GNU Linux-libre 6.9.1-gnu
[releases.git] / arch / mips / kernel / traps.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
59 #include <asm/msa.h>
60 #include <asm/ptrace.h>
61 #include <asm/regdef.h>
62 #include <asm/sections.h>
63 #include <asm/siginfo.h>
64 #include <asm/tlbdebug.h>
65 #include <asm/traps.h>
66 #include <linux/uaccess.h>
67 #include <asm/watch.h>
68 #include <asm/mmu_context.h>
69 #include <asm/types.h>
70 #include <asm/stacktrace.h>
71 #include <asm/tlbex.h>
72 #include <asm/uasm.h>
73
74 #include <asm/mach-loongson64/cpucfg-emul.h>
75
76 #include "access-helper.h"
77
78 extern void check_wait(void);
79 extern asmlinkage void rollback_handle_int(void);
80 extern asmlinkage void handle_int(void);
81 extern asmlinkage void handle_adel(void);
82 extern asmlinkage void handle_ades(void);
83 extern asmlinkage void handle_ibe(void);
84 extern asmlinkage void handle_dbe(void);
85 extern asmlinkage void handle_sys(void);
86 extern asmlinkage void handle_bp(void);
87 extern asmlinkage void handle_ri(void);
88 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
89 extern asmlinkage void handle_ri_rdhwr(void);
90 extern asmlinkage void handle_cpu(void);
91 extern asmlinkage void handle_ov(void);
92 extern asmlinkage void handle_tr(void);
93 extern asmlinkage void handle_msa_fpe(void);
94 extern asmlinkage void handle_fpe(void);
95 extern asmlinkage void handle_ftlb(void);
96 extern asmlinkage void handle_gsexc(void);
97 extern asmlinkage void handle_msa(void);
98 extern asmlinkage void handle_mdmx(void);
99 extern asmlinkage void handle_watch(void);
100 extern asmlinkage void handle_mt(void);
101 extern asmlinkage void handle_dsp(void);
102 extern asmlinkage void handle_mcheck(void);
103 extern asmlinkage void handle_reserved(void);
104 extern void tlb_do_page_fault_0(void);
105
106 void (*board_be_init)(void);
107 static int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
108 void (*board_nmi_handler_setup)(void);
109 void (*board_ejtag_handler_setup)(void);
110 void (*board_bind_eic_interrupt)(int irq, int regset);
111 void (*board_ebase_setup)(void);
112 void(*board_cache_error_setup)(void);
113
114 void mips_set_be_handler(int (*handler)(struct pt_regs *regs, int is_fixup))
115 {
116         board_be_handler = handler;
117 }
118 EXPORT_SYMBOL_GPL(mips_set_be_handler);
119
120 static void show_raw_backtrace(unsigned long reg29, const char *loglvl,
121                                bool user)
122 {
123         unsigned long *sp = (unsigned long *)(reg29 & ~3);
124         unsigned long addr;
125
126         printk("%sCall Trace:", loglvl);
127 #ifdef CONFIG_KALLSYMS
128         printk("%s\n", loglvl);
129 #endif
130         while (!kstack_end(sp)) {
131                 if (__get_addr(&addr, sp++, user)) {
132                         printk("%s (Bad stack address)", loglvl);
133                         break;
134                 }
135                 if (__kernel_text_address(addr))
136                         print_ip_sym(loglvl, addr);
137         }
138         printk("%s\n", loglvl);
139 }
140
141 #ifdef CONFIG_KALLSYMS
142 int raw_show_trace;
143 static int __init set_raw_show_trace(char *str)
144 {
145         raw_show_trace = 1;
146         return 1;
147 }
148 __setup("raw_show_trace", set_raw_show_trace);
149 #endif
150
151 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
152                            const char *loglvl, bool user)
153 {
154         unsigned long sp = regs->regs[29];
155         unsigned long ra = regs->regs[31];
156         unsigned long pc = regs->cp0_epc;
157
158         if (!task)
159                 task = current;
160
161         if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
162                 show_raw_backtrace(sp, loglvl, user);
163                 return;
164         }
165         printk("%sCall Trace:\n", loglvl);
166         do {
167                 print_ip_sym(loglvl, pc);
168                 pc = unwind_stack(task, &sp, pc, &ra);
169         } while (pc);
170         pr_cont("\n");
171 }
172
173 /*
174  * This routine abuses get_user()/put_user() to reference pointers
175  * with at least a bit of error checking ...
176  */
177 static void show_stacktrace(struct task_struct *task,
178         const struct pt_regs *regs, const char *loglvl, bool user)
179 {
180         const int field = 2 * sizeof(unsigned long);
181         unsigned long stackdata;
182         int i;
183         unsigned long *sp = (unsigned long *)regs->regs[29];
184
185         printk("%sStack :", loglvl);
186         i = 0;
187         while ((unsigned long) sp & (PAGE_SIZE - 1)) {
188                 if (i && ((i % (64 / field)) == 0)) {
189                         pr_cont("\n");
190                         printk("%s       ", loglvl);
191                 }
192                 if (i > 39) {
193                         pr_cont(" ...");
194                         break;
195                 }
196
197                 if (__get_addr(&stackdata, sp++, user)) {
198                         pr_cont(" (Bad stack address)");
199                         break;
200                 }
201
202                 pr_cont(" %0*lx", field, stackdata);
203                 i++;
204         }
205         pr_cont("\n");
206         show_backtrace(task, regs, loglvl, user);
207 }
208
209 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
210 {
211         struct pt_regs regs;
212
213         regs.cp0_status = KSU_KERNEL;
214         if (sp) {
215                 regs.regs[29] = (unsigned long)sp;
216                 regs.regs[31] = 0;
217                 regs.cp0_epc = 0;
218         } else {
219                 if (task && task != current) {
220                         regs.regs[29] = task->thread.reg29;
221                         regs.regs[31] = 0;
222                         regs.cp0_epc = task->thread.reg31;
223                 } else {
224                         prepare_frametrace(&regs);
225                 }
226         }
227         show_stacktrace(task, &regs, loglvl, false);
228 }
229
230 static void show_code(void *pc, bool user)
231 {
232         long i;
233         unsigned short *pc16 = NULL;
234
235         printk("Code:");
236
237         if ((unsigned long)pc & 1)
238                 pc16 = (u16 *)((unsigned long)pc & ~1);
239
240         for(i = -3 ; i < 6 ; i++) {
241                 if (pc16) {
242                         u16 insn16;
243
244                         if (__get_inst16(&insn16, pc16 + i, user))
245                                 goto bad_address;
246
247                         pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>'));
248                 } else {
249                         u32 insn32;
250
251                         if (__get_inst32(&insn32, (u32 *)pc + i, user))
252                                 goto bad_address;
253
254                         pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>'));
255                 }
256         }
257         pr_cont("\n");
258         return;
259
260 bad_address:
261         pr_cont(" (Bad address in epc)\n\n");
262 }
263
264 static void __show_regs(const struct pt_regs *regs)
265 {
266         const int field = 2 * sizeof(unsigned long);
267         unsigned int cause = regs->cp0_cause;
268         unsigned int exccode;
269         int i;
270
271         show_regs_print_info(KERN_DEFAULT);
272
273         /*
274          * Saved main processor registers
275          */
276         for (i = 0; i < 32; ) {
277                 if ((i % 4) == 0)
278                         printk("$%2d   :", i);
279                 if (i == 0)
280                         pr_cont(" %0*lx", field, 0UL);
281                 else if (i == 26 || i == 27)
282                         pr_cont(" %*s", field, "");
283                 else
284                         pr_cont(" %0*lx", field, regs->regs[i]);
285
286                 i++;
287                 if ((i % 4) == 0)
288                         pr_cont("\n");
289         }
290
291 #ifdef CONFIG_CPU_HAS_SMARTMIPS
292         printk("Acx    : %0*lx\n", field, regs->acx);
293 #endif
294         if (MIPS_ISA_REV < 6) {
295                 printk("Hi    : %0*lx\n", field, regs->hi);
296                 printk("Lo    : %0*lx\n", field, regs->lo);
297         }
298
299         /*
300          * Saved cp0 registers
301          */
302         printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
303                (void *) regs->cp0_epc);
304         printk("ra    : %0*lx %pS\n", field, regs->regs[31],
305                (void *) regs->regs[31]);
306
307         printk("Status: %08x    ", (uint32_t) regs->cp0_status);
308
309         if (cpu_has_3kex) {
310                 if (regs->cp0_status & ST0_KUO)
311                         pr_cont("KUo ");
312                 if (regs->cp0_status & ST0_IEO)
313                         pr_cont("IEo ");
314                 if (regs->cp0_status & ST0_KUP)
315                         pr_cont("KUp ");
316                 if (regs->cp0_status & ST0_IEP)
317                         pr_cont("IEp ");
318                 if (regs->cp0_status & ST0_KUC)
319                         pr_cont("KUc ");
320                 if (regs->cp0_status & ST0_IEC)
321                         pr_cont("IEc ");
322         } else if (cpu_has_4kex) {
323                 if (regs->cp0_status & ST0_KX)
324                         pr_cont("KX ");
325                 if (regs->cp0_status & ST0_SX)
326                         pr_cont("SX ");
327                 if (regs->cp0_status & ST0_UX)
328                         pr_cont("UX ");
329                 switch (regs->cp0_status & ST0_KSU) {
330                 case KSU_USER:
331                         pr_cont("USER ");
332                         break;
333                 case KSU_SUPERVISOR:
334                         pr_cont("SUPERVISOR ");
335                         break;
336                 case KSU_KERNEL:
337                         pr_cont("KERNEL ");
338                         break;
339                 default:
340                         pr_cont("BAD_MODE ");
341                         break;
342                 }
343                 if (regs->cp0_status & ST0_ERL)
344                         pr_cont("ERL ");
345                 if (regs->cp0_status & ST0_EXL)
346                         pr_cont("EXL ");
347                 if (regs->cp0_status & ST0_IE)
348                         pr_cont("IE ");
349         }
350         pr_cont("\n");
351
352         exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
353         printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
354
355         if (1 <= exccode && exccode <= 5)
356                 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
357
358         printk("PrId  : %08x (%s)\n", read_c0_prid(),
359                cpu_name_string());
360 }
361
362 /*
363  * FIXME: really the generic show_regs should take a const pointer argument.
364  */
365 void show_regs(struct pt_regs *regs)
366 {
367         __show_regs(regs);
368         dump_stack();
369 }
370
371 void show_registers(struct pt_regs *regs)
372 {
373         const int field = 2 * sizeof(unsigned long);
374
375         __show_regs(regs);
376         print_modules();
377         printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
378                current->comm, current->pid, current_thread_info(), current,
379               field, current_thread_info()->tp_value);
380         if (cpu_has_userlocal) {
381                 unsigned long tls;
382
383                 tls = read_c0_userlocal();
384                 if (tls != current_thread_info()->tp_value)
385                         printk("*HwTLS: %0*lx\n", field, tls);
386         }
387
388         show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs));
389         show_code((void *)regs->cp0_epc, user_mode(regs));
390         printk("\n");
391 }
392
393 static DEFINE_RAW_SPINLOCK(die_lock);
394
395 void __noreturn die(const char *str, struct pt_regs *regs)
396 {
397         static int die_counter;
398         int sig = SIGSEGV;
399
400         oops_enter();
401
402         if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
403                        SIGSEGV) == NOTIFY_STOP)
404                 sig = 0;
405
406         console_verbose();
407         raw_spin_lock_irq(&die_lock);
408         bust_spinlocks(1);
409
410         printk("%s[#%d]:\n", str, ++die_counter);
411         show_registers(regs);
412         add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
413         raw_spin_unlock_irq(&die_lock);
414
415         oops_exit();
416
417         if (in_interrupt())
418                 panic("Fatal exception in interrupt");
419
420         if (panic_on_oops)
421                 panic("Fatal exception");
422
423         if (regs && kexec_should_crash(current))
424                 crash_kexec(regs);
425
426         make_task_dead(sig);
427 }
428
429 extern struct exception_table_entry __start___dbe_table[];
430 extern struct exception_table_entry __stop___dbe_table[];
431
432 __asm__(
433 "       .section        __dbe_table, \"a\"\n"
434 "       .previous                       \n");
435
436 /* Given an address, look for it in the exception tables. */
437 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
438 {
439         const struct exception_table_entry *e;
440
441         e = search_extable(__start___dbe_table,
442                            __stop___dbe_table - __start___dbe_table, addr);
443         if (!e)
444                 e = search_module_dbetables(addr);
445         return e;
446 }
447
448 asmlinkage void do_be(struct pt_regs *regs)
449 {
450         const int field = 2 * sizeof(unsigned long);
451         const struct exception_table_entry *fixup = NULL;
452         int data = regs->cp0_cause & 4;
453         int action = MIPS_BE_FATAL;
454         enum ctx_state prev_state;
455
456         prev_state = exception_enter();
457         /* XXX For now.  Fixme, this searches the wrong table ...  */
458         if (data && !user_mode(regs))
459                 fixup = search_dbe_tables(exception_epc(regs));
460
461         if (fixup)
462                 action = MIPS_BE_FIXUP;
463
464         if (board_be_handler)
465                 action = board_be_handler(regs, fixup != NULL);
466         else
467                 mips_cm_error_report();
468
469         switch (action) {
470         case MIPS_BE_DISCARD:
471                 goto out;
472         case MIPS_BE_FIXUP:
473                 if (fixup) {
474                         regs->cp0_epc = fixup->nextinsn;
475                         goto out;
476                 }
477                 break;
478         default:
479                 break;
480         }
481
482         /*
483          * Assume it would be too dangerous to continue ...
484          */
485         printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
486                data ? "Data" : "Instruction",
487                field, regs->cp0_epc, field, regs->regs[31]);
488         if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
489                        SIGBUS) == NOTIFY_STOP)
490                 goto out;
491
492         die_if_kernel("Oops", regs);
493         force_sig(SIGBUS);
494
495 out:
496         exception_exit(prev_state);
497 }
498
499 /*
500  * ll/sc, rdhwr, sync emulation
501  */
502
503 #define OPCODE 0xfc000000
504 #define BASE   0x03e00000
505 #define RT     0x001f0000
506 #define OFFSET 0x0000ffff
507 #define LL     0xc0000000
508 #define SC     0xe0000000
509 #define SPEC0  0x00000000
510 #define SPEC3  0x7c000000
511 #define RD     0x0000f800
512 #define FUNC   0x0000003f
513 #define SYNC   0x0000000f
514 #define RDHWR  0x0000003b
515
516 /*  microMIPS definitions   */
517 #define MM_POOL32A_FUNC 0xfc00ffff
518 #define MM_RDHWR        0x00006b3c
519 #define MM_RS           0x001f0000
520 #define MM_RT           0x03e00000
521
522 /*
523  * The ll_bit is cleared by r*_switch.S
524  */
525
526 unsigned int ll_bit;
527 struct task_struct *ll_task;
528
529 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
530 {
531         unsigned long value, __user *vaddr;
532         long offset;
533
534         /*
535          * analyse the ll instruction that just caused a ri exception
536          * and put the referenced address to addr.
537          */
538
539         /* sign extend offset */
540         offset = opcode & OFFSET;
541         offset <<= 16;
542         offset >>= 16;
543
544         vaddr = (unsigned long __user *)
545                 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
546
547         if ((unsigned long)vaddr & 3)
548                 return SIGBUS;
549         if (get_user(value, vaddr))
550                 return SIGSEGV;
551
552         preempt_disable();
553
554         if (ll_task == NULL || ll_task == current) {
555                 ll_bit = 1;
556         } else {
557                 ll_bit = 0;
558         }
559         ll_task = current;
560
561         preempt_enable();
562
563         regs->regs[(opcode & RT) >> 16] = value;
564
565         return 0;
566 }
567
568 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
569 {
570         unsigned long __user *vaddr;
571         unsigned long reg;
572         long offset;
573
574         /*
575          * analyse the sc instruction that just caused a ri exception
576          * and put the referenced address to addr.
577          */
578
579         /* sign extend offset */
580         offset = opcode & OFFSET;
581         offset <<= 16;
582         offset >>= 16;
583
584         vaddr = (unsigned long __user *)
585                 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
586         reg = (opcode & RT) >> 16;
587
588         if ((unsigned long)vaddr & 3)
589                 return SIGBUS;
590
591         preempt_disable();
592
593         if (ll_bit == 0 || ll_task != current) {
594                 regs->regs[reg] = 0;
595                 preempt_enable();
596                 return 0;
597         }
598
599         preempt_enable();
600
601         if (put_user(regs->regs[reg], vaddr))
602                 return SIGSEGV;
603
604         regs->regs[reg] = 1;
605
606         return 0;
607 }
608
609 /*
610  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
611  * opcodes are supposed to result in coprocessor unusable exceptions if
612  * executed on ll/sc-less processors.  That's the theory.  In practice a
613  * few processors such as NEC's VR4100 throw reserved instruction exceptions
614  * instead, so we're doing the emulation thing in both exception handlers.
615  */
616 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
617 {
618         if ((opcode & OPCODE) == LL) {
619                 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
620                                 1, regs, 0);
621                 return simulate_ll(regs, opcode);
622         }
623         if ((opcode & OPCODE) == SC) {
624                 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
625                                 1, regs, 0);
626                 return simulate_sc(regs, opcode);
627         }
628
629         return -1;                      /* Must be something else ... */
630 }
631
632 /*
633  * Simulate trapping 'rdhwr' instructions to provide user accessible
634  * registers not implemented in hardware.
635  */
636 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
637 {
638         struct thread_info *ti = task_thread_info(current);
639
640         perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
641                         1, regs, 0);
642         switch (rd) {
643         case MIPS_HWR_CPUNUM:           /* CPU number */
644                 regs->regs[rt] = smp_processor_id();
645                 return 0;
646         case MIPS_HWR_SYNCISTEP:        /* SYNCI length */
647                 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
648                                      current_cpu_data.icache.linesz);
649                 return 0;
650         case MIPS_HWR_CC:               /* Read count register */
651                 regs->regs[rt] = read_c0_count();
652                 return 0;
653         case MIPS_HWR_CCRES:            /* Count register resolution */
654                 switch (current_cpu_type()) {
655                 case CPU_20KC:
656                 case CPU_25KF:
657                         regs->regs[rt] = 1;
658                         break;
659                 default:
660                         regs->regs[rt] = 2;
661                 }
662                 return 0;
663         case MIPS_HWR_ULR:              /* Read UserLocal register */
664                 regs->regs[rt] = ti->tp_value;
665                 return 0;
666         default:
667                 return -1;
668         }
669 }
670
671 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
672 {
673         if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
674                 int rd = (opcode & RD) >> 11;
675                 int rt = (opcode & RT) >> 16;
676
677                 simulate_rdhwr(regs, rd, rt);
678                 return 0;
679         }
680
681         /* Not ours.  */
682         return -1;
683 }
684
685 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
686 {
687         if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
688                 int rd = (opcode & MM_RS) >> 16;
689                 int rt = (opcode & MM_RT) >> 21;
690                 simulate_rdhwr(regs, rd, rt);
691                 return 0;
692         }
693
694         /* Not ours.  */
695         return -1;
696 }
697
698 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
699 {
700         if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
701                 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
702                                 1, regs, 0);
703                 return 0;
704         }
705
706         return -1;                      /* Must be something else ... */
707 }
708
709 /*
710  * Loongson-3 CSR instructions emulation
711  */
712
713 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
714
715 #define LWC2             0xc8000000
716 #define RS               BASE
717 #define CSR_OPCODE2      0x00000118
718 #define CSR_OPCODE2_MASK 0x000007ff
719 #define CSR_FUNC_MASK    RT
720 #define CSR_FUNC_CPUCFG  0x8
721
722 static int simulate_loongson3_cpucfg(struct pt_regs *regs,
723                                      unsigned int opcode)
724 {
725         int op = opcode & OPCODE;
726         int op2 = opcode & CSR_OPCODE2_MASK;
727         int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
728
729         if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
730                 int rd = (opcode & RD) >> 11;
731                 int rs = (opcode & RS) >> 21;
732                 __u64 sel = regs->regs[rs];
733
734                 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
735
736                 /* Do not emulate on unsupported core models. */
737                 preempt_disable();
738                 if (!loongson3_cpucfg_emulation_enabled(&current_cpu_data)) {
739                         preempt_enable();
740                         return -1;
741                 }
742                 regs->regs[rd] = loongson3_cpucfg_read_synthesized(
743                         &current_cpu_data, sel);
744                 preempt_enable();
745                 return 0;
746         }
747
748         /* Not ours.  */
749         return -1;
750 }
751 #endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
752
753 asmlinkage void do_ov(struct pt_regs *regs)
754 {
755         enum ctx_state prev_state;
756
757         prev_state = exception_enter();
758         die_if_kernel("Integer overflow", regs);
759
760         force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
761         exception_exit(prev_state);
762 }
763
764 #ifdef CONFIG_MIPS_FP_SUPPORT
765
766 /*
767  * Send SIGFPE according to FCSR Cause bits, which must have already
768  * been masked against Enable bits.  This is impotant as Inexact can
769  * happen together with Overflow or Underflow, and `ptrace' can set
770  * any bits.
771  */
772 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
773                      struct task_struct *tsk)
774 {
775         int si_code = FPE_FLTUNK;
776
777         if (fcr31 & FPU_CSR_INV_X)
778                 si_code = FPE_FLTINV;
779         else if (fcr31 & FPU_CSR_DIV_X)
780                 si_code = FPE_FLTDIV;
781         else if (fcr31 & FPU_CSR_OVF_X)
782                 si_code = FPE_FLTOVF;
783         else if (fcr31 & FPU_CSR_UDF_X)
784                 si_code = FPE_FLTUND;
785         else if (fcr31 & FPU_CSR_INE_X)
786                 si_code = FPE_FLTRES;
787
788         force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
789 }
790
791 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
792 {
793         int si_code;
794
795         switch (sig) {
796         case 0:
797                 return 0;
798
799         case SIGFPE:
800                 force_fcr31_sig(fcr31, fault_addr, current);
801                 return 1;
802
803         case SIGBUS:
804                 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
805                 return 1;
806
807         case SIGSEGV:
808                 mmap_read_lock(current->mm);
809                 if (vma_lookup(current->mm, (unsigned long)fault_addr))
810                         si_code = SEGV_ACCERR;
811                 else
812                         si_code = SEGV_MAPERR;
813                 mmap_read_unlock(current->mm);
814                 force_sig_fault(SIGSEGV, si_code, fault_addr);
815                 return 1;
816
817         default:
818                 force_sig(sig);
819                 return 1;
820         }
821 }
822
823 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
824                        unsigned long old_epc, unsigned long old_ra)
825 {
826         union mips_instruction inst = { .word = opcode };
827         void __user *fault_addr;
828         unsigned long fcr31;
829         int sig;
830
831         /* If it's obviously not an FP instruction, skip it */
832         switch (inst.i_format.opcode) {
833         case cop1_op:
834         case cop1x_op:
835         case lwc1_op:
836         case ldc1_op:
837         case swc1_op:
838         case sdc1_op:
839                 break;
840
841         default:
842                 return -1;
843         }
844
845         /*
846          * do_ri skipped over the instruction via compute_return_epc, undo
847          * that for the FPU emulator.
848          */
849         regs->cp0_epc = old_epc;
850         regs->regs[31] = old_ra;
851
852         /* Run the emulator */
853         sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
854                                        &fault_addr);
855
856         /*
857          * We can't allow the emulated instruction to leave any
858          * enabled Cause bits set in $fcr31.
859          */
860         fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
861         current->thread.fpu.fcr31 &= ~fcr31;
862
863         /* Restore the hardware register state */
864         own_fpu(1);
865
866         /* Send a signal if required.  */
867         process_fpemu_return(sig, fault_addr, fcr31);
868
869         return 0;
870 }
871
872 /*
873  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
874  */
875 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
876 {
877         enum ctx_state prev_state;
878         void __user *fault_addr;
879         int sig;
880
881         prev_state = exception_enter();
882         if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
883                        SIGFPE) == NOTIFY_STOP)
884                 goto out;
885
886         /* Clear FCSR.Cause before enabling interrupts */
887         write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
888         local_irq_enable();
889
890         die_if_kernel("FP exception in kernel code", regs);
891
892         if (fcr31 & FPU_CSR_UNI_X) {
893                 /*
894                  * Unimplemented operation exception.  If we've got the full
895                  * software emulator on-board, let's use it...
896                  *
897                  * Force FPU to dump state into task/thread context.  We're
898                  * moving a lot of data here for what is probably a single
899                  * instruction, but the alternative is to pre-decode the FP
900                  * register operands before invoking the emulator, which seems
901                  * a bit extreme for what should be an infrequent event.
902                  */
903
904                 /* Run the emulator */
905                 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
906                                                &fault_addr);
907
908                 /*
909                  * We can't allow the emulated instruction to leave any
910                  * enabled Cause bits set in $fcr31.
911                  */
912                 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
913                 current->thread.fpu.fcr31 &= ~fcr31;
914
915                 /* Restore the hardware register state */
916                 own_fpu(1);     /* Using the FPU again.  */
917         } else {
918                 sig = SIGFPE;
919                 fault_addr = (void __user *) regs->cp0_epc;
920         }
921
922         /* Send a signal if required.  */
923         process_fpemu_return(sig, fault_addr, fcr31);
924
925 out:
926         exception_exit(prev_state);
927 }
928
929 /*
930  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
931  * emulated more than some threshold number of instructions, force migration to
932  * a "CPU" that has FP support.
933  */
934 static void mt_ase_fp_affinity(void)
935 {
936 #ifdef CONFIG_MIPS_MT_FPAFF
937         if (mt_fpemul_threshold > 0 &&
938              ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
939                 /*
940                  * If there's no FPU present, or if the application has already
941                  * restricted the allowed set to exclude any CPUs with FPUs,
942                  * we'll skip the procedure.
943                  */
944                 if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) {
945                         cpumask_t tmask;
946
947                         current->thread.user_cpus_allowed
948                                 = current->cpus_mask;
949                         cpumask_and(&tmask, &current->cpus_mask,
950                                     &mt_fpu_cpumask);
951                         set_cpus_allowed_ptr(current, &tmask);
952                         set_thread_flag(TIF_FPUBOUND);
953                 }
954         }
955 #endif /* CONFIG_MIPS_MT_FPAFF */
956 }
957
958 #else /* !CONFIG_MIPS_FP_SUPPORT */
959
960 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
961                        unsigned long old_epc, unsigned long old_ra)
962 {
963         return -1;
964 }
965
966 #endif /* !CONFIG_MIPS_FP_SUPPORT */
967
968 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
969         const char *str)
970 {
971         char b[40];
972
973 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
974         if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
975                          SIGTRAP) == NOTIFY_STOP)
976                 return;
977 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
978
979         if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
980                        SIGTRAP) == NOTIFY_STOP)
981                 return;
982
983         /*
984          * A short test says that IRIX 5.3 sends SIGTRAP for all trap
985          * insns, even for trap and break codes that indicate arithmetic
986          * failures.  Weird ...
987          * But should we continue the brokenness???  --macro
988          */
989         switch (code) {
990         case BRK_OVERFLOW:
991         case BRK_DIVZERO:
992                 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
993                 die_if_kernel(b, regs);
994                 force_sig_fault(SIGFPE,
995                                 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
996                                 (void __user *) regs->cp0_epc);
997                 break;
998         case BRK_BUG:
999                 die_if_kernel("Kernel bug detected", regs);
1000                 force_sig(SIGTRAP);
1001                 break;
1002         case BRK_MEMU:
1003                 /*
1004                  * This breakpoint code is used by the FPU emulator to retake
1005                  * control of the CPU after executing the instruction from the
1006                  * delay slot of an emulated branch.
1007                  *
1008                  * Terminate if exception was recognized as a delay slot return
1009                  * otherwise handle as normal.
1010                  */
1011                 if (do_dsemulret(regs))
1012                         return;
1013
1014                 die_if_kernel("Math emu break/trap", regs);
1015                 force_sig(SIGTRAP);
1016                 break;
1017         default:
1018                 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1019                 die_if_kernel(b, regs);
1020                 if (si_code) {
1021                         force_sig_fault(SIGTRAP, si_code, NULL);
1022                 } else {
1023                         force_sig(SIGTRAP);
1024                 }
1025         }
1026 }
1027
1028 asmlinkage void do_bp(struct pt_regs *regs)
1029 {
1030         unsigned long epc = msk_isa16_mode(exception_epc(regs));
1031         unsigned int opcode, bcode;
1032         enum ctx_state prev_state;
1033         bool user = user_mode(regs);
1034
1035         prev_state = exception_enter();
1036         current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1037         if (get_isa16_mode(regs->cp0_epc)) {
1038                 u16 instr[2];
1039
1040                 if (__get_inst16(&instr[0], (u16 *)epc, user))
1041                         goto out_sigsegv;
1042
1043                 if (!cpu_has_mmips) {
1044                         /* MIPS16e mode */
1045                         bcode = (instr[0] >> 5) & 0x3f;
1046                 } else if (mm_insn_16bit(instr[0])) {
1047                         /* 16-bit microMIPS BREAK */
1048                         bcode = instr[0] & 0xf;
1049                 } else {
1050                         /* 32-bit microMIPS BREAK */
1051                         if (__get_inst16(&instr[1], (u16 *)(epc + 2), user))
1052                                 goto out_sigsegv;
1053                         opcode = (instr[0] << 16) | instr[1];
1054                         bcode = (opcode >> 6) & ((1 << 20) - 1);
1055                 }
1056         } else {
1057                 if (__get_inst32(&opcode, (u32 *)epc, user))
1058                         goto out_sigsegv;
1059                 bcode = (opcode >> 6) & ((1 << 20) - 1);
1060         }
1061
1062         /*
1063          * There is the ancient bug in the MIPS assemblers that the break
1064          * code starts left to bit 16 instead to bit 6 in the opcode.
1065          * Gas is bug-compatible, but not always, grrr...
1066          * We handle both cases with a simple heuristics.  --macro
1067          */
1068         if (bcode >= (1 << 10))
1069                 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1070
1071         /*
1072          * notify the kprobe handlers, if instruction is likely to
1073          * pertain to them.
1074          */
1075         switch (bcode) {
1076         case BRK_UPROBE:
1077                 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1078                                current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1079                         goto out;
1080                 else
1081                         break;
1082         case BRK_UPROBE_XOL:
1083                 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1084                                current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1085                         goto out;
1086                 else
1087                         break;
1088         case BRK_KPROBE_BP:
1089                 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1090                                current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1091                         goto out;
1092                 else
1093                         break;
1094         case BRK_KPROBE_SSTEPBP:
1095                 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1096                                current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1097                         goto out;
1098                 else
1099                         break;
1100         default:
1101                 break;
1102         }
1103
1104         do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1105
1106 out:
1107         exception_exit(prev_state);
1108         return;
1109
1110 out_sigsegv:
1111         force_sig(SIGSEGV);
1112         goto out;
1113 }
1114
1115 asmlinkage void do_tr(struct pt_regs *regs)
1116 {
1117         u32 opcode, tcode = 0;
1118         enum ctx_state prev_state;
1119         u16 instr[2];
1120         bool user = user_mode(regs);
1121         unsigned long epc = msk_isa16_mode(exception_epc(regs));
1122
1123         prev_state = exception_enter();
1124         current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1125         if (get_isa16_mode(regs->cp0_epc)) {
1126                 if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) ||
1127                     __get_inst16(&instr[1], (u16 *)(epc + 2), user))
1128                         goto out_sigsegv;
1129                 opcode = (instr[0] << 16) | instr[1];
1130                 /* Immediate versions don't provide a code.  */
1131                 if (!(opcode & OPCODE))
1132                         tcode = (opcode >> 12) & ((1 << 4) - 1);
1133         } else {
1134                 if (__get_inst32(&opcode, (u32 *)epc, user))
1135                         goto out_sigsegv;
1136                 /* Immediate versions don't provide a code.  */
1137                 if (!(opcode & OPCODE))
1138                         tcode = (opcode >> 6) & ((1 << 10) - 1);
1139         }
1140
1141         do_trap_or_bp(regs, tcode, 0, "Trap");
1142
1143 out:
1144         exception_exit(prev_state);
1145         return;
1146
1147 out_sigsegv:
1148         force_sig(SIGSEGV);
1149         goto out;
1150 }
1151
1152 asmlinkage void do_ri(struct pt_regs *regs)
1153 {
1154         unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1155         unsigned long old_epc = regs->cp0_epc;
1156         unsigned long old31 = regs->regs[31];
1157         enum ctx_state prev_state;
1158         unsigned int opcode = 0;
1159         int status = -1;
1160
1161         /*
1162          * Avoid any kernel code. Just emulate the R2 instruction
1163          * as quickly as possible.
1164          */
1165         if (mipsr2_emulation && cpu_has_mips_r6 &&
1166             likely(user_mode(regs)) &&
1167             likely(get_user(opcode, epc) >= 0)) {
1168                 unsigned long fcr31 = 0;
1169
1170                 status = mipsr2_decoder(regs, opcode, &fcr31);
1171                 switch (status) {
1172                 case 0:
1173                 case SIGEMT:
1174                         return;
1175                 case SIGILL:
1176                         goto no_r2_instr;
1177                 default:
1178                         process_fpemu_return(status,
1179                                              &current->thread.cp0_baduaddr,
1180                                              fcr31);
1181                         return;
1182                 }
1183         }
1184
1185 no_r2_instr:
1186
1187         prev_state = exception_enter();
1188         current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1189
1190         if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1191                        SIGILL) == NOTIFY_STOP)
1192                 goto out;
1193
1194         die_if_kernel("Reserved instruction in kernel code", regs);
1195
1196         if (unlikely(compute_return_epc(regs) < 0))
1197                 goto out;
1198
1199         if (!get_isa16_mode(regs->cp0_epc)) {
1200                 if (unlikely(get_user(opcode, epc) < 0))
1201                         status = SIGSEGV;
1202
1203                 if (!cpu_has_llsc && status < 0)
1204                         status = simulate_llsc(regs, opcode);
1205
1206                 if (status < 0)
1207                         status = simulate_rdhwr_normal(regs, opcode);
1208
1209                 if (status < 0)
1210                         status = simulate_sync(regs, opcode);
1211
1212                 if (status < 0)
1213                         status = simulate_fp(regs, opcode, old_epc, old31);
1214
1215 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1216                 if (status < 0)
1217                         status = simulate_loongson3_cpucfg(regs, opcode);
1218 #endif
1219         } else if (cpu_has_mmips) {
1220                 unsigned short mmop[2] = { 0 };
1221
1222                 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1223                         status = SIGSEGV;
1224                 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1225                         status = SIGSEGV;
1226                 opcode = mmop[0];
1227                 opcode = (opcode << 16) | mmop[1];
1228
1229                 if (status < 0)
1230                         status = simulate_rdhwr_mm(regs, opcode);
1231         }
1232
1233         if (status < 0)
1234                 status = SIGILL;
1235
1236         if (unlikely(status > 0)) {
1237                 regs->cp0_epc = old_epc;                /* Undo skip-over.  */
1238                 regs->regs[31] = old31;
1239                 force_sig(status);
1240         }
1241
1242 out:
1243         exception_exit(prev_state);
1244 }
1245
1246 /*
1247  * No lock; only written during early bootup by CPU 0.
1248  */
1249 static RAW_NOTIFIER_HEAD(cu2_chain);
1250
1251 int __ref register_cu2_notifier(struct notifier_block *nb)
1252 {
1253         return raw_notifier_chain_register(&cu2_chain, nb);
1254 }
1255
1256 int cu2_notifier_call_chain(unsigned long val, void *v)
1257 {
1258         return raw_notifier_call_chain(&cu2_chain, val, v);
1259 }
1260
1261 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1262         void *data)
1263 {
1264         struct pt_regs *regs = data;
1265
1266         die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1267                               "instruction", regs);
1268         force_sig(SIGILL);
1269
1270         return NOTIFY_OK;
1271 }
1272
1273 #ifdef CONFIG_MIPS_FP_SUPPORT
1274
1275 static int enable_restore_fp_context(int msa)
1276 {
1277         int err, was_fpu_owner, prior_msa;
1278         bool first_fp;
1279
1280         /* Initialize context if it hasn't been used already */
1281         first_fp = init_fp_ctx(current);
1282
1283         if (first_fp) {
1284                 preempt_disable();
1285                 err = own_fpu_inatomic(1);
1286                 if (msa && !err) {
1287                         enable_msa();
1288                         /*
1289                          * with MSA enabled, userspace can see MSACSR
1290                          * and MSA regs, but the values in them are from
1291                          * other task before current task, restore them
1292                          * from saved fp/msa context
1293                          */
1294                         write_msa_csr(current->thread.fpu.msacsr);
1295                         /*
1296                          * own_fpu_inatomic(1) just restore low 64bit,
1297                          * fix the high 64bit
1298                          */
1299                         init_msa_upper();
1300                         set_thread_flag(TIF_USEDMSA);
1301                         set_thread_flag(TIF_MSA_CTX_LIVE);
1302                 }
1303                 preempt_enable();
1304                 return err;
1305         }
1306
1307         /*
1308          * This task has formerly used the FP context.
1309          *
1310          * If this thread has no live MSA vector context then we can simply
1311          * restore the scalar FP context. If it has live MSA vector context
1312          * (that is, it has or may have used MSA since last performing a
1313          * function call) then we'll need to restore the vector context. This
1314          * applies even if we're currently only executing a scalar FP
1315          * instruction. This is because if we were to later execute an MSA
1316          * instruction then we'd either have to:
1317          *
1318          *  - Restore the vector context & clobber any registers modified by
1319          *    scalar FP instructions between now & then.
1320          *
1321          * or
1322          *
1323          *  - Not restore the vector context & lose the most significant bits
1324          *    of all vector registers.
1325          *
1326          * Neither of those options is acceptable. We cannot restore the least
1327          * significant bits of the registers now & only restore the most
1328          * significant bits later because the most significant bits of any
1329          * vector registers whose aliased FP register is modified now will have
1330          * been zeroed. We'd have no way to know that when restoring the vector
1331          * context & thus may load an outdated value for the most significant
1332          * bits of a vector register.
1333          */
1334         if (!msa && !thread_msa_context_live())
1335                 return own_fpu(1);
1336
1337         /*
1338          * This task is using or has previously used MSA. Thus we require
1339          * that Status.FR == 1.
1340          */
1341         preempt_disable();
1342         was_fpu_owner = is_fpu_owner();
1343         err = own_fpu_inatomic(0);
1344         if (err)
1345                 goto out;
1346
1347         enable_msa();
1348         write_msa_csr(current->thread.fpu.msacsr);
1349         set_thread_flag(TIF_USEDMSA);
1350
1351         /*
1352          * If this is the first time that the task is using MSA and it has
1353          * previously used scalar FP in this time slice then we already nave
1354          * FP context which we shouldn't clobber. We do however need to clear
1355          * the upper 64b of each vector register so that this task has no
1356          * opportunity to see data left behind by another.
1357          */
1358         prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1359         if (!prior_msa && was_fpu_owner) {
1360                 init_msa_upper();
1361
1362                 goto out;
1363         }
1364
1365         if (!prior_msa) {
1366                 /*
1367                  * Restore the least significant 64b of each vector register
1368                  * from the existing scalar FP context.
1369                  */
1370                 _restore_fp(current);
1371
1372                 /*
1373                  * The task has not formerly used MSA, so clear the upper 64b
1374                  * of each vector register such that it cannot see data left
1375                  * behind by another task.
1376                  */
1377                 init_msa_upper();
1378         } else {
1379                 /* We need to restore the vector context. */
1380                 restore_msa(current);
1381
1382                 /* Restore the scalar FP control & status register */
1383                 if (!was_fpu_owner)
1384                         write_32bit_cp1_register(CP1_STATUS,
1385                                                  current->thread.fpu.fcr31);
1386         }
1387
1388 out:
1389         preempt_enable();
1390
1391         return 0;
1392 }
1393
1394 #else /* !CONFIG_MIPS_FP_SUPPORT */
1395
1396 static int enable_restore_fp_context(int msa)
1397 {
1398         return SIGILL;
1399 }
1400
1401 #endif /* CONFIG_MIPS_FP_SUPPORT */
1402
1403 asmlinkage void do_cpu(struct pt_regs *regs)
1404 {
1405         enum ctx_state prev_state;
1406         unsigned int __user *epc;
1407         unsigned long old_epc, old31;
1408         unsigned int opcode;
1409         unsigned int cpid;
1410         int status;
1411
1412         prev_state = exception_enter();
1413         cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1414
1415         if (cpid != 2)
1416                 die_if_kernel("do_cpu invoked from kernel context!", regs);
1417
1418         switch (cpid) {
1419         case 0:
1420                 epc = (unsigned int __user *)exception_epc(regs);
1421                 old_epc = regs->cp0_epc;
1422                 old31 = regs->regs[31];
1423                 opcode = 0;
1424                 status = -1;
1425
1426                 if (unlikely(compute_return_epc(regs) < 0))
1427                         break;
1428
1429                 if (!get_isa16_mode(regs->cp0_epc)) {
1430                         if (unlikely(get_user(opcode, epc) < 0))
1431                                 status = SIGSEGV;
1432
1433                         if (!cpu_has_llsc && status < 0)
1434                                 status = simulate_llsc(regs, opcode);
1435                 }
1436
1437                 if (status < 0)
1438                         status = SIGILL;
1439
1440                 if (unlikely(status > 0)) {
1441                         regs->cp0_epc = old_epc;        /* Undo skip-over.  */
1442                         regs->regs[31] = old31;
1443                         force_sig(status);
1444                 }
1445
1446                 break;
1447
1448 #ifdef CONFIG_MIPS_FP_SUPPORT
1449         case 3:
1450                 /*
1451                  * The COP3 opcode space and consequently the CP0.Status.CU3
1452                  * bit and the CP0.Cause.CE=3 encoding have been removed as
1453                  * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1454                  * up the space has been reused for COP1X instructions, that
1455                  * are enabled by the CP0.Status.CU1 bit and consequently
1456                  * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1457                  * exceptions.  Some FPU-less processors that implement one
1458                  * of these ISAs however use this code erroneously for COP1X
1459                  * instructions.  Therefore we redirect this trap to the FP
1460                  * emulator too.
1461                  */
1462                 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1463                         force_sig(SIGILL);
1464                         break;
1465                 }
1466                 fallthrough;
1467         case 1: {
1468                 void __user *fault_addr;
1469                 unsigned long fcr31;
1470                 int err, sig;
1471
1472                 err = enable_restore_fp_context(0);
1473
1474                 if (raw_cpu_has_fpu && !err)
1475                         break;
1476
1477                 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1478                                                &fault_addr);
1479
1480                 /*
1481                  * We can't allow the emulated instruction to leave
1482                  * any enabled Cause bits set in $fcr31.
1483                  */
1484                 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1485                 current->thread.fpu.fcr31 &= ~fcr31;
1486
1487                 /* Send a signal if required.  */
1488                 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1489                         mt_ase_fp_affinity();
1490
1491                 break;
1492         }
1493 #else /* CONFIG_MIPS_FP_SUPPORT */
1494         case 1:
1495         case 3:
1496                 force_sig(SIGILL);
1497                 break;
1498 #endif /* CONFIG_MIPS_FP_SUPPORT */
1499
1500         case 2:
1501                 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1502                 break;
1503         }
1504
1505         exception_exit(prev_state);
1506 }
1507
1508 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1509 {
1510         enum ctx_state prev_state;
1511
1512         prev_state = exception_enter();
1513         current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1514         if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1515                        current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1516                 goto out;
1517
1518         /* Clear MSACSR.Cause before enabling interrupts */
1519         write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1520         local_irq_enable();
1521
1522         die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1523         force_sig(SIGFPE);
1524 out:
1525         exception_exit(prev_state);
1526 }
1527
1528 asmlinkage void do_msa(struct pt_regs *regs)
1529 {
1530         enum ctx_state prev_state;
1531         int err;
1532
1533         prev_state = exception_enter();
1534
1535         if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1536                 force_sig(SIGILL);
1537                 goto out;
1538         }
1539
1540         die_if_kernel("do_msa invoked from kernel context!", regs);
1541
1542         err = enable_restore_fp_context(1);
1543         if (err)
1544                 force_sig(SIGILL);
1545 out:
1546         exception_exit(prev_state);
1547 }
1548
1549 asmlinkage void do_mdmx(struct pt_regs *regs)
1550 {
1551         enum ctx_state prev_state;
1552
1553         prev_state = exception_enter();
1554         force_sig(SIGILL);
1555         exception_exit(prev_state);
1556 }
1557
1558 /*
1559  * Called with interrupts disabled.
1560  */
1561 asmlinkage void do_watch(struct pt_regs *regs)
1562 {
1563         enum ctx_state prev_state;
1564
1565         prev_state = exception_enter();
1566         /*
1567          * Clear WP (bit 22) bit of cause register so we don't loop
1568          * forever.
1569          */
1570         clear_c0_cause(CAUSEF_WP);
1571
1572         /*
1573          * If the current thread has the watch registers loaded, save
1574          * their values and send SIGTRAP.  Otherwise another thread
1575          * left the registers set, clear them and continue.
1576          */
1577         if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1578                 mips_read_watch_registers();
1579                 local_irq_enable();
1580                 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1581         } else {
1582                 mips_clear_watch_registers();
1583                 local_irq_enable();
1584         }
1585         exception_exit(prev_state);
1586 }
1587
1588 asmlinkage void do_mcheck(struct pt_regs *regs)
1589 {
1590         int multi_match = regs->cp0_status & ST0_TS;
1591         enum ctx_state prev_state;
1592
1593         prev_state = exception_enter();
1594         show_regs(regs);
1595
1596         if (multi_match) {
1597                 dump_tlb_regs();
1598                 pr_info("\n");
1599                 dump_tlb_all();
1600         }
1601
1602         show_code((void *)regs->cp0_epc, user_mode(regs));
1603
1604         /*
1605          * Some chips may have other causes of machine check (e.g. SB1
1606          * graduation timer)
1607          */
1608         panic("Caught Machine Check exception - %scaused by multiple "
1609               "matching entries in the TLB.",
1610               (multi_match) ? "" : "not ");
1611 }
1612
1613 asmlinkage void do_mt(struct pt_regs *regs)
1614 {
1615         int subcode;
1616
1617         subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1618                         >> VPECONTROL_EXCPT_SHIFT;
1619         switch (subcode) {
1620         case 0:
1621                 printk(KERN_DEBUG "Thread Underflow\n");
1622                 break;
1623         case 1:
1624                 printk(KERN_DEBUG "Thread Overflow\n");
1625                 break;
1626         case 2:
1627                 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1628                 break;
1629         case 3:
1630                 printk(KERN_DEBUG "Gating Storage Exception\n");
1631                 break;
1632         case 4:
1633                 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1634                 break;
1635         case 5:
1636                 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1637                 break;
1638         default:
1639                 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1640                         subcode);
1641                 break;
1642         }
1643         die_if_kernel("MIPS MT Thread exception in kernel", regs);
1644
1645         force_sig(SIGILL);
1646 }
1647
1648
1649 asmlinkage void do_dsp(struct pt_regs *regs)
1650 {
1651         if (cpu_has_dsp)
1652                 panic("Unexpected DSP exception");
1653
1654         force_sig(SIGILL);
1655 }
1656
1657 asmlinkage void do_reserved(struct pt_regs *regs)
1658 {
1659         /*
1660          * Game over - no way to handle this if it ever occurs.  Most probably
1661          * caused by a new unknown cpu type or after another deadly
1662          * hard/software error.
1663          */
1664         show_regs(regs);
1665         panic("Caught reserved exception %ld - should not happen.",
1666               (regs->cp0_cause & 0x7f) >> 2);
1667 }
1668
1669 static int __initdata l1parity = 1;
1670 static int __init nol1parity(char *s)
1671 {
1672         l1parity = 0;
1673         return 1;
1674 }
1675 __setup("nol1par", nol1parity);
1676 static int __initdata l2parity = 1;
1677 static int __init nol2parity(char *s)
1678 {
1679         l2parity = 0;
1680         return 1;
1681 }
1682 __setup("nol2par", nol2parity);
1683
1684 /*
1685  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1686  * it different ways.
1687  */
1688 static inline __init void parity_protection_init(void)
1689 {
1690 #define ERRCTL_PE       0x80000000
1691 #define ERRCTL_L2P      0x00800000
1692
1693         if (mips_cm_revision() >= CM_REV_CM3) {
1694                 ulong gcr_ectl, cp0_ectl;
1695
1696                 /*
1697                  * With CM3 systems we need to ensure that the L1 & L2
1698                  * parity enables are set to the same value, since this
1699                  * is presumed by the hardware engineers.
1700                  *
1701                  * If the user disabled either of L1 or L2 ECC checking,
1702                  * disable both.
1703                  */
1704                 l1parity &= l2parity;
1705                 l2parity &= l1parity;
1706
1707                 /* Probe L1 ECC support */
1708                 cp0_ectl = read_c0_ecc();
1709                 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1710                 back_to_back_c0_hazard();
1711                 cp0_ectl = read_c0_ecc();
1712
1713                 /* Probe L2 ECC support */
1714                 gcr_ectl = read_gcr_err_control();
1715
1716                 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1717                     !(cp0_ectl & ERRCTL_PE)) {
1718                         /*
1719                          * One of L1 or L2 ECC checking isn't supported,
1720                          * so we cannot enable either.
1721                          */
1722                         l1parity = l2parity = 0;
1723                 }
1724
1725                 /* Configure L1 ECC checking */
1726                 if (l1parity)
1727                         cp0_ectl |= ERRCTL_PE;
1728                 else
1729                         cp0_ectl &= ~ERRCTL_PE;
1730                 write_c0_ecc(cp0_ectl);
1731                 back_to_back_c0_hazard();
1732                 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1733
1734                 /* Configure L2 ECC checking */
1735                 if (l2parity)
1736                         gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1737                 else
1738                         gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1739                 write_gcr_err_control(gcr_ectl);
1740                 gcr_ectl = read_gcr_err_control();
1741                 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1742                 WARN_ON(!!gcr_ectl != l2parity);
1743
1744                 pr_info("Cache parity protection %sabled\n",
1745                         l1parity ? "en" : "dis");
1746                 return;
1747         }
1748
1749         switch (current_cpu_type()) {
1750         case CPU_24K:
1751         case CPU_34K:
1752         case CPU_74K:
1753         case CPU_1004K:
1754         case CPU_1074K:
1755         case CPU_INTERAPTIV:
1756         case CPU_PROAPTIV:
1757         case CPU_P5600:
1758         case CPU_QEMU_GENERIC:
1759         case CPU_P6600:
1760                 {
1761                         unsigned long errctl;
1762                         unsigned int l1parity_present, l2parity_present;
1763
1764                         errctl = read_c0_ecc();
1765                         errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1766
1767                         /* probe L1 parity support */
1768                         write_c0_ecc(errctl | ERRCTL_PE);
1769                         back_to_back_c0_hazard();
1770                         l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1771
1772                         /* probe L2 parity support */
1773                         write_c0_ecc(errctl|ERRCTL_L2P);
1774                         back_to_back_c0_hazard();
1775                         l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1776
1777                         if (l1parity_present && l2parity_present) {
1778                                 if (l1parity)
1779                                         errctl |= ERRCTL_PE;
1780                                 if (l1parity ^ l2parity)
1781                                         errctl |= ERRCTL_L2P;
1782                         } else if (l1parity_present) {
1783                                 if (l1parity)
1784                                         errctl |= ERRCTL_PE;
1785                         } else if (l2parity_present) {
1786                                 if (l2parity)
1787                                         errctl |= ERRCTL_L2P;
1788                         } else {
1789                                 /* No parity available */
1790                         }
1791
1792                         printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1793
1794                         write_c0_ecc(errctl);
1795                         back_to_back_c0_hazard();
1796                         errctl = read_c0_ecc();
1797                         printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1798
1799                         if (l1parity_present)
1800                                 printk(KERN_INFO "Cache parity protection %sabled\n",
1801                                        (errctl & ERRCTL_PE) ? "en" : "dis");
1802
1803                         if (l2parity_present) {
1804                                 if (l1parity_present && l1parity)
1805                                         errctl ^= ERRCTL_L2P;
1806                                 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1807                                        (errctl & ERRCTL_L2P) ? "en" : "dis");
1808                         }
1809                 }
1810                 break;
1811
1812         case CPU_5KC:
1813         case CPU_5KE:
1814         case CPU_LOONGSON32:
1815                 write_c0_ecc(0x80000000);
1816                 back_to_back_c0_hazard();
1817                 /* Set the PE bit (bit 31) in the c0_errctl register. */
1818                 printk(KERN_INFO "Cache parity protection %sabled\n",
1819                        (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1820                 break;
1821         case CPU_20KC:
1822         case CPU_25KF:
1823                 /* Clear the DE bit (bit 16) in the c0_status register. */
1824                 printk(KERN_INFO "Enable cache parity protection for "
1825                        "MIPS 20KC/25KF CPUs.\n");
1826                 clear_c0_status(ST0_DE);
1827                 break;
1828         default:
1829                 break;
1830         }
1831 }
1832
1833 asmlinkage void cache_parity_error(void)
1834 {
1835         const int field = 2 * sizeof(unsigned long);
1836         unsigned int reg_val;
1837
1838         /* For the moment, report the problem and hang. */
1839         printk("Cache error exception:\n");
1840         printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1841         reg_val = read_c0_cacheerr();
1842         printk("c0_cacheerr == %08x\n", reg_val);
1843
1844         printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1845                reg_val & (1<<30) ? "secondary" : "primary",
1846                reg_val & (1<<31) ? "data" : "insn");
1847         if ((cpu_has_mips_r2_r6) &&
1848             ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1849                 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1850                         reg_val & (1<<29) ? "ED " : "",
1851                         reg_val & (1<<28) ? "ET " : "",
1852                         reg_val & (1<<27) ? "ES " : "",
1853                         reg_val & (1<<26) ? "EE " : "",
1854                         reg_val & (1<<25) ? "EB " : "",
1855                         reg_val & (1<<24) ? "EI " : "",
1856                         reg_val & (1<<23) ? "E1 " : "",
1857                         reg_val & (1<<22) ? "E0 " : "");
1858         } else {
1859                 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1860                         reg_val & (1<<29) ? "ED " : "",
1861                         reg_val & (1<<28) ? "ET " : "",
1862                         reg_val & (1<<26) ? "EE " : "",
1863                         reg_val & (1<<25) ? "EB " : "",
1864                         reg_val & (1<<24) ? "EI " : "",
1865                         reg_val & (1<<23) ? "E1 " : "",
1866                         reg_val & (1<<22) ? "E0 " : "");
1867         }
1868         printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1869
1870 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1871         if (reg_val & (1<<22))
1872                 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1873
1874         if (reg_val & (1<<23))
1875                 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1876 #endif
1877
1878         panic("Can't handle the cache error!");
1879 }
1880
1881 asmlinkage void do_ftlb(void)
1882 {
1883         const int field = 2 * sizeof(unsigned long);
1884         unsigned int reg_val;
1885
1886         /* For the moment, report the problem and hang. */
1887         if ((cpu_has_mips_r2_r6) &&
1888             (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1889             ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1890                 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1891                        read_c0_ecc());
1892                 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1893                 reg_val = read_c0_cacheerr();
1894                 pr_err("c0_cacheerr == %08x\n", reg_val);
1895
1896                 if ((reg_val & 0xc0000000) == 0xc0000000) {
1897                         pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1898                 } else {
1899                         pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1900                                reg_val & (1<<30) ? "secondary" : "primary",
1901                                reg_val & (1<<31) ? "data" : "insn");
1902                 }
1903         } else {
1904                 pr_err("FTLB error exception\n");
1905         }
1906         /* Just print the cacheerr bits for now */
1907         cache_parity_error();
1908 }
1909
1910 asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1911 {
1912         u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1913                         LOONGSON_DIAG1_EXCCODE_SHIFT;
1914         enum ctx_state prev_state;
1915
1916         prev_state = exception_enter();
1917
1918         switch (exccode) {
1919         case 0x08:
1920                 /* Undocumented exception, will trigger on certain
1921                  * also-undocumented instructions accessible from userspace.
1922                  * Processor state is not otherwise corrupted, but currently
1923                  * we don't know how to proceed. Maybe there is some
1924                  * undocumented control flag to enable the instructions?
1925                  */
1926                 force_sig(SIGILL);
1927                 break;
1928
1929         default:
1930                 /* None of the other exceptions, documented or not, have
1931                  * further details given; none are encountered in the wild
1932                  * either. Panic in case some of them turn out to be fatal.
1933                  */
1934                 show_regs(regs);
1935                 panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1936         }
1937
1938         exception_exit(prev_state);
1939 }
1940
1941 /*
1942  * SDBBP EJTAG debug exception handler.
1943  * We skip the instruction and return to the next instruction.
1944  */
1945 void ejtag_exception_handler(struct pt_regs *regs)
1946 {
1947         const int field = 2 * sizeof(unsigned long);
1948         unsigned long depc, old_epc, old_ra;
1949         unsigned int debug;
1950
1951         printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1952         depc = read_c0_depc();
1953         debug = read_c0_debug();
1954         printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1955         if (debug & 0x80000000) {
1956                 /*
1957                  * In branch delay slot.
1958                  * We cheat a little bit here and use EPC to calculate the
1959                  * debug return address (DEPC). EPC is restored after the
1960                  * calculation.
1961                  */
1962                 old_epc = regs->cp0_epc;
1963                 old_ra = regs->regs[31];
1964                 regs->cp0_epc = depc;
1965                 compute_return_epc(regs);
1966                 depc = regs->cp0_epc;
1967                 regs->cp0_epc = old_epc;
1968                 regs->regs[31] = old_ra;
1969         } else
1970                 depc += 4;
1971         write_c0_depc(depc);
1972
1973 #if 0
1974         printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1975         write_c0_debug(debug | 0x100);
1976 #endif
1977 }
1978
1979 /*
1980  * NMI exception handler.
1981  * No lock; only written during early bootup by CPU 0.
1982  */
1983 static RAW_NOTIFIER_HEAD(nmi_chain);
1984
1985 int register_nmi_notifier(struct notifier_block *nb)
1986 {
1987         return raw_notifier_chain_register(&nmi_chain, nb);
1988 }
1989
1990 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1991 {
1992         char str[100];
1993
1994         nmi_enter();
1995         raw_notifier_call_chain(&nmi_chain, 0, regs);
1996         bust_spinlocks(1);
1997         snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1998                  smp_processor_id(), regs->cp0_epc);
1999         regs->cp0_epc = read_c0_errorepc();
2000         die(str, regs);
2001         nmi_exit();
2002 }
2003
2004 unsigned long ebase;
2005 EXPORT_SYMBOL_GPL(ebase);
2006 unsigned long exception_handlers[32];
2007 unsigned long vi_handlers[64];
2008
2009 void reserve_exception_space(phys_addr_t addr, unsigned long size)
2010 {
2011         /*
2012          * reserve exception space on CPUs other than CPU0
2013          * is too late, since memblock is unavailable when APs
2014          * up
2015          */
2016         if (smp_processor_id() == 0)
2017                 memblock_reserve(addr, size);
2018 }
2019
2020 void __init *set_except_vector(int n, void *addr)
2021 {
2022         unsigned long handler = (unsigned long) addr;
2023         unsigned long old_handler;
2024
2025 #ifdef CONFIG_CPU_MICROMIPS
2026         /*
2027          * Only the TLB handlers are cache aligned with an even
2028          * address. All other handlers are on an odd address and
2029          * require no modification. Otherwise, MIPS32 mode will
2030          * be entered when handling any TLB exceptions. That
2031          * would be bad...since we must stay in microMIPS mode.
2032          */
2033         if (!(handler & 0x1))
2034                 handler |= 1;
2035 #endif
2036         old_handler = xchg(&exception_handlers[n], handler);
2037
2038         if (n == 0 && cpu_has_divec) {
2039 #ifdef CONFIG_CPU_MICROMIPS
2040                 unsigned long jump_mask = ~((1 << 27) - 1);
2041 #else
2042                 unsigned long jump_mask = ~((1 << 28) - 1);
2043 #endif
2044                 u32 *buf = (u32 *)(ebase + 0x200);
2045                 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2046                         uasm_i_j(&buf, handler & ~jump_mask);
2047                         uasm_i_nop(&buf);
2048                 } else {
2049                         UASM_i_LA(&buf, GPR_K0, handler);
2050                         uasm_i_jr(&buf, GPR_K0);
2051                         uasm_i_nop(&buf);
2052                 }
2053                 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2054         }
2055         return (void *)old_handler;
2056 }
2057
2058 static void do_default_vi(void)
2059 {
2060         show_regs(get_irq_regs());
2061         panic("Caught unexpected vectored interrupt.");
2062 }
2063
2064 void *set_vi_handler(int n, vi_handler_t addr)
2065 {
2066         extern const u8 except_vec_vi[];
2067         extern const u8 except_vec_vi_ori[], except_vec_vi_end[];
2068         extern const u8 rollback_except_vec_vi[];
2069         unsigned long handler;
2070         unsigned long old_handler = vi_handlers[n];
2071         int srssets = current_cpu_data.srsets;
2072         u16 *h;
2073         unsigned char *b;
2074         const u8 *vec_start;
2075         int ori_offset;
2076         int handler_len;
2077
2078         BUG_ON(!cpu_has_veic && !cpu_has_vint);
2079
2080         if (addr == NULL) {
2081                 handler = (unsigned long) do_default_vi;
2082         } else
2083                 handler = (unsigned long) addr;
2084         vi_handlers[n] = handler;
2085
2086         b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2087
2088         if (cpu_has_veic) {
2089                 if (board_bind_eic_interrupt)
2090                         board_bind_eic_interrupt(n, 0);
2091         } else if (cpu_has_vint) {
2092                 /* SRSMap is only defined if shadow sets are implemented */
2093                 if (srssets > 1)
2094                         change_c0_srsmap(0xf << n*4, 0 << n*4);
2095         }
2096
2097         vec_start = using_rollback_handler() ? rollback_except_vec_vi :
2098                                                except_vec_vi;
2099 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2100         ori_offset = except_vec_vi_ori - vec_start + 2;
2101 #else
2102         ori_offset = except_vec_vi_ori - vec_start;
2103 #endif
2104         handler_len = except_vec_vi_end - vec_start;
2105
2106         if (handler_len > VECTORSPACING) {
2107                 /*
2108                  * Sigh... panicing won't help as the console
2109                  * is probably not configured :(
2110                  */
2111                 panic("VECTORSPACING too small");
2112         }
2113
2114         set_handler(((unsigned long)b - ebase), vec_start,
2115 #ifdef CONFIG_CPU_MICROMIPS
2116                         (handler_len - 1));
2117 #else
2118                         handler_len);
2119 #endif
2120         /* insert offset into vi_handlers[] */
2121         h = (u16 *)(b + ori_offset);
2122         *h = n * sizeof(handler);
2123         local_flush_icache_range((unsigned long)b,
2124                                  (unsigned long)(b+handler_len));
2125
2126         return (void *)old_handler;
2127 }
2128
2129 /*
2130  * Timer interrupt
2131  */
2132 int cp0_compare_irq;
2133 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2134 int cp0_compare_irq_shift;
2135
2136 /*
2137  * Performance counter IRQ or -1 if shared with timer
2138  */
2139 int cp0_perfcount_irq;
2140 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2141
2142 /*
2143  * Fast debug channel IRQ or -1 if not present
2144  */
2145 int cp0_fdc_irq;
2146 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2147
2148 static int noulri;
2149
2150 static int __init ulri_disable(char *s)
2151 {
2152         pr_info("Disabling ulri\n");
2153         noulri = 1;
2154
2155         return 1;
2156 }
2157 __setup("noulri", ulri_disable);
2158
2159 /* configure STATUS register */
2160 static void configure_status(void)
2161 {
2162         /*
2163          * Disable coprocessors and select 32-bit or 64-bit addressing
2164          * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2165          * flag that some firmware may have left set and the TS bit (for
2166          * IP27).  Set XX for ISA IV code to work.
2167          */
2168         unsigned int status_set = ST0_KERNEL_CUMASK;
2169 #ifdef CONFIG_64BIT
2170         status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2171 #endif
2172         if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2173                 status_set |= ST0_XX;
2174         if (cpu_has_dsp)
2175                 status_set |= ST0_MX;
2176
2177         change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2178                          status_set);
2179         back_to_back_c0_hazard();
2180 }
2181
2182 unsigned int hwrena;
2183 EXPORT_SYMBOL_GPL(hwrena);
2184
2185 /* configure HWRENA register */
2186 static void configure_hwrena(void)
2187 {
2188         hwrena = cpu_hwrena_impl_bits;
2189
2190         if (cpu_has_mips_r2_r6)
2191                 hwrena |= MIPS_HWRENA_CPUNUM |
2192                           MIPS_HWRENA_SYNCISTEP |
2193                           MIPS_HWRENA_CC |
2194                           MIPS_HWRENA_CCRES;
2195
2196         if (!noulri && cpu_has_userlocal)
2197                 hwrena |= MIPS_HWRENA_ULR;
2198
2199         if (hwrena)
2200                 write_c0_hwrena(hwrena);
2201 }
2202
2203 static void configure_exception_vector(void)
2204 {
2205         if (cpu_has_mips_r2_r6) {
2206                 unsigned long sr = set_c0_status(ST0_BEV);
2207                 /* If available, use WG to set top bits of EBASE */
2208                 if (cpu_has_ebase_wg) {
2209 #ifdef CONFIG_64BIT
2210                         write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2211 #else
2212                         write_c0_ebase(ebase | MIPS_EBASE_WG);
2213 #endif
2214                 }
2215                 write_c0_ebase(ebase);
2216                 write_c0_status(sr);
2217         }
2218         if (cpu_has_veic || cpu_has_vint) {
2219                 /* Setting vector spacing enables EI/VI mode  */
2220                 change_c0_intctl(0x3e0, VECTORSPACING);
2221         }
2222         if (cpu_has_divec) {
2223                 if (cpu_has_mipsmt) {
2224                         unsigned int vpflags = dvpe();
2225                         set_c0_cause(CAUSEF_IV);
2226                         evpe(vpflags);
2227                 } else
2228                         set_c0_cause(CAUSEF_IV);
2229         }
2230 }
2231
2232 void per_cpu_trap_init(bool is_boot_cpu)
2233 {
2234         unsigned int cpu = smp_processor_id();
2235
2236         configure_status();
2237         configure_hwrena();
2238
2239         configure_exception_vector();
2240
2241         /*
2242          * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2243          *
2244          *  o read IntCtl.IPTI to determine the timer interrupt
2245          *  o read IntCtl.IPPCI to determine the performance counter interrupt
2246          *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2247          */
2248         if (cpu_has_mips_r2_r6) {
2249                 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2250                 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2251                 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2252                 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2253                 if (!cp0_fdc_irq)
2254                         cp0_fdc_irq = -1;
2255
2256         } else {
2257                 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2258                 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2259                 cp0_perfcount_irq = -1;
2260                 cp0_fdc_irq = -1;
2261         }
2262
2263         if (cpu_has_mmid)
2264                 cpu_data[cpu].asid_cache = 0;
2265         else if (!cpu_data[cpu].asid_cache)
2266                 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2267
2268         mmgrab(&init_mm);
2269         current->active_mm = &init_mm;
2270         BUG_ON(current->mm);
2271         enter_lazy_tlb(&init_mm, current);
2272
2273         /* Boot CPU's cache setup in setup_arch(). */
2274         if (!is_boot_cpu)
2275                 cpu_cache_init();
2276         tlb_init();
2277         TLBMISS_HANDLER_SETUP();
2278 }
2279
2280 /* Install CPU exception handler */
2281 void set_handler(unsigned long offset, const void *addr, unsigned long size)
2282 {
2283 #ifdef CONFIG_CPU_MICROMIPS
2284         memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2285 #else
2286         memcpy((void *)(ebase + offset), addr, size);
2287 #endif
2288         local_flush_icache_range(ebase + offset, ebase + offset + size);
2289 }
2290
2291 static const char panic_null_cerr[] =
2292         "Trying to set NULL cache error exception handler\n";
2293
2294 /*
2295  * Install uncached CPU exception handler.
2296  * This is suitable only for the cache error exception which is the only
2297  * exception handler that is being run uncached.
2298  */
2299 void set_uncached_handler(unsigned long offset, void *addr,
2300         unsigned long size)
2301 {
2302         unsigned long uncached_ebase = CKSEG1ADDR_OR_64BIT(__pa(ebase));
2303
2304         if (!addr)
2305                 panic(panic_null_cerr);
2306
2307         memcpy((void *)(uncached_ebase + offset), addr, size);
2308 }
2309
2310 static int __initdata rdhwr_noopt;
2311 static int __init set_rdhwr_noopt(char *str)
2312 {
2313         rdhwr_noopt = 1;
2314         return 1;
2315 }
2316
2317 __setup("rdhwr_noopt", set_rdhwr_noopt);
2318
2319 void __init trap_init(void)
2320 {
2321         extern char except_vec3_generic;
2322         extern char except_vec4;
2323         extern char except_vec3_r4000;
2324         unsigned long i, vec_size;
2325         phys_addr_t ebase_pa;
2326
2327         check_wait();
2328
2329         if (!cpu_has_mips_r2_r6) {
2330                 ebase = CAC_BASE;
2331                 vec_size = 0x400;
2332         } else {
2333                 if (cpu_has_veic || cpu_has_vint)
2334                         vec_size = 0x200 + VECTORSPACING*64;
2335                 else
2336                         vec_size = PAGE_SIZE;
2337
2338                 ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2339                 if (!ebase_pa)
2340                         panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2341                               __func__, vec_size, 1 << fls(vec_size));
2342
2343                 /*
2344                  * Try to ensure ebase resides in KSeg0 if possible.
2345                  *
2346                  * It shouldn't generally be in XKPhys on MIPS64 to avoid
2347                  * hitting a poorly defined exception base for Cache Errors.
2348                  * The allocation is likely to be in the low 512MB of physical,
2349                  * in which case we should be able to convert to KSeg0.
2350                  *
2351                  * EVA is special though as it allows segments to be rearranged
2352                  * and to become uncached during cache error handling.
2353                  */
2354                 if (!IS_ENABLED(CONFIG_EVA) && ebase_pa < 0x20000000)
2355                         ebase = CKSEG0ADDR(ebase_pa);
2356                 else
2357                         ebase = (unsigned long)phys_to_virt(ebase_pa);
2358                 if (ebase_pa >= 0x20000000)
2359                         pr_warn("ebase(%pa) should better be in KSeg0",
2360                                 &ebase_pa);
2361         }
2362
2363         if (cpu_has_mmips) {
2364                 unsigned int config3 = read_c0_config3();
2365
2366                 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2367                         write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2368                 else
2369                         write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2370         }
2371
2372         if (board_ebase_setup)
2373                 board_ebase_setup();
2374         per_cpu_trap_init(true);
2375         memblock_set_bottom_up(false);
2376
2377         /*
2378          * Copy the generic exception handlers to their final destination.
2379          * This will be overridden later as suitable for a particular
2380          * configuration.
2381          */
2382         set_handler(0x180, &except_vec3_generic, 0x80);
2383
2384         /*
2385          * Setup default vectors
2386          */
2387         for (i = 0; i <= 31; i++)
2388                 set_except_vector(i, handle_reserved);
2389
2390         /*
2391          * Copy the EJTAG debug exception vector handler code to its final
2392          * destination.
2393          */
2394         if (cpu_has_ejtag && board_ejtag_handler_setup)
2395                 board_ejtag_handler_setup();
2396
2397         /*
2398          * Only some CPUs have the watch exceptions.
2399          */
2400         if (cpu_has_watch)
2401                 set_except_vector(EXCCODE_WATCH, handle_watch);
2402
2403         /*
2404          * Initialise interrupt handlers
2405          */
2406         if (cpu_has_veic || cpu_has_vint) {
2407                 int nvec = cpu_has_veic ? 64 : 8;
2408                 for (i = 0; i < nvec; i++)
2409                         set_vi_handler(i, NULL);
2410         }
2411         else if (cpu_has_divec)
2412                 set_handler(0x200, &except_vec4, 0x8);
2413
2414         /*
2415          * Some CPUs can enable/disable for cache parity detection, but does
2416          * it different ways.
2417          */
2418         parity_protection_init();
2419
2420         /*
2421          * The Data Bus Errors / Instruction Bus Errors are signaled
2422          * by external hardware.  Therefore these two exceptions
2423          * may have board specific handlers.
2424          */
2425         if (board_be_init)
2426                 board_be_init();
2427
2428         set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2429                                         rollback_handle_int : handle_int);
2430         set_except_vector(EXCCODE_MOD, handle_tlbm);
2431         set_except_vector(EXCCODE_TLBL, handle_tlbl);
2432         set_except_vector(EXCCODE_TLBS, handle_tlbs);
2433
2434         set_except_vector(EXCCODE_ADEL, handle_adel);
2435         set_except_vector(EXCCODE_ADES, handle_ades);
2436
2437         set_except_vector(EXCCODE_IBE, handle_ibe);
2438         set_except_vector(EXCCODE_DBE, handle_dbe);
2439
2440         set_except_vector(EXCCODE_SYS, handle_sys);
2441         set_except_vector(EXCCODE_BP, handle_bp);
2442
2443         if (rdhwr_noopt)
2444                 set_except_vector(EXCCODE_RI, handle_ri);
2445         else {
2446                 if (cpu_has_vtag_icache)
2447                         set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2448                 else if (current_cpu_type() == CPU_LOONGSON64)
2449                         set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2450                 else
2451                         set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2452         }
2453
2454         set_except_vector(EXCCODE_CPU, handle_cpu);
2455         set_except_vector(EXCCODE_OV, handle_ov);
2456         set_except_vector(EXCCODE_TR, handle_tr);
2457         set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2458
2459         if (board_nmi_handler_setup)
2460                 board_nmi_handler_setup();
2461
2462         if (cpu_has_fpu && !cpu_has_nofpuex)
2463                 set_except_vector(EXCCODE_FPE, handle_fpe);
2464
2465         if (cpu_has_ftlbparex)
2466                 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2467
2468         if (cpu_has_gsexcex)
2469                 set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2470
2471         if (cpu_has_rixiex) {
2472                 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2473                 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2474         }
2475
2476         set_except_vector(EXCCODE_MSADIS, handle_msa);
2477         set_except_vector(EXCCODE_MDMX, handle_mdmx);
2478
2479         if (cpu_has_mcheck)
2480                 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2481
2482         if (cpu_has_mipsmt)
2483                 set_except_vector(EXCCODE_THREAD, handle_mt);
2484
2485         set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2486
2487         if (board_cache_error_setup)
2488                 board_cache_error_setup();
2489
2490         if (cpu_has_vce)
2491                 /* Special exception: R4[04]00 uses also the divec space. */
2492                 set_handler(0x180, &except_vec3_r4000, 0x100);
2493         else if (cpu_has_4kex)
2494                 set_handler(0x180, &except_vec3_generic, 0x80);
2495         else
2496                 set_handler(0x080, &except_vec3_generic, 0x80);
2497
2498         local_flush_icache_range(ebase, ebase + vec_size);
2499
2500         sort_extable(__start___dbe_table, __stop___dbe_table);
2501
2502         cu2_notifier(default_cu2_call, 0x80000000);     /* Run last  */
2503 }
2504
2505 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2506                             void *v)
2507 {
2508         switch (cmd) {
2509         case CPU_PM_ENTER_FAILED:
2510         case CPU_PM_EXIT:
2511                 configure_status();
2512                 configure_hwrena();
2513                 configure_exception_vector();
2514
2515                 /* Restore register with CPU number for TLB handlers */
2516                 TLBMISS_HANDLER_RESTORE();
2517
2518                 break;
2519         }
2520
2521         return NOTIFY_OK;
2522 }
2523
2524 static struct notifier_block trap_pm_notifier_block = {
2525         .notifier_call = trap_pm_notifier,
2526 };
2527
2528 static int __init trap_pm_init(void)
2529 {
2530         return cpu_pm_register_notifier(&trap_pm_notifier_block);
2531 }
2532 arch_initcall(trap_pm_init);