arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / arch / mips / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Copyright (C) 2000, 2001 Kanoj Sarcar
5  * Copyright (C) 2000, 2001 Ralf Baechle
6  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
7  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
8  */
9 #include <linux/cache.h>
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/smp.h>
14 #include <linux/spinlock.h>
15 #include <linux/threads.h>
16 #include <linux/export.h>
17 #include <linux/time.h>
18 #include <linux/timex.h>
19 #include <linux/sched/mm.h>
20 #include <linux/cpumask.h>
21 #include <linux/cpu.h>
22 #include <linux/err.h>
23 #include <linux/ftrace.h>
24 #include <linux/irqdomain.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27
28 #include <linux/atomic.h>
29 #include <asm/cpu.h>
30 #include <asm/ginvt.h>
31 #include <asm/processor.h>
32 #include <asm/idle.h>
33 #include <asm/r4k-timer.h>
34 #include <asm/mips-cps.h>
35 #include <asm/mmu_context.h>
36 #include <asm/time.h>
37 #include <asm/setup.h>
38 #include <asm/maar.h>
39
40 int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
41 EXPORT_SYMBOL(__cpu_number_map);
42
43 int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
44 EXPORT_SYMBOL(__cpu_logical_map);
45
46 /* Number of TCs (or siblings in Intel speak) per CPU core */
47 int smp_num_siblings = 1;
48 EXPORT_SYMBOL(smp_num_siblings);
49
50 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
51 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
52 EXPORT_SYMBOL(cpu_sibling_map);
53
54 /* representing the core map of multi-core chips of each logical CPU */
55 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
56 EXPORT_SYMBOL(cpu_core_map);
57
58 static DECLARE_COMPLETION(cpu_starting);
59 static DECLARE_COMPLETION(cpu_running);
60
61 /*
62  * A logical cpu mask containing only one VPE per core to
63  * reduce the number of IPIs on large MT systems.
64  */
65 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
66 EXPORT_SYMBOL(cpu_foreign_map);
67
68 /* representing cpus for which sibling maps can be computed */
69 static cpumask_t cpu_sibling_setup_map;
70
71 /* representing cpus for which core maps can be computed */
72 static cpumask_t cpu_core_setup_map;
73
74 cpumask_t cpu_coherent_mask;
75
76 unsigned int smp_max_threads __initdata = UINT_MAX;
77
78 static int __init early_nosmt(char *s)
79 {
80         smp_max_threads = 1;
81         return 0;
82 }
83 early_param("nosmt", early_nosmt);
84
85 static int __init early_smt(char *s)
86 {
87         get_option(&s, &smp_max_threads);
88         /* Ensure at least one thread is available */
89         smp_max_threads = clamp_val(smp_max_threads, 1U, UINT_MAX);
90         return 0;
91 }
92 early_param("smt", early_smt);
93
94 #ifdef CONFIG_GENERIC_IRQ_IPI
95 static struct irq_desc *call_desc;
96 static struct irq_desc *sched_desc;
97 #endif
98
99 static inline void set_cpu_sibling_map(int cpu)
100 {
101         int i;
102
103         cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
104
105         if (smp_num_siblings > 1) {
106                 for_each_cpu(i, &cpu_sibling_setup_map) {
107                         if (cpus_are_siblings(cpu, i)) {
108                                 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
109                                 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
110                         }
111                 }
112         } else
113                 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
114 }
115
116 static inline void set_cpu_core_map(int cpu)
117 {
118         int i;
119
120         cpumask_set_cpu(cpu, &cpu_core_setup_map);
121
122         for_each_cpu(i, &cpu_core_setup_map) {
123                 if (cpu_data[cpu].package == cpu_data[i].package) {
124                         cpumask_set_cpu(i, &cpu_core_map[cpu]);
125                         cpumask_set_cpu(cpu, &cpu_core_map[i]);
126                 }
127         }
128 }
129
130 /*
131  * Calculate a new cpu_foreign_map mask whenever a
132  * new cpu appears or disappears.
133  */
134 void calculate_cpu_foreign_map(void)
135 {
136         int i, k, core_present;
137         cpumask_t temp_foreign_map;
138
139         /* Re-calculate the mask */
140         cpumask_clear(&temp_foreign_map);
141         for_each_online_cpu(i) {
142                 core_present = 0;
143                 for_each_cpu(k, &temp_foreign_map)
144                         if (cpus_are_siblings(i, k))
145                                 core_present = 1;
146                 if (!core_present)
147                         cpumask_set_cpu(i, &temp_foreign_map);
148         }
149
150         for_each_online_cpu(i)
151                 cpumask_andnot(&cpu_foreign_map[i],
152                                &temp_foreign_map, &cpu_sibling_map[i]);
153 }
154
155 const struct plat_smp_ops *mp_ops;
156 EXPORT_SYMBOL(mp_ops);
157
158 void register_smp_ops(const struct plat_smp_ops *ops)
159 {
160         if (mp_ops)
161                 printk(KERN_WARNING "Overriding previously set SMP ops\n");
162
163         mp_ops = ops;
164 }
165
166 #ifdef CONFIG_GENERIC_IRQ_IPI
167 void mips_smp_send_ipi_single(int cpu, unsigned int action)
168 {
169         mips_smp_send_ipi_mask(cpumask_of(cpu), action);
170 }
171
172 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
173 {
174         unsigned long flags;
175         unsigned int core;
176         int cpu;
177
178         local_irq_save(flags);
179
180         switch (action) {
181         case SMP_CALL_FUNCTION:
182                 __ipi_send_mask(call_desc, mask);
183                 break;
184
185         case SMP_RESCHEDULE_YOURSELF:
186                 __ipi_send_mask(sched_desc, mask);
187                 break;
188
189         default:
190                 BUG();
191         }
192
193         if (mips_cpc_present()) {
194                 for_each_cpu(cpu, mask) {
195                         if (cpus_are_siblings(cpu, smp_processor_id()))
196                                 continue;
197
198                         core = cpu_core(&cpu_data[cpu]);
199
200                         while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
201                                 mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
202                                 mips_cpc_lock_other(core);
203                                 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
204                                 mips_cpc_unlock_other();
205                                 mips_cm_unlock_other();
206                         }
207                 }
208         }
209
210         local_irq_restore(flags);
211 }
212
213
214 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
215 {
216         scheduler_ipi();
217
218         return IRQ_HANDLED;
219 }
220
221 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
222 {
223         generic_smp_call_function_interrupt();
224
225         return IRQ_HANDLED;
226 }
227
228 static void smp_ipi_init_one(unsigned int virq, const char *name,
229                              irq_handler_t handler)
230 {
231         int ret;
232
233         irq_set_handler(virq, handle_percpu_irq);
234         ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL);
235         BUG_ON(ret);
236 }
237
238 static unsigned int call_virq, sched_virq;
239
240 int mips_smp_ipi_allocate(const struct cpumask *mask)
241 {
242         int virq;
243         struct irq_domain *ipidomain;
244         struct device_node *node;
245
246         node = of_irq_find_parent(of_root);
247         ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
248
249         /*
250          * Some platforms have half DT setup. So if we found irq node but
251          * didn't find an ipidomain, try to search for one that is not in the
252          * DT.
253          */
254         if (node && !ipidomain)
255                 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
256
257         /*
258          * There are systems which use IPI IRQ domains, but only have one
259          * registered when some runtime condition is met. For example a Malta
260          * kernel may include support for GIC & CPU interrupt controller IPI
261          * IRQ domains, but if run on a system with no GIC & no MT ASE then
262          * neither will be supported or registered.
263          *
264          * We only have a problem if we're actually using multiple CPUs so fail
265          * loudly if that is the case. Otherwise simply return, skipping IPI
266          * setup, if we're running with only a single CPU.
267          */
268         if (!ipidomain) {
269                 BUG_ON(num_present_cpus() > 1);
270                 return 0;
271         }
272
273         virq = irq_reserve_ipi(ipidomain, mask);
274         BUG_ON(!virq);
275         if (!call_virq)
276                 call_virq = virq;
277
278         virq = irq_reserve_ipi(ipidomain, mask);
279         BUG_ON(!virq);
280         if (!sched_virq)
281                 sched_virq = virq;
282
283         if (irq_domain_is_ipi_per_cpu(ipidomain)) {
284                 int cpu;
285
286                 for_each_cpu(cpu, mask) {
287                         smp_ipi_init_one(call_virq + cpu, "IPI call",
288                                          ipi_call_interrupt);
289                         smp_ipi_init_one(sched_virq + cpu, "IPI resched",
290                                          ipi_resched_interrupt);
291                 }
292         } else {
293                 smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt);
294                 smp_ipi_init_one(sched_virq, "IPI resched",
295                                  ipi_resched_interrupt);
296         }
297
298         return 0;
299 }
300
301 int mips_smp_ipi_free(const struct cpumask *mask)
302 {
303         struct irq_domain *ipidomain;
304         struct device_node *node;
305
306         node = of_irq_find_parent(of_root);
307         ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
308
309         /*
310          * Some platforms have half DT setup. So if we found irq node but
311          * didn't find an ipidomain, try to search for one that is not in the
312          * DT.
313          */
314         if (node && !ipidomain)
315                 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
316
317         BUG_ON(!ipidomain);
318
319         if (irq_domain_is_ipi_per_cpu(ipidomain)) {
320                 int cpu;
321
322                 for_each_cpu(cpu, mask) {
323                         free_irq(call_virq + cpu, NULL);
324                         free_irq(sched_virq + cpu, NULL);
325                 }
326         }
327         irq_destroy_ipi(call_virq, mask);
328         irq_destroy_ipi(sched_virq, mask);
329         return 0;
330 }
331
332
333 static int __init mips_smp_ipi_init(void)
334 {
335         if (num_possible_cpus() == 1)
336                 return 0;
337
338         mips_smp_ipi_allocate(cpu_possible_mask);
339
340         call_desc = irq_to_desc(call_virq);
341         sched_desc = irq_to_desc(sched_virq);
342
343         return 0;
344 }
345 early_initcall(mips_smp_ipi_init);
346 #endif
347
348 /*
349  * First C code run on the secondary CPUs after being started up by
350  * the master.
351  */
352 asmlinkage void start_secondary(void)
353 {
354         unsigned int cpu = raw_smp_processor_id();
355
356         cpu_probe();
357         per_cpu_trap_init(false);
358         rcutree_report_cpu_starting(cpu);
359         mips_clockevent_init();
360         mp_ops->init_secondary();
361         cpu_report();
362         maar_init();
363
364         /*
365          * XXX parity protection should be folded in here when it's converted
366          * to an option instead of something based on .cputype
367          */
368
369         calibrate_delay();
370         cpu_data[cpu].udelay_val = loops_per_jiffy;
371
372         set_cpu_sibling_map(cpu);
373         set_cpu_core_map(cpu);
374
375         cpumask_set_cpu(cpu, &cpu_coherent_mask);
376         notify_cpu_starting(cpu);
377
378         /* Notify boot CPU that we're starting & ready to sync counters */
379         complete(&cpu_starting);
380
381         synchronise_count_slave(cpu);
382
383         /* The CPU is running and counters synchronised, now mark it online */
384         set_cpu_online(cpu, true);
385
386         calculate_cpu_foreign_map();
387
388         /*
389          * Notify boot CPU that we're up & online and it can safely return
390          * from __cpu_up
391          */
392         complete(&cpu_running);
393
394         /*
395          * irq will be enabled in ->smp_finish(), enabling it too early
396          * is dangerous.
397          */
398         WARN_ON_ONCE(!irqs_disabled());
399         mp_ops->smp_finish();
400
401         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
402 }
403
404 static void stop_this_cpu(void *dummy)
405 {
406         /*
407          * Remove this CPU:
408          */
409
410         set_cpu_online(smp_processor_id(), false);
411         calculate_cpu_foreign_map();
412         local_irq_disable();
413         while (1);
414 }
415
416 void smp_send_stop(void)
417 {
418         smp_call_function(stop_this_cpu, NULL, 0);
419 }
420
421 void __init smp_cpus_done(unsigned int max_cpus)
422 {
423 }
424
425 /* called from main before smp_init() */
426 void __init smp_prepare_cpus(unsigned int max_cpus)
427 {
428         init_new_context(current, &init_mm);
429         current_thread_info()->cpu = 0;
430         mp_ops->prepare_cpus(max_cpus);
431         set_cpu_sibling_map(0);
432         set_cpu_core_map(0);
433         calculate_cpu_foreign_map();
434 #ifndef CONFIG_HOTPLUG_CPU
435         init_cpu_present(cpu_possible_mask);
436 #endif
437         cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
438 }
439
440 /* preload SMP state for boot cpu */
441 void smp_prepare_boot_cpu(void)
442 {
443         if (mp_ops->prepare_boot_cpu)
444                 mp_ops->prepare_boot_cpu();
445         set_cpu_possible(0, true);
446         set_cpu_online(0, true);
447 }
448
449 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
450 {
451         int err;
452
453         err = mp_ops->boot_secondary(cpu, tidle);
454         if (err)
455                 return err;
456
457         /* Wait for CPU to start and be ready to sync counters */
458         if (!wait_for_completion_timeout(&cpu_starting,
459                                          msecs_to_jiffies(1000))) {
460                 pr_crit("CPU%u: failed to start\n", cpu);
461                 return -EIO;
462         }
463
464         synchronise_count_master(cpu);
465
466         /* Wait for CPU to finish startup & mark itself online before return */
467         wait_for_completion(&cpu_running);
468         return 0;
469 }
470
471 /* Not really SMP stuff ... */
472 int setup_profiling_timer(unsigned int multiplier)
473 {
474         return 0;
475 }
476
477 static void flush_tlb_all_ipi(void *info)
478 {
479         local_flush_tlb_all();
480 }
481
482 void flush_tlb_all(void)
483 {
484         if (cpu_has_mmid) {
485                 htw_stop();
486                 ginvt_full();
487                 sync_ginv();
488                 instruction_hazard();
489                 htw_start();
490                 return;
491         }
492
493         on_each_cpu(flush_tlb_all_ipi, NULL, 1);
494 }
495
496 static void flush_tlb_mm_ipi(void *mm)
497 {
498         drop_mmu_context((struct mm_struct *)mm);
499 }
500
501 /*
502  * Special Variant of smp_call_function for use by TLB functions:
503  *
504  *  o No return value
505  *  o collapses to normal function call on UP kernels
506  *  o collapses to normal function call on systems with a single shared
507  *    primary cache.
508  */
509 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
510 {
511         smp_call_function(func, info, 1);
512 }
513
514 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
515 {
516         preempt_disable();
517
518         smp_on_other_tlbs(func, info);
519         func(info);
520
521         preempt_enable();
522 }
523
524 /*
525  * The following tlb flush calls are invoked when old translations are
526  * being torn down, or pte attributes are changing. For single threaded
527  * address spaces, a new context is obtained on the current cpu, and tlb
528  * context on other cpus are invalidated to force a new context allocation
529  * at switch_mm time, should the mm ever be used on other cpus. For
530  * multithreaded address spaces, inter-CPU interrupts have to be sent.
531  * Another case where inter-CPU interrupts are required is when the target
532  * mm might be active on another cpu (eg debuggers doing the flushes on
533  * behalf of debugees, kswapd stealing pages from another process etc).
534  * Kanoj 07/00.
535  */
536
537 void flush_tlb_mm(struct mm_struct *mm)
538 {
539         if (!mm)
540                 return;
541
542         if (atomic_read(&mm->mm_users) == 0)
543                 return;         /* happens as a result of exit_mmap() */
544
545         preempt_disable();
546
547         if (cpu_has_mmid) {
548                 /*
549                  * No need to worry about other CPUs - the ginvt in
550                  * drop_mmu_context() will be globalized.
551                  */
552         } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
553                 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
554         } else {
555                 unsigned int cpu;
556
557                 for_each_online_cpu(cpu) {
558                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
559                                 set_cpu_context(cpu, mm, 0);
560                 }
561         }
562         drop_mmu_context(mm);
563
564         preempt_enable();
565 }
566
567 struct flush_tlb_data {
568         struct vm_area_struct *vma;
569         unsigned long addr1;
570         unsigned long addr2;
571 };
572
573 static void flush_tlb_range_ipi(void *info)
574 {
575         struct flush_tlb_data *fd = info;
576
577         local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
578 }
579
580 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
581 {
582         struct mm_struct *mm = vma->vm_mm;
583         unsigned long addr;
584         u32 old_mmid;
585
586         preempt_disable();
587         if (cpu_has_mmid) {
588                 htw_stop();
589                 old_mmid = read_c0_memorymapid();
590                 write_c0_memorymapid(cpu_asid(0, mm));
591                 mtc0_tlbw_hazard();
592                 addr = round_down(start, PAGE_SIZE * 2);
593                 end = round_up(end, PAGE_SIZE * 2);
594                 do {
595                         ginvt_va_mmid(addr);
596                         sync_ginv();
597                         addr += PAGE_SIZE * 2;
598                 } while (addr < end);
599                 write_c0_memorymapid(old_mmid);
600                 instruction_hazard();
601                 htw_start();
602         } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
603                 struct flush_tlb_data fd = {
604                         .vma = vma,
605                         .addr1 = start,
606                         .addr2 = end,
607                 };
608
609                 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
610                 local_flush_tlb_range(vma, start, end);
611         } else {
612                 unsigned int cpu;
613                 int exec = vma->vm_flags & VM_EXEC;
614
615                 for_each_online_cpu(cpu) {
616                         /*
617                          * flush_cache_range() will only fully flush icache if
618                          * the VMA is executable, otherwise we must invalidate
619                          * ASID without it appearing to has_valid_asid() as if
620                          * mm has been completely unused by that CPU.
621                          */
622                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
623                                 set_cpu_context(cpu, mm, !exec);
624                 }
625                 local_flush_tlb_range(vma, start, end);
626         }
627         preempt_enable();
628 }
629
630 static void flush_tlb_kernel_range_ipi(void *info)
631 {
632         struct flush_tlb_data *fd = info;
633
634         local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
635 }
636
637 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
638 {
639         struct flush_tlb_data fd = {
640                 .addr1 = start,
641                 .addr2 = end,
642         };
643
644         on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
645 }
646
647 static void flush_tlb_page_ipi(void *info)
648 {
649         struct flush_tlb_data *fd = info;
650
651         local_flush_tlb_page(fd->vma, fd->addr1);
652 }
653
654 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
655 {
656         u32 old_mmid;
657
658         preempt_disable();
659         if (cpu_has_mmid) {
660                 htw_stop();
661                 old_mmid = read_c0_memorymapid();
662                 write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
663                 mtc0_tlbw_hazard();
664                 ginvt_va_mmid(page);
665                 sync_ginv();
666                 write_c0_memorymapid(old_mmid);
667                 instruction_hazard();
668                 htw_start();
669         } else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
670                    (current->mm != vma->vm_mm)) {
671                 struct flush_tlb_data fd = {
672                         .vma = vma,
673                         .addr1 = page,
674                 };
675
676                 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
677                 local_flush_tlb_page(vma, page);
678         } else {
679                 unsigned int cpu;
680
681                 for_each_online_cpu(cpu) {
682                         /*
683                          * flush_cache_page() only does partial flushes, so
684                          * invalidate ASID without it appearing to
685                          * has_valid_asid() as if mm has been completely unused
686                          * by that CPU.
687                          */
688                         if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
689                                 set_cpu_context(cpu, vma->vm_mm, 1);
690                 }
691                 local_flush_tlb_page(vma, page);
692         }
693         preempt_enable();
694 }
695
696 static void flush_tlb_one_ipi(void *info)
697 {
698         unsigned long vaddr = (unsigned long) info;
699
700         local_flush_tlb_one(vaddr);
701 }
702
703 void flush_tlb_one(unsigned long vaddr)
704 {
705         smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
706 }
707
708 EXPORT_SYMBOL(flush_tlb_page);
709 EXPORT_SYMBOL(flush_tlb_one);
710
711 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
712 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
713 {
714         if (mp_ops->cleanup_dead_cpu)
715                 mp_ops->cleanup_dead_cpu(cpu);
716 }
717 #endif
718
719 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
720
721 static void tick_broadcast_callee(void *info)
722 {
723         tick_receive_broadcast();
724 }
725
726 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) =
727         CSD_INIT(tick_broadcast_callee, NULL);
728
729 void tick_broadcast(const struct cpumask *mask)
730 {
731         call_single_data_t *csd;
732         int cpu;
733
734         for_each_cpu(cpu, mask) {
735                 csd = &per_cpu(tick_broadcast_csd, cpu);
736                 smp_call_function_single_async(cpu, csd);
737         }
738 }
739
740 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */