GNU Linux-libre 6.1.90-gnu
[releases.git] / arch / mips / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Copyright (C) 2000, 2001 Kanoj Sarcar
5  * Copyright (C) 2000, 2001 Ralf Baechle
6  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
7  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
8  */
9 #include <linux/cache.h>
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/smp.h>
14 #include <linux/spinlock.h>
15 #include <linux/threads.h>
16 #include <linux/export.h>
17 #include <linux/time.h>
18 #include <linux/timex.h>
19 #include <linux/sched/mm.h>
20 #include <linux/cpumask.h>
21 #include <linux/cpu.h>
22 #include <linux/err.h>
23 #include <linux/ftrace.h>
24 #include <linux/irqdomain.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27
28 #include <linux/atomic.h>
29 #include <asm/cpu.h>
30 #include <asm/ginvt.h>
31 #include <asm/processor.h>
32 #include <asm/idle.h>
33 #include <asm/r4k-timer.h>
34 #include <asm/mips-cps.h>
35 #include <asm/mmu_context.h>
36 #include <asm/time.h>
37 #include <asm/setup.h>
38 #include <asm/maar.h>
39
40 int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
41 EXPORT_SYMBOL(__cpu_number_map);
42
43 int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
44 EXPORT_SYMBOL(__cpu_logical_map);
45
46 /* Number of TCs (or siblings in Intel speak) per CPU core */
47 int smp_num_siblings = 1;
48 EXPORT_SYMBOL(smp_num_siblings);
49
50 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
51 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
52 EXPORT_SYMBOL(cpu_sibling_map);
53
54 /* representing the core map of multi-core chips of each logical CPU */
55 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
56 EXPORT_SYMBOL(cpu_core_map);
57
58 static DECLARE_COMPLETION(cpu_starting);
59 static DECLARE_COMPLETION(cpu_running);
60
61 /*
62  * A logical cpu mask containing only one VPE per core to
63  * reduce the number of IPIs on large MT systems.
64  */
65 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
66 EXPORT_SYMBOL(cpu_foreign_map);
67
68 /* representing cpus for which sibling maps can be computed */
69 static cpumask_t cpu_sibling_setup_map;
70
71 /* representing cpus for which core maps can be computed */
72 static cpumask_t cpu_core_setup_map;
73
74 cpumask_t cpu_coherent_mask;
75
76 #ifdef CONFIG_GENERIC_IRQ_IPI
77 static struct irq_desc *call_desc;
78 static struct irq_desc *sched_desc;
79 #endif
80
81 static inline void set_cpu_sibling_map(int cpu)
82 {
83         int i;
84
85         cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
86
87         if (smp_num_siblings > 1) {
88                 for_each_cpu(i, &cpu_sibling_setup_map) {
89                         if (cpus_are_siblings(cpu, i)) {
90                                 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
91                                 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
92                         }
93                 }
94         } else
95                 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
96 }
97
98 static inline void set_cpu_core_map(int cpu)
99 {
100         int i;
101
102         cpumask_set_cpu(cpu, &cpu_core_setup_map);
103
104         for_each_cpu(i, &cpu_core_setup_map) {
105                 if (cpu_data[cpu].package == cpu_data[i].package) {
106                         cpumask_set_cpu(i, &cpu_core_map[cpu]);
107                         cpumask_set_cpu(cpu, &cpu_core_map[i]);
108                 }
109         }
110 }
111
112 /*
113  * Calculate a new cpu_foreign_map mask whenever a
114  * new cpu appears or disappears.
115  */
116 void calculate_cpu_foreign_map(void)
117 {
118         int i, k, core_present;
119         cpumask_t temp_foreign_map;
120
121         /* Re-calculate the mask */
122         cpumask_clear(&temp_foreign_map);
123         for_each_online_cpu(i) {
124                 core_present = 0;
125                 for_each_cpu(k, &temp_foreign_map)
126                         if (cpus_are_siblings(i, k))
127                                 core_present = 1;
128                 if (!core_present)
129                         cpumask_set_cpu(i, &temp_foreign_map);
130         }
131
132         for_each_online_cpu(i)
133                 cpumask_andnot(&cpu_foreign_map[i],
134                                &temp_foreign_map, &cpu_sibling_map[i]);
135 }
136
137 const struct plat_smp_ops *mp_ops;
138 EXPORT_SYMBOL(mp_ops);
139
140 void register_smp_ops(const struct plat_smp_ops *ops)
141 {
142         if (mp_ops)
143                 printk(KERN_WARNING "Overriding previously set SMP ops\n");
144
145         mp_ops = ops;
146 }
147
148 #ifdef CONFIG_GENERIC_IRQ_IPI
149 void mips_smp_send_ipi_single(int cpu, unsigned int action)
150 {
151         mips_smp_send_ipi_mask(cpumask_of(cpu), action);
152 }
153
154 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
155 {
156         unsigned long flags;
157         unsigned int core;
158         int cpu;
159
160         local_irq_save(flags);
161
162         switch (action) {
163         case SMP_CALL_FUNCTION:
164                 __ipi_send_mask(call_desc, mask);
165                 break;
166
167         case SMP_RESCHEDULE_YOURSELF:
168                 __ipi_send_mask(sched_desc, mask);
169                 break;
170
171         default:
172                 BUG();
173         }
174
175         if (mips_cpc_present()) {
176                 for_each_cpu(cpu, mask) {
177                         if (cpus_are_siblings(cpu, smp_processor_id()))
178                                 continue;
179
180                         core = cpu_core(&cpu_data[cpu]);
181
182                         while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
183                                 mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
184                                 mips_cpc_lock_other(core);
185                                 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
186                                 mips_cpc_unlock_other();
187                                 mips_cm_unlock_other();
188                         }
189                 }
190         }
191
192         local_irq_restore(flags);
193 }
194
195
196 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
197 {
198         scheduler_ipi();
199
200         return IRQ_HANDLED;
201 }
202
203 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
204 {
205         generic_smp_call_function_interrupt();
206
207         return IRQ_HANDLED;
208 }
209
210 static void smp_ipi_init_one(unsigned int virq, const char *name,
211                              irq_handler_t handler)
212 {
213         int ret;
214
215         irq_set_handler(virq, handle_percpu_irq);
216         ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL);
217         BUG_ON(ret);
218 }
219
220 static unsigned int call_virq, sched_virq;
221
222 int mips_smp_ipi_allocate(const struct cpumask *mask)
223 {
224         int virq;
225         struct irq_domain *ipidomain;
226         struct device_node *node;
227
228         node = of_irq_find_parent(of_root);
229         ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
230
231         /*
232          * Some platforms have half DT setup. So if we found irq node but
233          * didn't find an ipidomain, try to search for one that is not in the
234          * DT.
235          */
236         if (node && !ipidomain)
237                 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
238
239         /*
240          * There are systems which use IPI IRQ domains, but only have one
241          * registered when some runtime condition is met. For example a Malta
242          * kernel may include support for GIC & CPU interrupt controller IPI
243          * IRQ domains, but if run on a system with no GIC & no MT ASE then
244          * neither will be supported or registered.
245          *
246          * We only have a problem if we're actually using multiple CPUs so fail
247          * loudly if that is the case. Otherwise simply return, skipping IPI
248          * setup, if we're running with only a single CPU.
249          */
250         if (!ipidomain) {
251                 BUG_ON(num_present_cpus() > 1);
252                 return 0;
253         }
254
255         virq = irq_reserve_ipi(ipidomain, mask);
256         BUG_ON(!virq);
257         if (!call_virq)
258                 call_virq = virq;
259
260         virq = irq_reserve_ipi(ipidomain, mask);
261         BUG_ON(!virq);
262         if (!sched_virq)
263                 sched_virq = virq;
264
265         if (irq_domain_is_ipi_per_cpu(ipidomain)) {
266                 int cpu;
267
268                 for_each_cpu(cpu, mask) {
269                         smp_ipi_init_one(call_virq + cpu, "IPI call",
270                                          ipi_call_interrupt);
271                         smp_ipi_init_one(sched_virq + cpu, "IPI resched",
272                                          ipi_resched_interrupt);
273                 }
274         } else {
275                 smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt);
276                 smp_ipi_init_one(sched_virq, "IPI resched",
277                                  ipi_resched_interrupt);
278         }
279
280         return 0;
281 }
282
283 int mips_smp_ipi_free(const struct cpumask *mask)
284 {
285         struct irq_domain *ipidomain;
286         struct device_node *node;
287
288         node = of_irq_find_parent(of_root);
289         ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
290
291         /*
292          * Some platforms have half DT setup. So if we found irq node but
293          * didn't find an ipidomain, try to search for one that is not in the
294          * DT.
295          */
296         if (node && !ipidomain)
297                 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
298
299         BUG_ON(!ipidomain);
300
301         if (irq_domain_is_ipi_per_cpu(ipidomain)) {
302                 int cpu;
303
304                 for_each_cpu(cpu, mask) {
305                         free_irq(call_virq + cpu, NULL);
306                         free_irq(sched_virq + cpu, NULL);
307                 }
308         }
309         irq_destroy_ipi(call_virq, mask);
310         irq_destroy_ipi(sched_virq, mask);
311         return 0;
312 }
313
314
315 static int __init mips_smp_ipi_init(void)
316 {
317         if (num_possible_cpus() == 1)
318                 return 0;
319
320         mips_smp_ipi_allocate(cpu_possible_mask);
321
322         call_desc = irq_to_desc(call_virq);
323         sched_desc = irq_to_desc(sched_virq);
324
325         return 0;
326 }
327 early_initcall(mips_smp_ipi_init);
328 #endif
329
330 /*
331  * First C code run on the secondary CPUs after being started up by
332  * the master.
333  */
334 asmlinkage void start_secondary(void)
335 {
336         unsigned int cpu = raw_smp_processor_id();
337
338         cpu_probe();
339         per_cpu_trap_init(false);
340         rcu_cpu_starting(cpu);
341         mips_clockevent_init();
342         mp_ops->init_secondary();
343         cpu_report();
344         maar_init();
345
346         /*
347          * XXX parity protection should be folded in here when it's converted
348          * to an option instead of something based on .cputype
349          */
350
351         calibrate_delay();
352         cpu_data[cpu].udelay_val = loops_per_jiffy;
353
354         set_cpu_sibling_map(cpu);
355         set_cpu_core_map(cpu);
356
357         cpumask_set_cpu(cpu, &cpu_coherent_mask);
358         notify_cpu_starting(cpu);
359
360         /* Notify boot CPU that we're starting & ready to sync counters */
361         complete(&cpu_starting);
362
363         synchronise_count_slave(cpu);
364
365         /* The CPU is running and counters synchronised, now mark it online */
366         set_cpu_online(cpu, true);
367
368         calculate_cpu_foreign_map();
369
370         /*
371          * Notify boot CPU that we're up & online and it can safely return
372          * from __cpu_up
373          */
374         complete(&cpu_running);
375
376         /*
377          * irq will be enabled in ->smp_finish(), enabling it too early
378          * is dangerous.
379          */
380         WARN_ON_ONCE(!irqs_disabled());
381         mp_ops->smp_finish();
382
383         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
384 }
385
386 static void stop_this_cpu(void *dummy)
387 {
388         /*
389          * Remove this CPU:
390          */
391
392         set_cpu_online(smp_processor_id(), false);
393         calculate_cpu_foreign_map();
394         local_irq_disable();
395         while (1);
396 }
397
398 void smp_send_stop(void)
399 {
400         smp_call_function(stop_this_cpu, NULL, 0);
401 }
402
403 void __init smp_cpus_done(unsigned int max_cpus)
404 {
405 }
406
407 /* called from main before smp_init() */
408 void __init smp_prepare_cpus(unsigned int max_cpus)
409 {
410         init_new_context(current, &init_mm);
411         current_thread_info()->cpu = 0;
412         mp_ops->prepare_cpus(max_cpus);
413         set_cpu_sibling_map(0);
414         set_cpu_core_map(0);
415         calculate_cpu_foreign_map();
416 #ifndef CONFIG_HOTPLUG_CPU
417         init_cpu_present(cpu_possible_mask);
418 #endif
419         cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
420 }
421
422 /* preload SMP state for boot cpu */
423 void smp_prepare_boot_cpu(void)
424 {
425         if (mp_ops->prepare_boot_cpu)
426                 mp_ops->prepare_boot_cpu();
427         set_cpu_possible(0, true);
428         set_cpu_online(0, true);
429 }
430
431 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
432 {
433         int err;
434
435         err = mp_ops->boot_secondary(cpu, tidle);
436         if (err)
437                 return err;
438
439         /* Wait for CPU to start and be ready to sync counters */
440         if (!wait_for_completion_timeout(&cpu_starting,
441                                          msecs_to_jiffies(1000))) {
442                 pr_crit("CPU%u: failed to start\n", cpu);
443                 return -EIO;
444         }
445
446         synchronise_count_master(cpu);
447
448         /* Wait for CPU to finish startup & mark itself online before return */
449         wait_for_completion(&cpu_running);
450         return 0;
451 }
452
453 /* Not really SMP stuff ... */
454 int setup_profiling_timer(unsigned int multiplier)
455 {
456         return 0;
457 }
458
459 static void flush_tlb_all_ipi(void *info)
460 {
461         local_flush_tlb_all();
462 }
463
464 void flush_tlb_all(void)
465 {
466         if (cpu_has_mmid) {
467                 htw_stop();
468                 ginvt_full();
469                 sync_ginv();
470                 instruction_hazard();
471                 htw_start();
472                 return;
473         }
474
475         on_each_cpu(flush_tlb_all_ipi, NULL, 1);
476 }
477
478 static void flush_tlb_mm_ipi(void *mm)
479 {
480         drop_mmu_context((struct mm_struct *)mm);
481 }
482
483 /*
484  * Special Variant of smp_call_function for use by TLB functions:
485  *
486  *  o No return value
487  *  o collapses to normal function call on UP kernels
488  *  o collapses to normal function call on systems with a single shared
489  *    primary cache.
490  */
491 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
492 {
493         smp_call_function(func, info, 1);
494 }
495
496 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
497 {
498         preempt_disable();
499
500         smp_on_other_tlbs(func, info);
501         func(info);
502
503         preempt_enable();
504 }
505
506 /*
507  * The following tlb flush calls are invoked when old translations are
508  * being torn down, or pte attributes are changing. For single threaded
509  * address spaces, a new context is obtained on the current cpu, and tlb
510  * context on other cpus are invalidated to force a new context allocation
511  * at switch_mm time, should the mm ever be used on other cpus. For
512  * multithreaded address spaces, inter-CPU interrupts have to be sent.
513  * Another case where inter-CPU interrupts are required is when the target
514  * mm might be active on another cpu (eg debuggers doing the flushes on
515  * behalf of debugees, kswapd stealing pages from another process etc).
516  * Kanoj 07/00.
517  */
518
519 void flush_tlb_mm(struct mm_struct *mm)
520 {
521         if (!mm)
522                 return;
523
524         if (atomic_read(&mm->mm_users) == 0)
525                 return;         /* happens as a result of exit_mmap() */
526
527         preempt_disable();
528
529         if (cpu_has_mmid) {
530                 /*
531                  * No need to worry about other CPUs - the ginvt in
532                  * drop_mmu_context() will be globalized.
533                  */
534         } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
535                 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
536         } else {
537                 unsigned int cpu;
538
539                 for_each_online_cpu(cpu) {
540                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
541                                 set_cpu_context(cpu, mm, 0);
542                 }
543         }
544         drop_mmu_context(mm);
545
546         preempt_enable();
547 }
548
549 struct flush_tlb_data {
550         struct vm_area_struct *vma;
551         unsigned long addr1;
552         unsigned long addr2;
553 };
554
555 static void flush_tlb_range_ipi(void *info)
556 {
557         struct flush_tlb_data *fd = info;
558
559         local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
560 }
561
562 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
563 {
564         struct mm_struct *mm = vma->vm_mm;
565         unsigned long addr;
566         u32 old_mmid;
567
568         preempt_disable();
569         if (cpu_has_mmid) {
570                 htw_stop();
571                 old_mmid = read_c0_memorymapid();
572                 write_c0_memorymapid(cpu_asid(0, mm));
573                 mtc0_tlbw_hazard();
574                 addr = round_down(start, PAGE_SIZE * 2);
575                 end = round_up(end, PAGE_SIZE * 2);
576                 do {
577                         ginvt_va_mmid(addr);
578                         sync_ginv();
579                         addr += PAGE_SIZE * 2;
580                 } while (addr < end);
581                 write_c0_memorymapid(old_mmid);
582                 instruction_hazard();
583                 htw_start();
584         } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
585                 struct flush_tlb_data fd = {
586                         .vma = vma,
587                         .addr1 = start,
588                         .addr2 = end,
589                 };
590
591                 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
592                 local_flush_tlb_range(vma, start, end);
593         } else {
594                 unsigned int cpu;
595                 int exec = vma->vm_flags & VM_EXEC;
596
597                 for_each_online_cpu(cpu) {
598                         /*
599                          * flush_cache_range() will only fully flush icache if
600                          * the VMA is executable, otherwise we must invalidate
601                          * ASID without it appearing to has_valid_asid() as if
602                          * mm has been completely unused by that CPU.
603                          */
604                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
605                                 set_cpu_context(cpu, mm, !exec);
606                 }
607                 local_flush_tlb_range(vma, start, end);
608         }
609         preempt_enable();
610 }
611
612 static void flush_tlb_kernel_range_ipi(void *info)
613 {
614         struct flush_tlb_data *fd = info;
615
616         local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
617 }
618
619 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
620 {
621         struct flush_tlb_data fd = {
622                 .addr1 = start,
623                 .addr2 = end,
624         };
625
626         on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
627 }
628
629 static void flush_tlb_page_ipi(void *info)
630 {
631         struct flush_tlb_data *fd = info;
632
633         local_flush_tlb_page(fd->vma, fd->addr1);
634 }
635
636 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
637 {
638         u32 old_mmid;
639
640         preempt_disable();
641         if (cpu_has_mmid) {
642                 htw_stop();
643                 old_mmid = read_c0_memorymapid();
644                 write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
645                 mtc0_tlbw_hazard();
646                 ginvt_va_mmid(page);
647                 sync_ginv();
648                 write_c0_memorymapid(old_mmid);
649                 instruction_hazard();
650                 htw_start();
651         } else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
652                    (current->mm != vma->vm_mm)) {
653                 struct flush_tlb_data fd = {
654                         .vma = vma,
655                         .addr1 = page,
656                 };
657
658                 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
659                 local_flush_tlb_page(vma, page);
660         } else {
661                 unsigned int cpu;
662
663                 for_each_online_cpu(cpu) {
664                         /*
665                          * flush_cache_page() only does partial flushes, so
666                          * invalidate ASID without it appearing to
667                          * has_valid_asid() as if mm has been completely unused
668                          * by that CPU.
669                          */
670                         if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
671                                 set_cpu_context(cpu, vma->vm_mm, 1);
672                 }
673                 local_flush_tlb_page(vma, page);
674         }
675         preempt_enable();
676 }
677
678 static void flush_tlb_one_ipi(void *info)
679 {
680         unsigned long vaddr = (unsigned long) info;
681
682         local_flush_tlb_one(vaddr);
683 }
684
685 void flush_tlb_one(unsigned long vaddr)
686 {
687         smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
688 }
689
690 EXPORT_SYMBOL(flush_tlb_page);
691 EXPORT_SYMBOL(flush_tlb_one);
692
693 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
694
695 static void tick_broadcast_callee(void *info)
696 {
697         tick_receive_broadcast();
698 }
699
700 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) =
701         CSD_INIT(tick_broadcast_callee, NULL);
702
703 void tick_broadcast(const struct cpumask *mask)
704 {
705         call_single_data_t *csd;
706         int cpu;
707
708         for_each_cpu(cpu, mask) {
709                 csd = &per_cpu(tick_broadcast_csd, cpu);
710                 smp_call_function_single_async(cpu, csd);
711         }
712 }
713
714 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */