GNU Linux-libre 5.15.137-gnu
[releases.git] / arch / mips / kvm / emulate.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/memblock.h>
19 #include <linux/random.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cacheops.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
26 #include <asm/inst.h>
27
28 #undef CONFIG_MIPS_MT
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
31
32 #include "interrupt.h"
33
34 #include "trace.h"
35
36 /*
37  * Compute the return address and do emulate branch simulation, if required.
38  * This function should be called only in branch delay slot active.
39  */
40 static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
41                                   unsigned long *out)
42 {
43         unsigned int dspcontrol;
44         union mips_instruction insn;
45         struct kvm_vcpu_arch *arch = &vcpu->arch;
46         long epc = instpc;
47         long nextpc;
48         int err;
49
50         if (epc & 3) {
51                 kvm_err("%s: unaligned epc\n", __func__);
52                 return -EINVAL;
53         }
54
55         /* Read the instruction */
56         err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
57         if (err)
58                 return err;
59
60         switch (insn.i_format.opcode) {
61                 /* jr and jalr are in r_format format. */
62         case spec_op:
63                 switch (insn.r_format.func) {
64                 case jalr_op:
65                         arch->gprs[insn.r_format.rd] = epc + 8;
66                         fallthrough;
67                 case jr_op:
68                         nextpc = arch->gprs[insn.r_format.rs];
69                         break;
70                 default:
71                         return -EINVAL;
72                 }
73                 break;
74
75                 /*
76                  * This group contains:
77                  * bltz_op, bgez_op, bltzl_op, bgezl_op,
78                  * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
79                  */
80         case bcond_op:
81                 switch (insn.i_format.rt) {
82                 case bltz_op:
83                 case bltzl_op:
84                         if ((long)arch->gprs[insn.i_format.rs] < 0)
85                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
86                         else
87                                 epc += 8;
88                         nextpc = epc;
89                         break;
90
91                 case bgez_op:
92                 case bgezl_op:
93                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
94                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
95                         else
96                                 epc += 8;
97                         nextpc = epc;
98                         break;
99
100                 case bltzal_op:
101                 case bltzall_op:
102                         arch->gprs[31] = epc + 8;
103                         if ((long)arch->gprs[insn.i_format.rs] < 0)
104                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
105                         else
106                                 epc += 8;
107                         nextpc = epc;
108                         break;
109
110                 case bgezal_op:
111                 case bgezall_op:
112                         arch->gprs[31] = epc + 8;
113                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
114                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
115                         else
116                                 epc += 8;
117                         nextpc = epc;
118                         break;
119                 case bposge32_op:
120                         if (!cpu_has_dsp) {
121                                 kvm_err("%s: DSP branch but not DSP ASE\n",
122                                         __func__);
123                                 return -EINVAL;
124                         }
125
126                         dspcontrol = rddsp(0x01);
127
128                         if (dspcontrol >= 32)
129                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
130                         else
131                                 epc += 8;
132                         nextpc = epc;
133                         break;
134                 default:
135                         return -EINVAL;
136                 }
137                 break;
138
139                 /* These are unconditional and in j_format. */
140         case jal_op:
141                 arch->gprs[31] = instpc + 8;
142                 fallthrough;
143         case j_op:
144                 epc += 4;
145                 epc >>= 28;
146                 epc <<= 28;
147                 epc |= (insn.j_format.target << 2);
148                 nextpc = epc;
149                 break;
150
151                 /* These are conditional and in i_format. */
152         case beq_op:
153         case beql_op:
154                 if (arch->gprs[insn.i_format.rs] ==
155                     arch->gprs[insn.i_format.rt])
156                         epc = epc + 4 + (insn.i_format.simmediate << 2);
157                 else
158                         epc += 8;
159                 nextpc = epc;
160                 break;
161
162         case bne_op:
163         case bnel_op:
164                 if (arch->gprs[insn.i_format.rs] !=
165                     arch->gprs[insn.i_format.rt])
166                         epc = epc + 4 + (insn.i_format.simmediate << 2);
167                 else
168                         epc += 8;
169                 nextpc = epc;
170                 break;
171
172         case blez_op:   /* POP06 */
173 #ifndef CONFIG_CPU_MIPSR6
174         case blezl_op:  /* removed in R6 */
175 #endif
176                 if (insn.i_format.rt != 0)
177                         goto compact_branch;
178                 if ((long)arch->gprs[insn.i_format.rs] <= 0)
179                         epc = epc + 4 + (insn.i_format.simmediate << 2);
180                 else
181                         epc += 8;
182                 nextpc = epc;
183                 break;
184
185         case bgtz_op:   /* POP07 */
186 #ifndef CONFIG_CPU_MIPSR6
187         case bgtzl_op:  /* removed in R6 */
188 #endif
189                 if (insn.i_format.rt != 0)
190                         goto compact_branch;
191                 if ((long)arch->gprs[insn.i_format.rs] > 0)
192                         epc = epc + 4 + (insn.i_format.simmediate << 2);
193                 else
194                         epc += 8;
195                 nextpc = epc;
196                 break;
197
198                 /* And now the FPA/cp1 branch instructions. */
199         case cop1_op:
200                 kvm_err("%s: unsupported cop1_op\n", __func__);
201                 return -EINVAL;
202
203 #ifdef CONFIG_CPU_MIPSR6
204         /* R6 added the following compact branches with forbidden slots */
205         case blezl_op:  /* POP26 */
206         case bgtzl_op:  /* POP27 */
207                 /* only rt == 0 isn't compact branch */
208                 if (insn.i_format.rt != 0)
209                         goto compact_branch;
210                 return -EINVAL;
211         case pop10_op:
212         case pop30_op:
213                 /* only rs == rt == 0 is reserved, rest are compact branches */
214                 if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
215                         goto compact_branch;
216                 return -EINVAL;
217         case pop66_op:
218         case pop76_op:
219                 /* only rs == 0 isn't compact branch */
220                 if (insn.i_format.rs != 0)
221                         goto compact_branch;
222                 return -EINVAL;
223 compact_branch:
224                 /*
225                  * If we've hit an exception on the forbidden slot, then
226                  * the branch must not have been taken.
227                  */
228                 epc += 8;
229                 nextpc = epc;
230                 break;
231 #else
232 compact_branch:
233                 /* Fall through - Compact branches not supported before R6 */
234 #endif
235         default:
236                 return -EINVAL;
237         }
238
239         *out = nextpc;
240         return 0;
241 }
242
243 enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
244 {
245         int err;
246
247         if (cause & CAUSEF_BD) {
248                 err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
249                                              &vcpu->arch.pc);
250                 if (err)
251                         return EMULATE_FAIL;
252         } else {
253                 vcpu->arch.pc += 4;
254         }
255
256         kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
257
258         return EMULATE_DONE;
259 }
260
261 /**
262  * kvm_get_badinstr() - Get bad instruction encoding.
263  * @opc:        Guest pointer to faulting instruction.
264  * @vcpu:       KVM VCPU information.
265  *
266  * Gets the instruction encoding of the faulting instruction, using the saved
267  * BadInstr register value if it exists, otherwise falling back to reading guest
268  * memory at @opc.
269  *
270  * Returns:     The instruction encoding of the faulting instruction.
271  */
272 int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
273 {
274         if (cpu_has_badinstr) {
275                 *out = vcpu->arch.host_cp0_badinstr;
276                 return 0;
277         } else {
278                 WARN_ONCE(1, "CPU doesn't have BadInstr register\n");
279                 return -EINVAL;
280         }
281 }
282
283 /**
284  * kvm_get_badinstrp() - Get bad prior instruction encoding.
285  * @opc:        Guest pointer to prior faulting instruction.
286  * @vcpu:       KVM VCPU information.
287  *
288  * Gets the instruction encoding of the prior faulting instruction (the branch
289  * containing the delay slot which faulted), using the saved BadInstrP register
290  * value if it exists, otherwise falling back to reading guest memory at @opc.
291  *
292  * Returns:     The instruction encoding of the prior faulting instruction.
293  */
294 int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
295 {
296         if (cpu_has_badinstrp) {
297                 *out = vcpu->arch.host_cp0_badinstrp;
298                 return 0;
299         } else {
300                 WARN_ONCE(1, "CPU doesn't have BadInstrp register\n");
301                 return -EINVAL;
302         }
303 }
304
305 /**
306  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
307  * @vcpu:       Virtual CPU.
308  *
309  * Returns:     1 if the CP0_Count timer is disabled by either the guest
310  *              CP0_Cause.DC bit or the count_ctl.DC bit.
311  *              0 otherwise (in which case CP0_Count timer is running).
312  */
313 int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
314 {
315         struct mips_coproc *cop0 = &vcpu->arch.cop0;
316
317         return  (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
318                 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
319 }
320
321 /**
322  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
323  *
324  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
325  *
326  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
327  */
328 static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
329 {
330         s64 now_ns, periods;
331         u64 delta;
332
333         now_ns = ktime_to_ns(now);
334         delta = now_ns + vcpu->arch.count_dyn_bias;
335
336         if (delta >= vcpu->arch.count_period) {
337                 /* If delta is out of safe range the bias needs adjusting */
338                 periods = div64_s64(now_ns, vcpu->arch.count_period);
339                 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
340                 /* Recalculate delta with new bias */
341                 delta = now_ns + vcpu->arch.count_dyn_bias;
342         }
343
344         /*
345          * We've ensured that:
346          *   delta < count_period
347          *
348          * Therefore the intermediate delta*count_hz will never overflow since
349          * at the boundary condition:
350          *   delta = count_period
351          *   delta = NSEC_PER_SEC * 2^32 / count_hz
352          *   delta * count_hz = NSEC_PER_SEC * 2^32
353          */
354         return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
355 }
356
357 /**
358  * kvm_mips_count_time() - Get effective current time.
359  * @vcpu:       Virtual CPU.
360  *
361  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
362  * except when the master disable bit is set in count_ctl, in which case it is
363  * count_resume, i.e. the time that the count was disabled.
364  *
365  * Returns:     Effective monotonic ktime for CP0_Count.
366  */
367 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
368 {
369         if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
370                 return vcpu->arch.count_resume;
371
372         return ktime_get();
373 }
374
375 /**
376  * kvm_mips_read_count_running() - Read the current count value as if running.
377  * @vcpu:       Virtual CPU.
378  * @now:        Kernel time to read CP0_Count at.
379  *
380  * Returns the current guest CP0_Count register at time @now and handles if the
381  * timer interrupt is pending and hasn't been handled yet.
382  *
383  * Returns:     The current value of the guest CP0_Count register.
384  */
385 static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
386 {
387         struct mips_coproc *cop0 = &vcpu->arch.cop0;
388         ktime_t expires, threshold;
389         u32 count, compare;
390         int running;
391
392         /* Calculate the biased and scaled guest CP0_Count */
393         count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
394         compare = kvm_read_c0_guest_compare(cop0);
395
396         /*
397          * Find whether CP0_Count has reached the closest timer interrupt. If
398          * not, we shouldn't inject it.
399          */
400         if ((s32)(count - compare) < 0)
401                 return count;
402
403         /*
404          * The CP0_Count we're going to return has already reached the closest
405          * timer interrupt. Quickly check if it really is a new interrupt by
406          * looking at whether the interval until the hrtimer expiry time is
407          * less than 1/4 of the timer period.
408          */
409         expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
410         threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
411         if (ktime_before(expires, threshold)) {
412                 /*
413                  * Cancel it while we handle it so there's no chance of
414                  * interference with the timeout handler.
415                  */
416                 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
417
418                 /* Nothing should be waiting on the timeout */
419                 kvm_mips_callbacks->queue_timer_int(vcpu);
420
421                 /*
422                  * Restart the timer if it was running based on the expiry time
423                  * we read, so that we don't push it back 2 periods.
424                  */
425                 if (running) {
426                         expires = ktime_add_ns(expires,
427                                                vcpu->arch.count_period);
428                         hrtimer_start(&vcpu->arch.comparecount_timer, expires,
429                                       HRTIMER_MODE_ABS);
430                 }
431         }
432
433         return count;
434 }
435
436 /**
437  * kvm_mips_read_count() - Read the current count value.
438  * @vcpu:       Virtual CPU.
439  *
440  * Read the current guest CP0_Count value, taking into account whether the timer
441  * is stopped.
442  *
443  * Returns:     The current guest CP0_Count value.
444  */
445 u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
446 {
447         struct mips_coproc *cop0 = &vcpu->arch.cop0;
448
449         /* If count disabled just read static copy of count */
450         if (kvm_mips_count_disabled(vcpu))
451                 return kvm_read_c0_guest_count(cop0);
452
453         return kvm_mips_read_count_running(vcpu, ktime_get());
454 }
455
456 /**
457  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
458  * @vcpu:       Virtual CPU.
459  * @count:      Output pointer for CP0_Count value at point of freeze.
460  *
461  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
462  * at the point it was frozen. It is guaranteed that any pending interrupts at
463  * the point it was frozen are handled, and none after that point.
464  *
465  * This is useful where the time/CP0_Count is needed in the calculation of the
466  * new parameters.
467  *
468  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
469  *
470  * Returns:     The ktime at the point of freeze.
471  */
472 ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
473 {
474         ktime_t now;
475
476         /* stop hrtimer before finding time */
477         hrtimer_cancel(&vcpu->arch.comparecount_timer);
478         now = ktime_get();
479
480         /* find count at this point and handle pending hrtimer */
481         *count = kvm_mips_read_count_running(vcpu, now);
482
483         return now;
484 }
485
486 /**
487  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
488  * @vcpu:       Virtual CPU.
489  * @now:        ktime at point of resume.
490  * @count:      CP0_Count at point of resume.
491  *
492  * Resumes the timer and updates the timer expiry based on @now and @count.
493  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
494  * parameters need to be changed.
495  *
496  * It is guaranteed that a timer interrupt immediately after resume will be
497  * handled, but not if CP_Compare is exactly at @count. That case is already
498  * handled by kvm_mips_freeze_timer().
499  *
500  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
501  */
502 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
503                                     ktime_t now, u32 count)
504 {
505         struct mips_coproc *cop0 = &vcpu->arch.cop0;
506         u32 compare;
507         u64 delta;
508         ktime_t expire;
509
510         /* Calculate timeout (wrap 0 to 2^32) */
511         compare = kvm_read_c0_guest_compare(cop0);
512         delta = (u64)(u32)(compare - count - 1) + 1;
513         delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
514         expire = ktime_add_ns(now, delta);
515
516         /* Update hrtimer to use new timeout */
517         hrtimer_cancel(&vcpu->arch.comparecount_timer);
518         hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
519 }
520
521 /**
522  * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
523  * @vcpu:       Virtual CPU.
524  * @before:     Time before Count was saved, lower bound of drift calculation.
525  * @count:      CP0_Count at point of restore.
526  * @min_drift:  Minimum amount of drift permitted before correction.
527  *              Must be <= 0.
528  *
529  * Restores the timer from a particular @count, accounting for drift. This can
530  * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
531  * to be used for a period of time, but the exact ktime corresponding to the
532  * final Count that must be restored is not known.
533  *
534  * It is gauranteed that a timer interrupt immediately after restore will be
535  * handled, but not if CP0_Compare is exactly at @count. That case should
536  * already be handled when the hardware timer state is saved.
537  *
538  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
539  * stopped).
540  *
541  * Returns:     Amount of correction to count_bias due to drift.
542  */
543 int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
544                              u32 count, int min_drift)
545 {
546         ktime_t now, count_time;
547         u32 now_count, before_count;
548         u64 delta;
549         int drift, ret = 0;
550
551         /* Calculate expected count at before */
552         before_count = vcpu->arch.count_bias +
553                         kvm_mips_ktime_to_count(vcpu, before);
554
555         /*
556          * Detect significantly negative drift, where count is lower than
557          * expected. Some negative drift is expected when hardware counter is
558          * set after kvm_mips_freeze_timer(), and it is harmless to allow the
559          * time to jump forwards a little, within reason. If the drift is too
560          * significant, adjust the bias to avoid a big Guest.CP0_Count jump.
561          */
562         drift = count - before_count;
563         if (drift < min_drift) {
564                 count_time = before;
565                 vcpu->arch.count_bias += drift;
566                 ret = drift;
567                 goto resume;
568         }
569
570         /* Calculate expected count right now */
571         now = ktime_get();
572         now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
573
574         /*
575          * Detect positive drift, where count is higher than expected, and
576          * adjust the bias to avoid guest time going backwards.
577          */
578         drift = count - now_count;
579         if (drift > 0) {
580                 count_time = now;
581                 vcpu->arch.count_bias += drift;
582                 ret = drift;
583                 goto resume;
584         }
585
586         /* Subtract nanosecond delta to find ktime when count was read */
587         delta = (u64)(u32)(now_count - count);
588         delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
589         count_time = ktime_sub_ns(now, delta);
590
591 resume:
592         /* Resume using the calculated ktime */
593         kvm_mips_resume_hrtimer(vcpu, count_time, count);
594         return ret;
595 }
596
597 /**
598  * kvm_mips_write_count() - Modify the count and update timer.
599  * @vcpu:       Virtual CPU.
600  * @count:      Guest CP0_Count value to set.
601  *
602  * Sets the CP0_Count value and updates the timer accordingly.
603  */
604 void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
605 {
606         struct mips_coproc *cop0 = &vcpu->arch.cop0;
607         ktime_t now;
608
609         /* Calculate bias */
610         now = kvm_mips_count_time(vcpu);
611         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
612
613         if (kvm_mips_count_disabled(vcpu))
614                 /* The timer's disabled, adjust the static count */
615                 kvm_write_c0_guest_count(cop0, count);
616         else
617                 /* Update timeout */
618                 kvm_mips_resume_hrtimer(vcpu, now, count);
619 }
620
621 /**
622  * kvm_mips_init_count() - Initialise timer.
623  * @vcpu:       Virtual CPU.
624  * @count_hz:   Frequency of timer.
625  *
626  * Initialise the timer to the specified frequency, zero it, and set it going if
627  * it's enabled.
628  */
629 void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
630 {
631         vcpu->arch.count_hz = count_hz;
632         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
633         vcpu->arch.count_dyn_bias = 0;
634
635         /* Starting at 0 */
636         kvm_mips_write_count(vcpu, 0);
637 }
638
639 /**
640  * kvm_mips_set_count_hz() - Update the frequency of the timer.
641  * @vcpu:       Virtual CPU.
642  * @count_hz:   Frequency of CP0_Count timer in Hz.
643  *
644  * Change the frequency of the CP0_Count timer. This is done atomically so that
645  * CP0_Count is continuous and no timer interrupt is lost.
646  *
647  * Returns:     -EINVAL if @count_hz is out of range.
648  *              0 on success.
649  */
650 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
651 {
652         struct mips_coproc *cop0 = &vcpu->arch.cop0;
653         int dc;
654         ktime_t now;
655         u32 count;
656
657         /* ensure the frequency is in a sensible range... */
658         if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
659                 return -EINVAL;
660         /* ... and has actually changed */
661         if (vcpu->arch.count_hz == count_hz)
662                 return 0;
663
664         /* Safely freeze timer so we can keep it continuous */
665         dc = kvm_mips_count_disabled(vcpu);
666         if (dc) {
667                 now = kvm_mips_count_time(vcpu);
668                 count = kvm_read_c0_guest_count(cop0);
669         } else {
670                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
671         }
672
673         /* Update the frequency */
674         vcpu->arch.count_hz = count_hz;
675         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
676         vcpu->arch.count_dyn_bias = 0;
677
678         /* Calculate adjusted bias so dynamic count is unchanged */
679         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
680
681         /* Update and resume hrtimer */
682         if (!dc)
683                 kvm_mips_resume_hrtimer(vcpu, now, count);
684         return 0;
685 }
686
687 /**
688  * kvm_mips_write_compare() - Modify compare and update timer.
689  * @vcpu:       Virtual CPU.
690  * @compare:    New CP0_Compare value.
691  * @ack:        Whether to acknowledge timer interrupt.
692  *
693  * Update CP0_Compare to a new value and update the timeout.
694  * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
695  * any pending timer interrupt is preserved.
696  */
697 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
698 {
699         struct mips_coproc *cop0 = &vcpu->arch.cop0;
700         int dc;
701         u32 old_compare = kvm_read_c0_guest_compare(cop0);
702         s32 delta = compare - old_compare;
703         u32 cause;
704         ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
705         u32 count;
706
707         /* if unchanged, must just be an ack */
708         if (old_compare == compare) {
709                 if (!ack)
710                         return;
711                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
712                 kvm_write_c0_guest_compare(cop0, compare);
713                 return;
714         }
715
716         /*
717          * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
718          * too to prevent guest CP0_Count hitting guest CP0_Compare.
719          *
720          * The new GTOffset corresponds to the new value of CP0_Compare, and is
721          * set prior to it being written into the guest context. We disable
722          * preemption until the new value is written to prevent restore of a
723          * GTOffset corresponding to the old CP0_Compare value.
724          */
725         if (delta > 0) {
726                 preempt_disable();
727                 write_c0_gtoffset(compare - read_c0_count());
728                 back_to_back_c0_hazard();
729         }
730
731         /* freeze_hrtimer() takes care of timer interrupts <= count */
732         dc = kvm_mips_count_disabled(vcpu);
733         if (!dc)
734                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
735
736         if (ack)
737                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
738         else
739                 /*
740                  * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
741                  * preserve guest CP0_Cause.TI if we don't want to ack it.
742                  */
743                 cause = kvm_read_c0_guest_cause(cop0);
744
745         kvm_write_c0_guest_compare(cop0, compare);
746
747         if (delta > 0)
748                 preempt_enable();
749
750         back_to_back_c0_hazard();
751
752         if (!ack && cause & CAUSEF_TI)
753                 kvm_write_c0_guest_cause(cop0, cause);
754
755         /* resume_hrtimer() takes care of timer interrupts > count */
756         if (!dc)
757                 kvm_mips_resume_hrtimer(vcpu, now, count);
758
759         /*
760          * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
761          * until after the new CP0_Compare is written, otherwise new guest
762          * CP0_Count could hit new guest CP0_Compare.
763          */
764         if (delta <= 0)
765                 write_c0_gtoffset(compare - read_c0_count());
766 }
767
768 /**
769  * kvm_mips_count_disable() - Disable count.
770  * @vcpu:       Virtual CPU.
771  *
772  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
773  * time will be handled but not after.
774  *
775  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
776  * count_ctl.DC has been set (count disabled).
777  *
778  * Returns:     The time that the timer was stopped.
779  */
780 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
781 {
782         struct mips_coproc *cop0 = &vcpu->arch.cop0;
783         u32 count;
784         ktime_t now;
785
786         /* Stop hrtimer */
787         hrtimer_cancel(&vcpu->arch.comparecount_timer);
788
789         /* Set the static count from the dynamic count, handling pending TI */
790         now = ktime_get();
791         count = kvm_mips_read_count_running(vcpu, now);
792         kvm_write_c0_guest_count(cop0, count);
793
794         return now;
795 }
796
797 /**
798  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
799  * @vcpu:       Virtual CPU.
800  *
801  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
802  * before the final stop time will be handled if the timer isn't disabled by
803  * count_ctl.DC, but not after.
804  *
805  * Assumes CP0_Cause.DC is clear (count enabled).
806  */
807 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
808 {
809         struct mips_coproc *cop0 = &vcpu->arch.cop0;
810
811         kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
812         if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
813                 kvm_mips_count_disable(vcpu);
814 }
815
816 /**
817  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
818  * @vcpu:       Virtual CPU.
819  *
820  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
821  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
822  * potentially before even returning, so the caller should be careful with
823  * ordering of CP0_Cause modifications so as not to lose it.
824  *
825  * Assumes CP0_Cause.DC is set (count disabled).
826  */
827 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
828 {
829         struct mips_coproc *cop0 = &vcpu->arch.cop0;
830         u32 count;
831
832         kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
833
834         /*
835          * Set the dynamic count to match the static count.
836          * This starts the hrtimer if count_ctl.DC allows it.
837          * Otherwise it conveniently updates the biases.
838          */
839         count = kvm_read_c0_guest_count(cop0);
840         kvm_mips_write_count(vcpu, count);
841 }
842
843 /**
844  * kvm_mips_set_count_ctl() - Update the count control KVM register.
845  * @vcpu:       Virtual CPU.
846  * @count_ctl:  Count control register new value.
847  *
848  * Set the count control KVM register. The timer is updated accordingly.
849  *
850  * Returns:     -EINVAL if reserved bits are set.
851  *              0 on success.
852  */
853 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
854 {
855         struct mips_coproc *cop0 = &vcpu->arch.cop0;
856         s64 changed = count_ctl ^ vcpu->arch.count_ctl;
857         s64 delta;
858         ktime_t expire, now;
859         u32 count, compare;
860
861         /* Only allow defined bits to be changed */
862         if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
863                 return -EINVAL;
864
865         /* Apply new value */
866         vcpu->arch.count_ctl = count_ctl;
867
868         /* Master CP0_Count disable */
869         if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
870                 /* Is CP0_Cause.DC already disabling CP0_Count? */
871                 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
872                         if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
873                                 /* Just record the current time */
874                                 vcpu->arch.count_resume = ktime_get();
875                 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
876                         /* disable timer and record current time */
877                         vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
878                 } else {
879                         /*
880                          * Calculate timeout relative to static count at resume
881                          * time (wrap 0 to 2^32).
882                          */
883                         count = kvm_read_c0_guest_count(cop0);
884                         compare = kvm_read_c0_guest_compare(cop0);
885                         delta = (u64)(u32)(compare - count - 1) + 1;
886                         delta = div_u64(delta * NSEC_PER_SEC,
887                                         vcpu->arch.count_hz);
888                         expire = ktime_add_ns(vcpu->arch.count_resume, delta);
889
890                         /* Handle pending interrupt */
891                         now = ktime_get();
892                         if (ktime_compare(now, expire) >= 0)
893                                 /* Nothing should be waiting on the timeout */
894                                 kvm_mips_callbacks->queue_timer_int(vcpu);
895
896                         /* Resume hrtimer without changing bias */
897                         count = kvm_mips_read_count_running(vcpu, now);
898                         kvm_mips_resume_hrtimer(vcpu, now, count);
899                 }
900         }
901
902         return 0;
903 }
904
905 /**
906  * kvm_mips_set_count_resume() - Update the count resume KVM register.
907  * @vcpu:               Virtual CPU.
908  * @count_resume:       Count resume register new value.
909  *
910  * Set the count resume KVM register.
911  *
912  * Returns:     -EINVAL if out of valid range (0..now).
913  *              0 on success.
914  */
915 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
916 {
917         /*
918          * It doesn't make sense for the resume time to be in the future, as it
919          * would be possible for the next interrupt to be more than a full
920          * period in the future.
921          */
922         if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
923                 return -EINVAL;
924
925         vcpu->arch.count_resume = ns_to_ktime(count_resume);
926         return 0;
927 }
928
929 /**
930  * kvm_mips_count_timeout() - Push timer forward on timeout.
931  * @vcpu:       Virtual CPU.
932  *
933  * Handle an hrtimer event by push the hrtimer forward a period.
934  *
935  * Returns:     The hrtimer_restart value to return to the hrtimer subsystem.
936  */
937 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
938 {
939         /* Add the Count period to the current expiry time */
940         hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
941                                vcpu->arch.count_period);
942         return HRTIMER_RESTART;
943 }
944
945 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
946 {
947         kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
948                   vcpu->arch.pending_exceptions);
949
950         ++vcpu->stat.wait_exits;
951         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
952         if (!vcpu->arch.pending_exceptions) {
953                 kvm_vz_lose_htimer(vcpu);
954                 vcpu->arch.wait = 1;
955                 kvm_vcpu_block(vcpu);
956
957                 /*
958                  * We we are runnable, then definitely go off to user space to
959                  * check if any I/O interrupts are pending.
960                  */
961                 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
962                         kvm_clear_request(KVM_REQ_UNHALT, vcpu);
963                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
964                 }
965         }
966
967         return EMULATE_DONE;
968 }
969
970 enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
971                                              u32 cause,
972                                              struct kvm_vcpu *vcpu)
973 {
974         int r;
975         enum emulation_result er;
976         u32 rt;
977         struct kvm_run *run = vcpu->run;
978         void *data = run->mmio.data;
979         unsigned int imme;
980         unsigned long curr_pc;
981
982         /*
983          * Update PC and hold onto current PC in case there is
984          * an error and we want to rollback the PC
985          */
986         curr_pc = vcpu->arch.pc;
987         er = update_pc(vcpu, cause);
988         if (er == EMULATE_FAIL)
989                 return er;
990
991         rt = inst.i_format.rt;
992
993         run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
994                                                 vcpu->arch.host_cp0_badvaddr);
995         if (run->mmio.phys_addr == KVM_INVALID_ADDR)
996                 goto out_fail;
997
998         switch (inst.i_format.opcode) {
999 #if defined(CONFIG_64BIT)
1000         case sd_op:
1001                 run->mmio.len = 8;
1002                 *(u64 *)data = vcpu->arch.gprs[rt];
1003
1004                 kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1005                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1006                           vcpu->arch.gprs[rt], *(u64 *)data);
1007                 break;
1008 #endif
1009
1010         case sw_op:
1011                 run->mmio.len = 4;
1012                 *(u32 *)data = vcpu->arch.gprs[rt];
1013
1014                 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1015                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1016                           vcpu->arch.gprs[rt], *(u32 *)data);
1017                 break;
1018
1019         case sh_op:
1020                 run->mmio.len = 2;
1021                 *(u16 *)data = vcpu->arch.gprs[rt];
1022
1023                 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1024                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1025                           vcpu->arch.gprs[rt], *(u16 *)data);
1026                 break;
1027
1028         case sb_op:
1029                 run->mmio.len = 1;
1030                 *(u8 *)data = vcpu->arch.gprs[rt];
1031
1032                 kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1033                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1034                           vcpu->arch.gprs[rt], *(u8 *)data);
1035                 break;
1036
1037         case swl_op:
1038                 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1039                                         vcpu->arch.host_cp0_badvaddr) & (~0x3);
1040                 run->mmio.len = 4;
1041                 imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1042                 switch (imme) {
1043                 case 0:
1044                         *(u32 *)data = ((*(u32 *)data) & 0xffffff00) |
1045                                         (vcpu->arch.gprs[rt] >> 24);
1046                         break;
1047                 case 1:
1048                         *(u32 *)data = ((*(u32 *)data) & 0xffff0000) |
1049                                         (vcpu->arch.gprs[rt] >> 16);
1050                         break;
1051                 case 2:
1052                         *(u32 *)data = ((*(u32 *)data) & 0xff000000) |
1053                                         (vcpu->arch.gprs[rt] >> 8);
1054                         break;
1055                 case 3:
1056                         *(u32 *)data = vcpu->arch.gprs[rt];
1057                         break;
1058                 default:
1059                         break;
1060                 }
1061
1062                 kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1063                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1064                           vcpu->arch.gprs[rt], *(u32 *)data);
1065                 break;
1066
1067         case swr_op:
1068                 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1069                                         vcpu->arch.host_cp0_badvaddr) & (~0x3);
1070                 run->mmio.len = 4;
1071                 imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1072                 switch (imme) {
1073                 case 0:
1074                         *(u32 *)data = vcpu->arch.gprs[rt];
1075                         break;
1076                 case 1:
1077                         *(u32 *)data = ((*(u32 *)data) & 0xff) |
1078                                         (vcpu->arch.gprs[rt] << 8);
1079                         break;
1080                 case 2:
1081                         *(u32 *)data = ((*(u32 *)data) & 0xffff) |
1082                                         (vcpu->arch.gprs[rt] << 16);
1083                         break;
1084                 case 3:
1085                         *(u32 *)data = ((*(u32 *)data) & 0xffffff) |
1086                                         (vcpu->arch.gprs[rt] << 24);
1087                         break;
1088                 default:
1089                         break;
1090                 }
1091
1092                 kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1093                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1094                           vcpu->arch.gprs[rt], *(u32 *)data);
1095                 break;
1096
1097 #if defined(CONFIG_64BIT)
1098         case sdl_op:
1099                 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1100                                         vcpu->arch.host_cp0_badvaddr) & (~0x7);
1101
1102                 run->mmio.len = 8;
1103                 imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1104                 switch (imme) {
1105                 case 0:
1106                         *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) |
1107                                         ((vcpu->arch.gprs[rt] >> 56) & 0xff);
1108                         break;
1109                 case 1:
1110                         *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) |
1111                                         ((vcpu->arch.gprs[rt] >> 48) & 0xffff);
1112                         break;
1113                 case 2:
1114                         *(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) |
1115                                         ((vcpu->arch.gprs[rt] >> 40) & 0xffffff);
1116                         break;
1117                 case 3:
1118                         *(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) |
1119                                         ((vcpu->arch.gprs[rt] >> 32) & 0xffffffff);
1120                         break;
1121                 case 4:
1122                         *(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) |
1123                                         ((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff);
1124                         break;
1125                 case 5:
1126                         *(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) |
1127                                         ((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff);
1128                         break;
1129                 case 6:
1130                         *(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) |
1131                                         ((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff);
1132                         break;
1133                 case 7:
1134                         *(u64 *)data = vcpu->arch.gprs[rt];
1135                         break;
1136                 default:
1137                         break;
1138                 }
1139
1140                 kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1141                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1142                           vcpu->arch.gprs[rt], *(u64 *)data);
1143                 break;
1144
1145         case sdr_op:
1146                 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1147                                         vcpu->arch.host_cp0_badvaddr) & (~0x7);
1148
1149                 run->mmio.len = 8;
1150                 imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1151                 switch (imme) {
1152                 case 0:
1153                         *(u64 *)data = vcpu->arch.gprs[rt];
1154                         break;
1155                 case 1:
1156                         *(u64 *)data = ((*(u64 *)data) & 0xff) |
1157                                         (vcpu->arch.gprs[rt] << 8);
1158                         break;
1159                 case 2:
1160                         *(u64 *)data = ((*(u64 *)data) & 0xffff) |
1161                                         (vcpu->arch.gprs[rt] << 16);
1162                         break;
1163                 case 3:
1164                         *(u64 *)data = ((*(u64 *)data) & 0xffffff) |
1165                                         (vcpu->arch.gprs[rt] << 24);
1166                         break;
1167                 case 4:
1168                         *(u64 *)data = ((*(u64 *)data) & 0xffffffff) |
1169                                         (vcpu->arch.gprs[rt] << 32);
1170                         break;
1171                 case 5:
1172                         *(u64 *)data = ((*(u64 *)data) & 0xffffffffff) |
1173                                         (vcpu->arch.gprs[rt] << 40);
1174                         break;
1175                 case 6:
1176                         *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) |
1177                                         (vcpu->arch.gprs[rt] << 48);
1178                         break;
1179                 case 7:
1180                         *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) |
1181                                         (vcpu->arch.gprs[rt] << 56);
1182                         break;
1183                 default:
1184                         break;
1185                 }
1186
1187                 kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1188                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1189                           vcpu->arch.gprs[rt], *(u64 *)data);
1190                 break;
1191 #endif
1192
1193 #ifdef CONFIG_CPU_LOONGSON64
1194         case sdc2_op:
1195                 rt = inst.loongson3_lsdc2_format.rt;
1196                 switch (inst.loongson3_lsdc2_format.opcode1) {
1197                 /*
1198                  * Loongson-3 overridden sdc2 instructions.
1199                  * opcode1              instruction
1200                  *   0x0          gssbx: store 1 bytes from GPR
1201                  *   0x1          gsshx: store 2 bytes from GPR
1202                  *   0x2          gsswx: store 4 bytes from GPR
1203                  *   0x3          gssdx: store 8 bytes from GPR
1204                  */
1205                 case 0x0:
1206                         run->mmio.len = 1;
1207                         *(u8 *)data = vcpu->arch.gprs[rt];
1208
1209                         kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1210                                   vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1211                                   vcpu->arch.gprs[rt], *(u8 *)data);
1212                         break;
1213                 case 0x1:
1214                         run->mmio.len = 2;
1215                         *(u16 *)data = vcpu->arch.gprs[rt];
1216
1217                         kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1218                                   vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1219                                   vcpu->arch.gprs[rt], *(u16 *)data);
1220                         break;
1221                 case 0x2:
1222                         run->mmio.len = 4;
1223                         *(u32 *)data = vcpu->arch.gprs[rt];
1224
1225                         kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1226                                   vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1227                                   vcpu->arch.gprs[rt], *(u32 *)data);
1228                         break;
1229                 case 0x3:
1230                         run->mmio.len = 8;
1231                         *(u64 *)data = vcpu->arch.gprs[rt];
1232
1233                         kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1234                                   vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1235                                   vcpu->arch.gprs[rt], *(u64 *)data);
1236                         break;
1237                 default:
1238                         kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n",
1239                                 inst.word);
1240                         break;
1241                 }
1242                 break;
1243 #endif
1244         default:
1245                 kvm_err("Store not yet supported (inst=0x%08x)\n",
1246                         inst.word);
1247                 goto out_fail;
1248         }
1249
1250         vcpu->mmio_needed = 1;
1251         run->mmio.is_write = 1;
1252         vcpu->mmio_is_write = 1;
1253
1254         r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
1255                         run->mmio.phys_addr, run->mmio.len, data);
1256
1257         if (!r) {
1258                 vcpu->mmio_needed = 0;
1259                 return EMULATE_DONE;
1260         }
1261
1262         return EMULATE_DO_MMIO;
1263
1264 out_fail:
1265         /* Rollback PC if emulation was unsuccessful */
1266         vcpu->arch.pc = curr_pc;
1267         return EMULATE_FAIL;
1268 }
1269
1270 enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1271                                             u32 cause, struct kvm_vcpu *vcpu)
1272 {
1273         struct kvm_run *run = vcpu->run;
1274         int r;
1275         enum emulation_result er;
1276         unsigned long curr_pc;
1277         u32 op, rt;
1278         unsigned int imme;
1279
1280         rt = inst.i_format.rt;
1281         op = inst.i_format.opcode;
1282
1283         /*
1284          * Find the resume PC now while we have safe and easy access to the
1285          * prior branch instruction, and save it for
1286          * kvm_mips_complete_mmio_load() to restore later.
1287          */
1288         curr_pc = vcpu->arch.pc;
1289         er = update_pc(vcpu, cause);
1290         if (er == EMULATE_FAIL)
1291                 return er;
1292         vcpu->arch.io_pc = vcpu->arch.pc;
1293         vcpu->arch.pc = curr_pc;
1294
1295         vcpu->arch.io_gpr = rt;
1296
1297         run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1298                                                 vcpu->arch.host_cp0_badvaddr);
1299         if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1300                 return EMULATE_FAIL;
1301
1302         vcpu->mmio_needed = 2;  /* signed */
1303         switch (op) {
1304 #if defined(CONFIG_64BIT)
1305         case ld_op:
1306                 run->mmio.len = 8;
1307                 break;
1308
1309         case lwu_op:
1310                 vcpu->mmio_needed = 1;  /* unsigned */
1311                 fallthrough;
1312 #endif
1313         case lw_op:
1314                 run->mmio.len = 4;
1315                 break;
1316
1317         case lhu_op:
1318                 vcpu->mmio_needed = 1;  /* unsigned */
1319                 fallthrough;
1320         case lh_op:
1321                 run->mmio.len = 2;
1322                 break;
1323
1324         case lbu_op:
1325                 vcpu->mmio_needed = 1;  /* unsigned */
1326                 fallthrough;
1327         case lb_op:
1328                 run->mmio.len = 1;
1329                 break;
1330
1331         case lwl_op:
1332                 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1333                                         vcpu->arch.host_cp0_badvaddr) & (~0x3);
1334
1335                 run->mmio.len = 4;
1336                 imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1337                 switch (imme) {
1338                 case 0:
1339                         vcpu->mmio_needed = 3;  /* 1 byte */
1340                         break;
1341                 case 1:
1342                         vcpu->mmio_needed = 4;  /* 2 bytes */
1343                         break;
1344                 case 2:
1345                         vcpu->mmio_needed = 5;  /* 3 bytes */
1346                         break;
1347                 case 3:
1348                         vcpu->mmio_needed = 6;  /* 4 bytes */
1349                         break;
1350                 default:
1351                         break;
1352                 }
1353                 break;
1354
1355         case lwr_op:
1356                 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1357                                         vcpu->arch.host_cp0_badvaddr) & (~0x3);
1358
1359                 run->mmio.len = 4;
1360                 imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1361                 switch (imme) {
1362                 case 0:
1363                         vcpu->mmio_needed = 7;  /* 4 bytes */
1364                         break;
1365                 case 1:
1366                         vcpu->mmio_needed = 8;  /* 3 bytes */
1367                         break;
1368                 case 2:
1369                         vcpu->mmio_needed = 9;  /* 2 bytes */
1370                         break;
1371                 case 3:
1372                         vcpu->mmio_needed = 10; /* 1 byte */
1373                         break;
1374                 default:
1375                         break;
1376                 }
1377                 break;
1378
1379 #if defined(CONFIG_64BIT)
1380         case ldl_op:
1381                 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1382                                         vcpu->arch.host_cp0_badvaddr) & (~0x7);
1383
1384                 run->mmio.len = 8;
1385                 imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1386                 switch (imme) {
1387                 case 0:
1388                         vcpu->mmio_needed = 11; /* 1 byte */
1389                         break;
1390                 case 1:
1391                         vcpu->mmio_needed = 12; /* 2 bytes */
1392                         break;
1393                 case 2:
1394                         vcpu->mmio_needed = 13; /* 3 bytes */
1395                         break;
1396                 case 3:
1397                         vcpu->mmio_needed = 14; /* 4 bytes */
1398                         break;
1399                 case 4:
1400                         vcpu->mmio_needed = 15; /* 5 bytes */
1401                         break;
1402                 case 5:
1403                         vcpu->mmio_needed = 16; /* 6 bytes */
1404                         break;
1405                 case 6:
1406                         vcpu->mmio_needed = 17; /* 7 bytes */
1407                         break;
1408                 case 7:
1409                         vcpu->mmio_needed = 18; /* 8 bytes */
1410                         break;
1411                 default:
1412                         break;
1413                 }
1414                 break;
1415
1416         case ldr_op:
1417                 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1418                                         vcpu->arch.host_cp0_badvaddr) & (~0x7);
1419
1420                 run->mmio.len = 8;
1421                 imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1422                 switch (imme) {
1423                 case 0:
1424                         vcpu->mmio_needed = 19; /* 8 bytes */
1425                         break;
1426                 case 1:
1427                         vcpu->mmio_needed = 20; /* 7 bytes */
1428                         break;
1429                 case 2:
1430                         vcpu->mmio_needed = 21; /* 6 bytes */
1431                         break;
1432                 case 3:
1433                         vcpu->mmio_needed = 22; /* 5 bytes */
1434                         break;
1435                 case 4:
1436                         vcpu->mmio_needed = 23; /* 4 bytes */
1437                         break;
1438                 case 5:
1439                         vcpu->mmio_needed = 24; /* 3 bytes */
1440                         break;
1441                 case 6:
1442                         vcpu->mmio_needed = 25; /* 2 bytes */
1443                         break;
1444                 case 7:
1445                         vcpu->mmio_needed = 26; /* 1 byte */
1446                         break;
1447                 default:
1448                         break;
1449                 }
1450                 break;
1451 #endif
1452
1453 #ifdef CONFIG_CPU_LOONGSON64
1454         case ldc2_op:
1455                 rt = inst.loongson3_lsdc2_format.rt;
1456                 switch (inst.loongson3_lsdc2_format.opcode1) {
1457                 /*
1458                  * Loongson-3 overridden ldc2 instructions.
1459                  * opcode1              instruction
1460                  *   0x0          gslbx: store 1 bytes from GPR
1461                  *   0x1          gslhx: store 2 bytes from GPR
1462                  *   0x2          gslwx: store 4 bytes from GPR
1463                  *   0x3          gsldx: store 8 bytes from GPR
1464                  */
1465                 case 0x0:
1466                         run->mmio.len = 1;
1467                         vcpu->mmio_needed = 27; /* signed */
1468                         break;
1469                 case 0x1:
1470                         run->mmio.len = 2;
1471                         vcpu->mmio_needed = 28; /* signed */
1472                         break;
1473                 case 0x2:
1474                         run->mmio.len = 4;
1475                         vcpu->mmio_needed = 29; /* signed */
1476                         break;
1477                 case 0x3:
1478                         run->mmio.len = 8;
1479                         vcpu->mmio_needed = 30; /* signed */
1480                         break;
1481                 default:
1482                         kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n",
1483                                 inst.word);
1484                         break;
1485                 }
1486                 break;
1487 #endif
1488
1489         default:
1490                 kvm_err("Load not yet supported (inst=0x%08x)\n",
1491                         inst.word);
1492                 vcpu->mmio_needed = 0;
1493                 return EMULATE_FAIL;
1494         }
1495
1496         run->mmio.is_write = 0;
1497         vcpu->mmio_is_write = 0;
1498
1499         r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS,
1500                         run->mmio.phys_addr, run->mmio.len, run->mmio.data);
1501
1502         if (!r) {
1503                 kvm_mips_complete_mmio_load(vcpu);
1504                 vcpu->mmio_needed = 0;
1505                 return EMULATE_DONE;
1506         }
1507
1508         return EMULATE_DO_MMIO;
1509 }
1510
1511 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu)
1512 {
1513         struct kvm_run *run = vcpu->run;
1514         unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
1515         enum emulation_result er = EMULATE_DONE;
1516
1517         if (run->mmio.len > sizeof(*gpr)) {
1518                 kvm_err("Bad MMIO length: %d", run->mmio.len);
1519                 er = EMULATE_FAIL;
1520                 goto done;
1521         }
1522
1523         /* Restore saved resume PC */
1524         vcpu->arch.pc = vcpu->arch.io_pc;
1525
1526         switch (run->mmio.len) {
1527         case 8:
1528                 switch (vcpu->mmio_needed) {
1529                 case 11:
1530                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) |
1531                                 (((*(s64 *)run->mmio.data) & 0xff) << 56);
1532                         break;
1533                 case 12:
1534                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) |
1535                                 (((*(s64 *)run->mmio.data) & 0xffff) << 48);
1536                         break;
1537                 case 13:
1538                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) |
1539                                 (((*(s64 *)run->mmio.data) & 0xffffff) << 40);
1540                         break;
1541                 case 14:
1542                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) |
1543                                 (((*(s64 *)run->mmio.data) & 0xffffffff) << 32);
1544                         break;
1545                 case 15:
1546                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
1547                                 (((*(s64 *)run->mmio.data) & 0xffffffffff) << 24);
1548                         break;
1549                 case 16:
1550                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
1551                                 (((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16);
1552                         break;
1553                 case 17:
1554                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
1555                                 (((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8);
1556                         break;
1557                 case 18:
1558                 case 19:
1559                         *gpr = *(s64 *)run->mmio.data;
1560                         break;
1561                 case 20:
1562                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) |
1563                                 ((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff);
1564                         break;
1565                 case 21:
1566                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) |
1567                                 ((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff);
1568                         break;
1569                 case 22:
1570                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) |
1571                                 ((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff);
1572                         break;
1573                 case 23:
1574                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) |
1575                                 ((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff);
1576                         break;
1577                 case 24:
1578                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) |
1579                                 ((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff);
1580                         break;
1581                 case 25:
1582                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) |
1583                                 ((((*(s64 *)run->mmio.data)) >> 48) & 0xffff);
1584                         break;
1585                 case 26:
1586                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) |
1587                                 ((((*(s64 *)run->mmio.data)) >> 56) & 0xff);
1588                         break;
1589                 default:
1590                         *gpr = *(s64 *)run->mmio.data;
1591                 }
1592                 break;
1593
1594         case 4:
1595                 switch (vcpu->mmio_needed) {
1596                 case 1:
1597                         *gpr = *(u32 *)run->mmio.data;
1598                         break;
1599                 case 2:
1600                         *gpr = *(s32 *)run->mmio.data;
1601                         break;
1602                 case 3:
1603                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
1604                                 (((*(s32 *)run->mmio.data) & 0xff) << 24);
1605                         break;
1606                 case 4:
1607                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
1608                                 (((*(s32 *)run->mmio.data) & 0xffff) << 16);
1609                         break;
1610                 case 5:
1611                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
1612                                 (((*(s32 *)run->mmio.data) & 0xffffff) << 8);
1613                         break;
1614                 case 6:
1615                 case 7:
1616                         *gpr = *(s32 *)run->mmio.data;
1617                         break;
1618                 case 8:
1619                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) |
1620                                 ((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff);
1621                         break;
1622                 case 9:
1623                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) |
1624                                 ((((*(s32 *)run->mmio.data)) >> 16) & 0xffff);
1625                         break;
1626                 case 10:
1627                         *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) |
1628                                 ((((*(s32 *)run->mmio.data)) >> 24) & 0xff);
1629                         break;
1630                 default:
1631                         *gpr = *(s32 *)run->mmio.data;
1632                 }
1633                 break;
1634
1635         case 2:
1636                 if (vcpu->mmio_needed == 1)
1637                         *gpr = *(u16 *)run->mmio.data;
1638                 else
1639                         *gpr = *(s16 *)run->mmio.data;
1640
1641                 break;
1642         case 1:
1643                 if (vcpu->mmio_needed == 1)
1644                         *gpr = *(u8 *)run->mmio.data;
1645                 else
1646                         *gpr = *(s8 *)run->mmio.data;
1647                 break;
1648         }
1649
1650 done:
1651         return er;
1652 }