backwards.
577          */
578         drift = count - now_count;
579         if (drift > 0) {
580                 count_time = now;
581                 vcpu->arch.count_bias += drift;
582                 ret = drift;
583                 goto resume;
584         }
585
586         /* Subtract nanosecond delta to find ktime when count was read */
587         delta = (u64)(u32)(now_count - count);
588         delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
589         count_time = ktime_sub_ns(now, delta);
590
591 resume:
592         /* Resume using the calculated ktime */
593         kvm_mips_resume_hrtimer(vcpu, count_time, count);
594         return ret;
595 }
596
597 /**
598  * kvm_mips_write_count() - Modify the count and update timer.
599  * @vcpu:       Virtual CPU.
600  * @count:      Guest CP0_Count value to set.
601  *
602  * Sets the CP0_Count value and updates the timer accordingly.
603  */
604 void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
605 {
606         struct mips_coproc *cop0 = &vcpu->arch.cop0;
607         ktime_t now;
608
609         /* Calculate bias */
610         now = kvm_mips_count_time(vcpu);
611         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
612
613         if (kvm_mips_count_disabled(vcpu))
614                 /* The timer's disabled, adjust the static count */
615                 kvm_write_c0_guest_count(cop0, count);
616         else
617                 /* Update timeout */
618                 kvm_mips_resume_hrtimer(vcpu, now, count);
619 }
620
621 /**
622  * kvm_mips_init_count() - Initialise timer.
623  * @vcpu:       Virtual CPU.
624  * @count_hz:   Frequency of timer.
625  *
626  * Initialise the timer to the specified frequency, zero it, and set it going if
627  * it's enabled.
628  */
629 void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
630 {
631         vcpu->arch.count_hz = count_hz;
632         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
633         vcpu->arch.count_dyn_bias = 0;
634
635         /* Starting at 0 */
636         kvm_mips_write_count(vcpu, 0);
637 }
638
639 /**
640  * kvm_mips_set_count_hz() - Update the frequency of the timer.
641  * @vcpu:       Virtual CPU.
642  * @count_hz:   Frequency of CP0_Count timer in Hz.
643  *
644  * Change the frequency of the CP0_Count timer. This is done atomically so that
645  * CP0_Count is continuous and no timer interrupt is lost.
646  *
647  * Returns:     -EINVAL if @count_hz is out of range.
648  *              0 on success.
649  */
650 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
651 {
652         struct mips_coproc *cop0 = &vcpu->arch.cop0;
653         int dc;
654         ktime_t now;
655         u32 count;
656
657         /* ensure the frequency is in a sensible range... */
658         if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
659                 return -EINVAL;
660         /* ... and has actually changed */
661         if (vcpu->arch.count_hz == count_hz)
662                 return 0;
663
664         /* Safely freeze timer so we can keep it continuous */
665         dc = kvm_mips_count_disabled(vcpu);
666         if (dc) {
667                 now = kvm_mips_count_time(vcpu);
668                 count = kvm_read_c0_guest_count(cop0);
669         } else {
670                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
671         }
672
673         /* Update the frequency */
674         vcpu->arch.count_hz = count_hz;
675         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
676         vcpu->arch.count_dyn_bias = 0;
677
678         /* Calculate adjusted bias so dynamic count is unchanged */
679         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
680
681         /* Update and resume hrtimer */
682         if (!dc)
683                 kvm_mips_resume_hrtimer(vcpu, now, count);
684         return 0;
685 }
686
687 /**
688  * kvm_mips_write_compare() - Modify compare and update timer.
689  * @vcpu:       Virtual CPU.
690  * @compare:    New CP0_Compare value.
691  * @ack:        Whether to acknowledge timer interrupt.
692  *
693  * Update CP0_Compare to a new value and update the timeout.
694  * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
695  * any pending timer interrupt is preserved.
696  */
697 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
698 {
699         struct mips_coproc *cop0 = &vcpu->arch.cop0;
700         int dc;
701         u32 old_compare = kvm_read_c0_guest_compare(cop0);
702         s32 delta = compare - old_compare;
703         u32 cause;
704         ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
705         u32 count;
706
707         /* if unchanged, must just be an ack */
708         if (old_compare == compare) {
709                 if (!ack)
710                         return;
711                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
712                 kvm_write_c0_guest_compare(cop0, compare);
713                 return;
714         }
715
716         /*
717          * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
718          * too to prevent guest CP0_Count hitting guest CP0_Compare.
719          *
720          * The new GTOffset corresponds to the new value of CP0_Compare, and is
721          * set prior to it being written into the guest context. We disable
722          * preemption until the new value is written to prevent restore of a
723          * GTOffset corresponding to the old CP0_Compare value.
724          */
725         if (delta > 0) {
726                 preempt_disable();
727                 write_c0_gtoffset(compare - read_c0_count());
728                 back_to_back_c0_hazard();
729         }
730
731         /* freeze_hrtimer() takes care of timer interrupts <= count */
732         dc = kvm_mips_count_disabled(vcpu);
733         if (!dc)
734                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
735
736         if (ack)
737                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
738         else
739                 /*
740                  * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
741                  * preserve guest CP0_Cause.TI if we don't want to ack it.
742                  */
743                 cause = kvm_read_c0_guest_cause(cop0);
744
745         kvm_write_c0_guest_compare(cop0, compare);
746
747         if (delta > 0)
748                 preempt_enable();
749
750         back_to_back_c0_hazard();
751
752         if (!ack && cause & CAUSEF_TI)
753                 kvm_write_c0_guest_cause(cop0, cause);
754
755         /* resume_hrtimer() takes care of timer interrupts > count */
756         if (!dc)
757                 kvm_mips_resume_hrtimer(vcpu, now, count);
758
759         /*
760          * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
761          * until after the new CP0_Compare is written, otherwise new guest
762          * CP0_Count could hit new guest CP0_Compare.
763          */
764         if (delta <= 0)
765                 write_c0_gtoffset(compare - read_c0_count());
766 }
767
768 /**
769  * kvm_mips_count_disable() - Disable count.
770  * @vcpu:       Virtual CPU.
771  *
772  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
773  * time will be handled but not after.
774  *
775  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
776  * count_ctl.DC has been set (count disabled).
777  *
778  * Returns:     The time that the timer was stopped.
779  */
780 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
781 {
782         struct mips_coproc *cop0 = &vcpu->arch.cop0;
783         u32 count;
784         ktime_t now;
785
786         /* Stop hrtimer */
787         hrtimer_cancel(&vcpu->arch.comparecount_timer);
788
789         /* Set the static count from the dynamic count, handling pending TI */
790         now = ktime_get();
791         count = kvm_mips_read_count_running(vcpu, now);
792         kvm_write_c0_guest_count(cop0, count);
793
794         return now;
795 }
796
797 /**
798  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
799  * @vcpu:       Virtual CPU.
800  *
801  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
802  * before the final stop time will be handled if the timer isn't disabled by
803  * count_ctl.DC, but not after.
804  *
805  * Assumes CP0_Cause.DC is clear (count enabled).
806  */
807 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
808 {
809         struct mips_coproc *cop0 = &vcpu->arch.cop0;
810
811         kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
812         if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
813                 kvm_mips_count_disable(vcpu);
814 }
815
816 /**
817  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
818  * @vcpu:       Virtual CPU.
819  *
820  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
821  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
822  * potentially before even returning, so the caller should be careful with
823  * ordering of CP0_Cause modifications so as not to lose it.
824  *
825  * Assumes CP0_Cause.DC is set (count disabled).
826  */
827 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
828 {
829         struct mips_coproc *cop0 = &vcpu->arch.cop0;
830         u32 count;
831
832         kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
833
834         /*
835          * Set the dynamic count to match the static count.
836          * This starts the hrtimer if count_ctl.DC allows it.
837          * Otherwise it conveniently updates the biases.
838          */
839         count = kvm_read_c0_guest_count(cop0);
840         kvm_mips_write_count(vcpu, count);
841 }
842
843 /**
844  * kvm_mips_set_count_ctl() - Update the count control KVM register.
845  * @vcpu:       Virtual CPU.
846  * @count_ctl:  Count control register new value.
847  *
848  * Set the count control KVM register. The timer is updated accordingly.
849  *
850  * Returns:     -EINVAL if reserved bits are set.
851  *              0 on success.
852  */
853 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
854 {
855         struct mips_coproc *cop0 = &vcpu->arch.cop0;
856         s64 changed = count_ctl ^ vcpu->arch.count_ctl;
857         s64 delta;
858         ktime_t expire, now;
859         u32 count, compare;
860
861         /* Only allow defined bits to be changed */
862         if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
863                 return -EINVAL;
864
865         /* Apply new value */
866         vcpu->arch.count_ctl = count_ctl;
867
868         /* Master CP0_Count disable */
869         if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
870                 /* Is CP0_Cause.DC already disabling CP0_Count? */
871                 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
872                         if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
873                                 /* Just record the current time */
874                                 vcpu->arch.count_resume = ktime_get();
875                 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
876                         /* disable timer and record current time */
877                         vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
878                 } else {
879                         /*
880                          * Calculate timeout relative to static count at resume
881                          * time (wrap 0 to 2^32).
882                          */
883                         count = kvm_read_c0_guest_count(cop0);
884                         compare = kvm_read_c0_guest_compare(cop0);
885                         delta = (u64)(u32)(compare - count - 1) + 1;
886                         delta = div_u64(delta * NSEC_PER_SEC,
887                                         vcpu->arch.count_hz);
888                         expire = ktime_add_ns(vcpu->arch.count_resume, delta);
889
890                         /* Handle pending interrupt */
891                         now = ktime_get();
892                         if (ktime_compare(now, expire) >= 0)
893                                 /* Nothing should be waiting on the timeout */
894                                 kvm_mips_callbacks->queue_timer_int(vcpu);
895
896                         /* Resume hrtimer without changing bias */
897                         count = kvm_mips_read_count_running(vcpu, now);
898                         kvm_mips_resume_hrtimer(vcpu, now, count);
899                 }
900         }
901
902         return 0;
903 }
904
905 /**
906  * kvm_mips_set_count_resume() - Update the count resume KVM register.
907  * @vcpu:               Virtual CPU.
908  * @count_resume:       Count resume register new value.
909  *
910  * Set the count resume KVM register.
911  *
912  * Returns:     -EINVAL if out of valid range (0..now).
913  *              0 on success.
914  */
915 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
916 {
917         /*
918          * It doesn't make sense for the resume time to be in the future, as it
919          * would be possible for the next interrupt to be more than a full
920          * period in the future.
921          */
922         if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
923                 return -EINVAL;
924
925         vcpu->arch.count_resume = ns_to_ktime(count_resume);
926         return 0;
927 }
928
929 /**
930  * kvm_mips_count_timeout() - Push timer forward on timeout.
931  * @vcpu:       Virtual CPU.
932  *
933  * Handle an hrtimer event by push the hrtimer forward a period.
934  *
935  * Returns:     The hrtimer_restart value to return to the hrtimer subsystem.
936  */
937 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
938 {
939         /* Add the Count period to the current expiry time */
940         hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
941                                vcpu->arch.count_period);
942         return HRTIMER_RESTART;
943 }
944
945 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
946 {
947         kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
948                   vcpu->arch.pending_exceptions);
949
950         ++vcpu->stat.wait_exits;
951         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
952         if (!vcpu->arch.pending_exceptions) {
953                 kvm_vz_lose_htimer(vcpu);
954                 vcpu->arch.wait = 1;
955                 kvm_vcpu_halt(vcpu);
956
957                 /*
958                  * We are runnable, then definitely go off to user space to
959                  * check if any I/O interrupts are pending.
960                  */
961                 if (kvm_arch_vcpu_runnable(vcpu))
962                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
963         }
964
965         return EMULATE_DONE;
966 }
967
968 enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
969                                              u32 cause,
970                                              struct kvm_vcpu *vcpu)
971 {
972         int r;
973         enum emulation_result er;
974         u32 rt;
975         struct kvm_run *run = vcpu->run;
976         void *data = run->mmio.data;
977         unsigned int imme;
978         unsigned long curr_pc;
979
980         /*
981          * Update PC and hold onto current PC in case there is
982          * an error and we want to rollback the PC
983          */
984         curr_pc = vcpu->arch.pc;
985         er = update_pc(vcpu, cause);
986         if (er == EMULATE_FAIL)
987                 return er;
988
989         rt = inst.i_format.rt;
990
991         run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
992                                                 vcpu->arch.host_cp0_badvaddr);
993         if (run->mmio.phys_addr == KVM_INVALID_ADDR)
994                 goto out_fail;
995
996         switch (inst.i_format.opcode) {
997 #if defined(CONFIG_64BIT)
998         case sd_op:
999                 run->mmio.len = 8;
1000                 *(u64 *)data = vcpu->arch.gprs[rt];
1001
1002                 kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1003                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1004                           vcpu->arch.gprs[rt], *(u64 *)data);
1005                 break;
1006 #endif
1007
1008         case sw_op:
1009                 run->mmio.len = 4;
1010                 *(u32 *)data = vcpu->arch.gprs[rt];
1011
1012                 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1013                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1014                           vcpu->arch.gprs[rt], *(u32 *)data);
1015                 break;
1016
1017         case sh_op:
1018                 run->mmio.len = 2;
1019                 *(u16 *)data = vcpu->arch.gprs[rt];
1020
1021                 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1022                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1023                           vcpu->arch.gprs[rt], *(u16 *)data);
1024                 break;
1025
1026         case sb_op:
1027                 run->mmio.len = 1;
1028                 *(u8 *)data = vcpu->arch.gprs[rt];
1029
1030                 kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1031                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1032                           vcpu->arch.gprs[rt], *(u8 *)data);
1033                 break;
1034
1035         case swl_op:
1036                 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1037                                         vcpu->arch.host_cp0_badvaddr) & (~0x3);
1038                 run->mmio.len = 4;
1039                 imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1040                 switch (imme) {
1041                 case 0:
1042                         *(u32 *)data = ((*(u32 *)data) & 0xffffff00) |
1043                                         (vcpu->arch.gprs[rt] >> 24);
1044                         break;
1045                 case 1:
1046                         *(u32 *)data = ((*(u32 *)data) & 0xffff0000) |
1047                                         (vcpu->arch.gprs[rt] >> 16);
1048                         break;
1049                 case 2:
1050                         *(u32 *)data = ((*(u32 *)data) & 0xff000000) |
1051                                         (vcpu->arch.gprs[rt] >> 8);
1052                         break;
1053                 case 3:
1054                         *(u32 *)data = vcpu->arch.gprs[rt];
1055                         break;
1056                 default:
1057                         break;
1058                 }
1059
1060                 kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1061                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1062                           vcpu->arch.gprs[rt], *(u32 *)data);
1063                 break;
1064
1065         case swr_op:
1066                 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1067                                         vcpu->arch.host_cp0_badvaddr) & (~0x3);
1068                 run->mmio.len = 4;
1069                 imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1070                 switch (imme) {
1071                 case 0:
1072                         *(u32 *)data = vcpu->arch.gprs[rt];
1073                         break;
1074                 case 1:
1075                         *(u32 *)data = ((*(u32 *)data) & 0xff) |
1076                                         (vcpu->arch.gprs[rt] << 8);
1077                         break;
1078                 case 2:
1079                         *(u32 *)data = ((*(u32 *)data) & 0xffff) |
1080                                         (vcpu->arch.gprs[rt] << 16);
1081                         break;
1082                 case 3:
1083                         *(u32 *)data = ((*(u32 *)data) & 0xffffff) |
1084                                         (vcpu->arch.gprs[rt] << 24);
1085                         break;
1086                 default:
1087                         break;
1088                 }
1089
1090                 kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1091                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1092                           vcpu->arch.gprs[rt], *(u32 *)data);
1093                 break;
1094
1095 #if defined(CONFIG_64BIT)
1096         case sdl_op:
1097                 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1098                                         vcpu->arch.host_cp0_badvaddr) & (~0x7);
1099
1100                 run->mmio.len = 8;
1101                 imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1102                 switch (imme) {
1103                 case 0:
1104                         *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) |
1105                                         ((vcpu->arch.gprs[rt] >> 56) & 0xff);
1106                         break;
1107                 case 1:
1108                         *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) |
1109                                         ((vcpu->arch.gprs[rt] >> 48) & 0xffff);
1110                         break;
1111                 case 2:
1112                         *(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) |
1113                                         ((vcpu->arch.gprs[rt] >> 40) & 0xffffff);
1114                         break;
1115                 case 3:
1116                         *(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) |
1117                                         ((vcpu->arch.gprs[rt] >> 32) & 0xffffffff);
1118                         break;
1119                 case 4:
1120                         *(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) |
1121                                         ((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff);
1122                         break;
1123                 case 5:
1124                         *(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) |
1125                                         ((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff);
1126                         break;
1127                 case 6:
1128                         *(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) |
1129                                         ((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff);
1130                         break;
1131                 case 7:
1132                         *(u64 *)data = vcpu->arch.gprs[rt];
1133                         break;
1134                 default:
1135                         break;
1136                 }
1137
1138                 kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1139                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1140                           vcpu->arch.gprs[rt], *(u64 *)data);
1141                 break;
1142
1143         case sdr_op:
1144                 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1145                                         vcpu->arch.host_cp0_badvaddr) & (~0x7);
1146
1147                 run->mmio.len = 8;
1148                 imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1149                 switch (imme) {
1150                 case 0:
1151                         *(u64 *)data = vcpu->arch.gprs[rt];
1152                         break;
1153                 case 1:
1154                         *(u64 *)data = ((*(u64 *)data) & 0xff) |
1155                                         (vcpu->arch.gprs[rt] << 8);
1156                         break;
1157                 case 2:
1158                         *(u64 *)data = ((*(u64 *)data) & 0xffff) |
1159                                         (vcpu->arch.gprs[rt] << 16);
1160                         break;
1161                 case 3:
1162                         *(u64 *)data = ((*(u64 *)data) & 0xffffff) |
1163                                         (vcpu->arch.gprs[rt] << 24);
1164                         break;
1165                 case 4:
1166                         *(u64 *)data = ((*(u64 *)data) & 0xffffffff) |
1167                                         (vcpu->arch.gprs[rt] << 32);
1168                         break;
1169                 case 5:
1170                         *(u64 *)data = ((*(u64 *)data) & 0xffffffffff) |
1171                                         (vcpu->arch.gprs[rt] << 40);
1172                         break;
1173                 case 6:
1174                         *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) |
1175                                         (vcpu->arch.gprs[rt] << 48);
1176                         break;
1177                 case 7:
1178                         *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) |
1179                                         (vcpu->arch.gprs[rt] << 56);
1180                         break;
1181                 default:
1182                         break;
1183                 }
1184
1185                 kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1186                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1187                           vcpu->arch.gprs[rt], *(u64 *)data);
1188                 break;
1189 #endif
1190
1191 #ifdef CONFIG_CPU_LOONGSON64
1192         case sdc2_op:
1193                 rt = inst.loongson3_lsdc2_format.rt;
1194                 switch (inst.loongson3_lsdc2_format.opcode1) {
1195                 /*
1196                  * Loongson-3 overridden sdc2 instructions.
1197                  * opcode1              instruction
1198                  *   0x0          gssbx: store 1 bytes from GPR
1199                  *   0x1          gsshx: store 2 bytes from GPR
1200                  *   0x2          gsswx: store 4 bytes from GPR
1201                  *   0x3          gssdx: store 8 bytes from GPR
1202                  */
1203                 case 0x0:
1204                         run->mmio.len = 1;
1205                         *(u8 *)data = vcpu->arch.gprs[rt];
1206
1207                         kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1208                                   vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1209                                   vcpu->arch.gprs[rt], *(u8 *)data);
1210                         break;
1211                 case 0x1:
1212                         run->mmio.len = 2;
1213                         *(u16 *)data = vcpu->arch.gprs[rt];
1214
1215                         kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1216                                   vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1217                                   vcpu->arch.gprs[rt], *(u16 *)data);
1218                         break;
1219                 case 0x2:
1220                         run->mmio.len = 4;
1221                         *(u32 *)data = vcpu->arch.gprs[rt];
1222
1223                         kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1224                                   vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1225                                   vcpu->arch.gprs[rt], *(u32 *)data);
1226                         break;
1227                 case 0x3:
1228                         run->mmio.len = 8;
1229                         *(u64 *)data = vcpu->arch.gprs[rt];
1230
1231                         kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1232                                   vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1233                                   vcpu->arch.gprs[rt], *(u64 *)data);
1234                         break;
1235                 default:
1236                         kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n",
1237                                 inst.word);
1238                         break;
1239                 }
1240                 break;
1241 #endif
1242         default:
1243                 kvm_err("Store not yet supported (inst=0x%08x)\n",
1244                         inst.word);
1245                 goto out_fail;
1246         }
1247
1248         vcpu->mmio_needed = 1;
1249         run->mmio.is_write = 1;
1250         vcpu->mmio_is_write = 1;
1251
1252         r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
1253                         run->mmio.phys_addr, run->mmio.len, data);
1254
1255         if (!r) {
1256                 vcpu->mmio_needed = 0;
1257                 return EMULATE_DONE;
1258         }
1259
1260         return EMULATE_DO_MMIO;
1261
1262 out_fail:
1263         /* Rollback PC if emulation was unsuccessful */
1264         vcpu->arch.pc = curr_pc;
1265         return EMULATE_FAIL;
1266 }
1267
1268 enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1269                                             u32 cause, struct kvm_vcpu *vcpu)
1270 {
1271         struct kvm_run *run = vcpu->run;
1272         int r;
1273         enum emulation_result er;
1274         unsigned long curr_pc;
1275         u32 op, rt;
1276         unsigned int imme;
1277
1278         rt = inst.i_format.rt;
1279         op = inst.i_format.opcode;
1280
1281         /*
1282          * Find the resume PC now while we have safe and easy access to the
1283          * prior branch instruction, and save it for
1284          * kvm_mips_complete_mmio_load() to restore later.
1285          */
1286         curr_pc = vcpu->arch.pc;
1287         er = update_pc(vcpu, cause);
1288         if (er == EMULATE_FAIL)
1289                 return er;
1290         vcpu->arch.io_pc = vcpu->arch.pc;
1291         vcpu->arch.pc = curr_pc;
1292
1293         vcpu->arch.io_gpr = rt;
1294
1295         run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1296                                                 vcpu->arch.host_cp0_badvaddr);
1297         if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1298                 return EMULATE_FAIL;
1299
1300         vcpu->mmio_needed = 2;  /* signed */
1301         switch (op) {
1302 #if defined(CONFIG_64BIT)
1303         case ld_op:
1304                 run->mmio.len = 8;
1305                 break;
1306
1307         case lwu_op:
1308                 vcpu->mmio_needed = 1;  /* unsigned */
1309                 fallthrough;
1310 #endif
1311         case lw_op:
1312                 run->mmio.len = 4;
1313                 break;
1314
1315         case lhu_op:
1316                 vcpu->mmio_needed = 1;  /* unsigned */
1317                 fallthrough;
1318         case lh_op:
1319                 run->mmio.len = 2;
1320                 break;
1321
1322         case lbu_op:
1323                 vcpu->mmio_needed = 1;  /* unsigned */
1324                 fallthrough;
1325         case lb_op:
1326                 run->mmio.len = 1;
1327                 break;
1328
1329         case lwl_op:
1330                 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1331                                         vcpu->arch.host_cp0_badvaddr) & (~0x3);
1332
1333                 run->mmio.len = 4;
1334                 imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1335                 switch (imme) {
1336                 case 0:
1337                         vcpu->mmio_needed = 3;  /* 1 byte */
1338                         break;
1339                 case 1:
1340                         vcpu->mmio_needed = 4;  /* 2 bytes */
1341                         break;
1342                 case 2:
1343                         vcpu->mmio_needed = 5;  /* 3 bytes */
1344                         break;
1345                 case 3:
1346                         vcpu->mmio_needed = 6;  /* 4 bytes */
1347                         break;
1348                 default:
1349                         break;
1350                 }
1351                 break;
1352
1353         case lwr_op:
1354                 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1355                                         vcpu->arch.host_cp0_badvaddr) & (~0x3);
1356
1357                 run->mmio.len = 4;
1358                 imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1359                 switch (imme) {
1360                 case 0:
1361                         vcpu->mmio_needed = 7;  /* 4 bytes */
1362                         break;
1363                 case 1:
1364                         vcpu->mmio_needed = 8;  /* 3 bytes */
1365                         break;
1366                 case 2:
1367                         vcpu->mmio_needed = 9;  /* 2 bytes */
1368                         break;
1369                 case 3:
1370                         vcpu->mmio_needed = 10; /* 1 byte */
1371                         break;
1372                 default:
1373                         break;
1374                 }
1375                 break;
1376
1377 #if defined(CONFIG_64BIT)
1378         case ldl_op:
1379                 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1380                                         vcpu->arch.host_cp0_badvaddr) & (~0x7);
1381
1382                 run->mmio.len = 8;
1383                 imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1384                 switch (imme) {
1385                 case 0:
1386                         vcpu->mmio_needed = 11; /* 1 byte */
1387                         break;
1388                 case 1:
1389                         vcpu->mmio_needed = 12; /* 2 bytes */
1390                         break;
1391                 case 2:
1392                         vcpu->mmio_needed = 13; /* 3 bytes */
1393                         break;
1394                 case 3:
1395                         vcpu->mmio_needed = 14; /* 4 bytes */
1396                         break;
1397                 case 4:
1398                         vcpu->mmio_needed = 15; /* 5 bytes */
1399                         break;
1400                 case 5:
1401                         vcpu->mmio_needed = 16; /* 6 bytes */
1402                         break;
1403                 case 6:
1404                         vcpu->mmio_needed = 17; /* 7 bytes */
1405                         break;
1406                 case 7:
1407                         vcpu->mmio_needed = 18; /* 8 bytes */
1408                         break;
1409                 default:
1410                         break;
1411                 }
1412                 break;
1413
1414         case ldr_op:
1415                 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1416                                         vcpu->arch.host_cp0_badvaddr) & (~0x7);
1417
1418                 run->mmio.len = 8;
1419                 imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1420                 switch (imme) {
1421                 case 0:
1422                         vcpu->mmio_needed = 19; /* 8 bytes */
1423                         break;
1424                 case 1:
1425                         vcpu->mmio_needed = 20; /* 7 bytes */
1426                         break;
1427                 case 2:
1428                         vcpu->mmio_needed = 21; /* 6 bytes */
1429                         break;
1430                 case 3:
1431                         vcpu->mmio_needed = 22; /* 5 bytes */
1432                         break;
1433                 case 4:
1434                         vcpu->mmio_needed = 23; /* 4 bytes */
1435                         break;
1436                 case 5:
1437                         vcpu->mmio_needed = 24; /* 3 bytes */
1438                         break;
1439                 case 6:
1440                         vcpu->mmio_needed = 25; /* 2 bytes */
1441                         break;
1442                 case 7:
1443                         vcpu->mmio_needed = 26; /* 1 byte */
1444                         break;
1445                 default:
1446                         break;
1447                 }
1448                 break;
1449 #endif
1450
1451 #ifdef CONFIG_CPU_LOONGSON64
1452         case ldc2_op:
1453                 rt = inst.loongson3_lsdc2_format.rt;
1454                 switch (inst.loongson3_lsdc2_format.opcode1) {
1455                 /*
1456                  * Loongson-3 overridden ldc2 instructions.
1457                  * opcode1              instruction
1458                  *   0x0          gslbx: store 1 bytes from GPR
1459                  *   0x1          gslhx: store 2 bytes from GPR
1460                  *   0x2          gslwx: store 4 bytes from GPR
1461                  *   0x3          gsldx: store 8 bytes from GPR
1462                  */
1463                 case 0x0:
1464                         run->mmio.len = 1;
1465                         vcpu->mmio_needed = 27; /* signed */
1466                         break;
1467                 case 0x1:
1468                         run->mmio.len = 2;
1469                         vcpu->mmio_needed = 28; /* signed */
1470                         break;
1471                 case 0x2:
1472                         run->mmio.len = 4;
1473                         vcpu->mmio_needed = 29; /* signed */
1474                         break;
1475                 case 0x3:
1476                         run->mmio.len = 8;
1477                         vcpu->mmio_needed = 30; /* signed */
1478                         break;
1479                 default:
1480                         kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n",
1481                                 inst.word);
1482                         break;
1483                 }
1484                 break;
1485 #endif
1486
1487         default:
1488                 kvm_err("Load not yet supported (inst=0x%08x)\n",
1489                         inst.word);
1490                 vcpu->mmio_needed = 0;
1491                 return EMULATE_FAIL;
1492         }
1493
1494         run->mmio.is_write = 0;
1495         vcpu->mmio_is_write = 0;
1496
1497         r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS,
1498                         run->mmio.phys_addr, run->mmio.len, run->mmio.data);
1499
1500         if (!r) {
1501                 kvm_mips_complete_mmio_load(vcpu);
1502                 vcpu->mmio_needed = 0;
1503                 return EMULATE_DONE;
1504         }
1505
1506         return EMULATE_DO_MMIO;
1507 }
1508
1509 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu)
1510 {
1511         struct kvm_run *run = vcpu->run;
1512         unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
1513         enum emulation_result er = EMULATE_DONE;
1514
1515         if (run->mmio.len > sizeof(*gpr)) {
1516                 kvm_err("Bad MMIO length: %d", run->mmio.len);
1517                 er = EMULATE_FAIL;
1518                 goto done;
1519         }
1520
1521         /* Restore saved resume PC */
1522         vcpu->arch.pc = vcpu->arch.io_pc;
1523
1524         switch (run->mmio.len) {
1525         case 8:
1526                 switch (vcpu->mmio_needed) {
1527                 case 11:
1528                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) |
1529                                 (((*(s64 *)run->mmio.data) & 0xff) << 56);
1530                         break;
1531                 case 12:
1532                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) |
1533                                 (((*(s64 *)run->mmio.data) & 0xffff) << 48);
1534                         break;
1535                 case 13:
1536                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) |
1537                                 (((*(s64 *)run->mmio.data) & 0xffffff) << 40);
1538                         break;
1539                 case 14:
1540                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) |
1541                                 (((*(s64 *)run->mmio.data) & 0xffffffff) << 32);
1542                         break;
1543                 case 15:
1544                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
1545                                 (((*(s64 *)run->mmio.data) & 0xffffffffff) << 24);
1546                         break;
1547                 case 16:
1548                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
1549                                 (((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16);
1550                         break;
1551                 case 17:
1552                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
1553                                 (((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8);
1554                         break;
1555                 case 18:
1556                 case 19:
1557                         *gpr = *(s64 *)run->mmio.data;
1558                         break;
1559                 case 20:
1560                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) |
1561                                 ((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff);
1562                         break;
1563                 case 21:
1564                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) |
1565                                 ((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff);
1566                         break;
1567                 case 22:
1568                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) |
1569                                 ((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff);
1570                         break;
1571                 case 23:
1572                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) |
1573                                 ((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff);
1574                         break;
1575                 case 24:
1576                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) |
1577                                 ((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff);
1578                         break;
1579                 case 25:
1580                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) |
1581                                 ((((*(s64 *)run->mmio.data)) >> 48) & 0xffff);
1582                         break;
1583                 case 26:
1584                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) |
1585                                 ((((*(s64 *)run->mmio.data)) >> 56) & 0xff);
1586                         break;
1587                 default:
1588                         *gpr = *(s64 *)run->mmio.data;
1589                 }
1590                 break;
1591
1592         case 4:
1593                 switch (vcpu->mmio_needed) {
1594                 case 1:
1595                         *gpr = *(u32 *)run->mmio.data;
1596                         break;
1597                 case 2:
1598                         *gpr = *(s32 *)run->mmio.data;
1599                         break;
1600                 case 3:
1601                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
1602                                 (((*(s32 *)run->mmio.data) & 0xff) << 24);
1603                         break;
1604                 case 4:
1605                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
1606                                 (((*(s32 *)run->mmio.data) & 0xffff) << 16);
1607                         break;
1608                 case 5:
1609                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
1610                                 (((*(s32 *)run->mmio.data) & 0xffffff) << 8);
1611                         break;
1612                 case 6:
1613                 case 7:
1614                         *gpr = *(s32 *)run->mmio.data;
1615                         break;
1616                 case 8:
1617                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) |
1618                                 ((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff);
1619                         break;
1620                 case 9:
1621                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) |
1622                                 ((((*(s32 *)run->mmio.data)) >> 16) & 0xffff);
1623                         break;
1624                 case 10:
1625                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) |
1626                                 ((((*(s32 *)run->mmio.data)) >> 24) & 0xff);
1627                         break;
1628                 default:
1629                         *gpr = *(s32 *)run->mmio.data;
1630                 }
1631                 break;
1632
1633         case 2:
1634                 if (vcpu->mmio_needed == 1)
1635                         *gpr = *(u16 *)run->mmio.data;
1636                 else
1637                         *gpr = *(s16 *)run->mmio.data;
1638
1639                 break;
1640         case 1:
1641                 if (vcpu->mmio_needed == 1)
1642                         *gpr = *(u8 *)run->mmio.data;
1643                 else
1644                         *gpr = *(s8 *)run->mmio.data;
1645                 break;
1646         }
1647
1648 done:
1649         return er;
1650 }