GNU Linux-libre 6.1.90-gnu
[releases.git] / arch / mips / kernel / smp-cps.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2013 Imagination Technologies
4  * Author: Paul Burton <paul.burton@mips.com>
5  */
6
7 #include <linux/cpu.h>
8 #include <linux/delay.h>
9 #include <linux/io.h>
10 #include <linux/sched/task_stack.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/slab.h>
13 #include <linux/smp.h>
14 #include <linux/types.h>
15 #include <linux/irq.h>
16
17 #include <asm/bcache.h>
18 #include <asm/mips-cps.h>
19 #include <asm/mips_mt.h>
20 #include <asm/mipsregs.h>
21 #include <asm/pm-cps.h>
22 #include <asm/r4kcache.h>
23 #include <asm/smp-cps.h>
24 #include <asm/time.h>
25 #include <asm/uasm.h>
26
27 static bool threads_disabled;
28 static DECLARE_BITMAP(core_power, NR_CPUS);
29
30 struct core_boot_config *mips_cps_core_bootcfg;
31
32 static int __init setup_nothreads(char *s)
33 {
34         threads_disabled = true;
35         return 0;
36 }
37 early_param("nothreads", setup_nothreads);
38
39 static unsigned core_vpe_count(unsigned int cluster, unsigned core)
40 {
41         if (threads_disabled)
42                 return 1;
43
44         return mips_cps_numvps(cluster, core);
45 }
46
47 static void __init cps_smp_setup(void)
48 {
49         unsigned int nclusters, ncores, nvpes, core_vpes;
50         unsigned long core_entry;
51         int cl, c, v;
52
53         /* Detect & record VPE topology */
54         nvpes = 0;
55         nclusters = mips_cps_numclusters();
56         pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
57         for (cl = 0; cl < nclusters; cl++) {
58                 if (cl > 0)
59                         pr_cont(",");
60                 pr_cont("{");
61
62                 ncores = mips_cps_numcores(cl);
63                 for (c = 0; c < ncores; c++) {
64                         core_vpes = core_vpe_count(cl, c);
65
66                         if (c > 0)
67                                 pr_cont(",");
68                         pr_cont("%u", core_vpes);
69
70                         /* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
71                         if (!cl && !c)
72                                 smp_num_siblings = core_vpes;
73
74                         for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
75                                 cpu_set_cluster(&cpu_data[nvpes + v], cl);
76                                 cpu_set_core(&cpu_data[nvpes + v], c);
77                                 cpu_set_vpe_id(&cpu_data[nvpes + v], v);
78                         }
79
80                         nvpes += core_vpes;
81                 }
82
83                 pr_cont("}");
84         }
85         pr_cont(" total %u\n", nvpes);
86
87         /* Indicate present CPUs (CPU being synonymous with VPE) */
88         for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
89                 set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
90                 set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
91                 __cpu_number_map[v] = v;
92                 __cpu_logical_map[v] = v;
93         }
94
95         /* Set a coherent default CCA (CWB) */
96         change_c0_config(CONF_CM_CMASK, 0x5);
97
98         /* Core 0 is powered up (we're running on it) */
99         bitmap_set(core_power, 0, 1);
100
101         /* Initialise core 0 */
102         mips_cps_core_init();
103
104         /* Make core 0 coherent with everything */
105         write_gcr_cl_coherence(0xff);
106
107         if (mips_cm_revision() >= CM_REV_CM3) {
108                 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
109                 write_gcr_bev_base(core_entry);
110         }
111
112 #ifdef CONFIG_MIPS_MT_FPAFF
113         /* If we have an FPU, enroll ourselves in the FPU-full mask */
114         if (cpu_has_fpu)
115                 cpumask_set_cpu(0, &mt_fpu_cpumask);
116 #endif /* CONFIG_MIPS_MT_FPAFF */
117 }
118
119 static void __init cps_prepare_cpus(unsigned int max_cpus)
120 {
121         unsigned ncores, core_vpes, c, cca;
122         bool cca_unsuitable, cores_limited;
123         u32 *entry_code;
124
125         mips_mt_set_cpuoptions();
126
127         /* Detect whether the CCA is unsuited to multi-core SMP */
128         cca = read_c0_config() & CONF_CM_CMASK;
129         switch (cca) {
130         case 0x4: /* CWBE */
131         case 0x5: /* CWB */
132                 /* The CCA is coherent, multi-core is fine */
133                 cca_unsuitable = false;
134                 break;
135
136         default:
137                 /* CCA is not coherent, multi-core is not usable */
138                 cca_unsuitable = true;
139         }
140
141         /* Warn the user if the CCA prevents multi-core */
142         cores_limited = false;
143         if (cca_unsuitable || cpu_has_dc_aliases) {
144                 for_each_present_cpu(c) {
145                         if (cpus_are_siblings(smp_processor_id(), c))
146                                 continue;
147
148                         set_cpu_present(c, false);
149                         cores_limited = true;
150                 }
151         }
152         if (cores_limited)
153                 pr_warn("Using only one core due to %s%s%s\n",
154                         cca_unsuitable ? "unsuitable CCA" : "",
155                         (cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
156                         cpu_has_dc_aliases ? "dcache aliasing" : "");
157
158         /*
159          * Patch the start of mips_cps_core_entry to provide:
160          *
161          * s0 = kseg0 CCA
162          */
163         entry_code = (u32 *)&mips_cps_core_entry;
164         uasm_i_addiu(&entry_code, 16, 0, cca);
165         blast_dcache_range((unsigned long)&mips_cps_core_entry,
166                            (unsigned long)entry_code);
167         bc_wback_inv((unsigned long)&mips_cps_core_entry,
168                      (void *)entry_code - (void *)&mips_cps_core_entry);
169         __sync();
170
171         /* Allocate core boot configuration structs */
172         ncores = mips_cps_numcores(0);
173         mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
174                                         GFP_KERNEL);
175         if (!mips_cps_core_bootcfg) {
176                 pr_err("Failed to allocate boot config for %u cores\n", ncores);
177                 goto err_out;
178         }
179
180         /* Allocate VPE boot configuration structs */
181         for (c = 0; c < ncores; c++) {
182                 core_vpes = core_vpe_count(0, c);
183                 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
184                                 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
185                                 GFP_KERNEL);
186                 if (!mips_cps_core_bootcfg[c].vpe_config) {
187                         pr_err("Failed to allocate %u VPE boot configs\n",
188                                core_vpes);
189                         goto err_out;
190                 }
191         }
192
193         /* Mark this CPU as booted */
194         atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask,
195                    1 << cpu_vpe_id(&current_cpu_data));
196
197         return;
198 err_out:
199         /* Clean up allocations */
200         if (mips_cps_core_bootcfg) {
201                 for (c = 0; c < ncores; c++)
202                         kfree(mips_cps_core_bootcfg[c].vpe_config);
203                 kfree(mips_cps_core_bootcfg);
204                 mips_cps_core_bootcfg = NULL;
205         }
206
207         /* Effectively disable SMP by declaring CPUs not present */
208         for_each_possible_cpu(c) {
209                 if (c == 0)
210                         continue;
211                 set_cpu_present(c, false);
212         }
213 }
214
215 static void boot_core(unsigned int core, unsigned int vpe_id)
216 {
217         u32 stat, seq_state;
218         unsigned timeout;
219
220         /* Select the appropriate core */
221         mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
222
223         /* Set its reset vector */
224         write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
225
226         /* Ensure its coherency is disabled */
227         write_gcr_co_coherence(0);
228
229         /* Start it with the legacy memory map and exception base */
230         write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
231
232         /* Ensure the core can access the GCRs */
233         set_gcr_access(1 << core);
234
235         if (mips_cpc_present()) {
236                 /* Reset the core */
237                 mips_cpc_lock_other(core);
238
239                 if (mips_cm_revision() >= CM_REV_CM3) {
240                         /* Run only the requested VP following the reset */
241                         write_cpc_co_vp_stop(0xf);
242                         write_cpc_co_vp_run(1 << vpe_id);
243
244                         /*
245                          * Ensure that the VP_RUN register is written before the
246                          * core leaves reset.
247                          */
248                         wmb();
249                 }
250
251                 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
252
253                 timeout = 100;
254                 while (true) {
255                         stat = read_cpc_co_stat_conf();
256                         seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
257                         seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
258
259                         /* U6 == coherent execution, ie. the core is up */
260                         if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
261                                 break;
262
263                         /* Delay a little while before we start warning */
264                         if (timeout) {
265                                 timeout--;
266                                 mdelay(10);
267                                 continue;
268                         }
269
270                         pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
271                                 core, stat);
272                         mdelay(1000);
273                 }
274
275                 mips_cpc_unlock_other();
276         } else {
277                 /* Take the core out of reset */
278                 write_gcr_co_reset_release(0);
279         }
280
281         mips_cm_unlock_other();
282
283         /* The core is now powered up */
284         bitmap_set(core_power, core, 1);
285 }
286
287 static void remote_vpe_boot(void *dummy)
288 {
289         unsigned core = cpu_core(&current_cpu_data);
290         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
291
292         mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
293 }
294
295 static int cps_boot_secondary(int cpu, struct task_struct *idle)
296 {
297         unsigned core = cpu_core(&cpu_data[cpu]);
298         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
299         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
300         struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
301         unsigned long core_entry;
302         unsigned int remote;
303         int err;
304
305         /* We don't yet support booting CPUs in other clusters */
306         if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
307                 return -ENOSYS;
308
309         vpe_cfg->pc = (unsigned long)&smp_bootstrap;
310         vpe_cfg->sp = __KSTK_TOS(idle);
311         vpe_cfg->gp = (unsigned long)task_thread_info(idle);
312
313         atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
314
315         preempt_disable();
316
317         if (!test_bit(core, core_power)) {
318                 /* Boot a VPE on a powered down core */
319                 boot_core(core, vpe_id);
320                 goto out;
321         }
322
323         if (cpu_has_vp) {
324                 mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
325                 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
326                 write_gcr_co_reset_base(core_entry);
327                 mips_cm_unlock_other();
328         }
329
330         if (!cpus_are_siblings(cpu, smp_processor_id())) {
331                 /* Boot a VPE on another powered up core */
332                 for (remote = 0; remote < NR_CPUS; remote++) {
333                         if (!cpus_are_siblings(cpu, remote))
334                                 continue;
335                         if (cpu_online(remote))
336                                 break;
337                 }
338                 if (remote >= NR_CPUS) {
339                         pr_crit("No online CPU in core %u to start CPU%d\n",
340                                 core, cpu);
341                         goto out;
342                 }
343
344                 err = smp_call_function_single(remote, remote_vpe_boot,
345                                                NULL, 1);
346                 if (err)
347                         panic("Failed to call remote CPU\n");
348                 goto out;
349         }
350
351         BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
352
353         /* Boot a VPE on this core */
354         mips_cps_boot_vpes(core_cfg, vpe_id);
355 out:
356         preempt_enable();
357         return 0;
358 }
359
360 static void cps_init_secondary(void)
361 {
362         /* Disable MT - we only want to run 1 TC per VPE */
363         if (cpu_has_mipsmt)
364                 dmt();
365
366         if (mips_cm_revision() >= CM_REV_CM3) {
367                 unsigned int ident = read_gic_vl_ident();
368
369                 /*
370                  * Ensure that our calculation of the VP ID matches up with
371                  * what the GIC reports, otherwise we'll have configured
372                  * interrupts incorrectly.
373                  */
374                 BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
375         }
376
377         if (cpu_has_veic)
378                 clear_c0_status(ST0_IM);
379         else
380                 change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
381                                          STATUSF_IP4 | STATUSF_IP5 |
382                                          STATUSF_IP6 | STATUSF_IP7);
383 }
384
385 static void cps_smp_finish(void)
386 {
387         write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
388
389 #ifdef CONFIG_MIPS_MT_FPAFF
390         /* If we have an FPU, enroll ourselves in the FPU-full mask */
391         if (cpu_has_fpu)
392                 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
393 #endif /* CONFIG_MIPS_MT_FPAFF */
394
395         local_irq_enable();
396 }
397
398 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC)
399
400 enum cpu_death {
401         CPU_DEATH_HALT,
402         CPU_DEATH_POWER,
403 };
404
405 static void cps_shutdown_this_cpu(enum cpu_death death)
406 {
407         unsigned int cpu, core, vpe_id;
408
409         cpu = smp_processor_id();
410         core = cpu_core(&cpu_data[cpu]);
411
412         if (death == CPU_DEATH_HALT) {
413                 vpe_id = cpu_vpe_id(&cpu_data[cpu]);
414
415                 pr_debug("Halting core %d VP%d\n", core, vpe_id);
416                 if (cpu_has_mipsmt) {
417                         /* Halt this TC */
418                         write_c0_tchalt(TCHALT_H);
419                         instruction_hazard();
420                 } else if (cpu_has_vp) {
421                         write_cpc_cl_vp_stop(1 << vpe_id);
422
423                         /* Ensure that the VP_STOP register is written */
424                         wmb();
425                 }
426         } else {
427                 pr_debug("Gating power to core %d\n", core);
428                 /* Power down the core */
429                 cps_pm_enter_state(CPS_PM_POWER_GATED);
430         }
431 }
432
433 #ifdef CONFIG_KEXEC
434
435 static void cps_kexec_nonboot_cpu(void)
436 {
437         if (cpu_has_mipsmt || cpu_has_vp)
438                 cps_shutdown_this_cpu(CPU_DEATH_HALT);
439         else
440                 cps_shutdown_this_cpu(CPU_DEATH_POWER);
441 }
442
443 #endif /* CONFIG_KEXEC */
444
445 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC */
446
447 #ifdef CONFIG_HOTPLUG_CPU
448
449 static int cps_cpu_disable(void)
450 {
451         unsigned cpu = smp_processor_id();
452         struct core_boot_config *core_cfg;
453
454         if (!cps_pm_support_state(CPS_PM_POWER_GATED))
455                 return -EINVAL;
456
457         core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)];
458         atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
459         smp_mb__after_atomic();
460         set_cpu_online(cpu, false);
461         calculate_cpu_foreign_map();
462         irq_migrate_all_off_this_cpu();
463
464         return 0;
465 }
466
467 static unsigned cpu_death_sibling;
468 static enum cpu_death cpu_death;
469
470 void play_dead(void)
471 {
472         unsigned int cpu;
473
474         local_irq_disable();
475         idle_task_exit();
476         cpu = smp_processor_id();
477         cpu_death = CPU_DEATH_POWER;
478
479         pr_debug("CPU%d going offline\n", cpu);
480
481         if (cpu_has_mipsmt || cpu_has_vp) {
482                 /* Look for another online VPE within the core */
483                 for_each_online_cpu(cpu_death_sibling) {
484                         if (!cpus_are_siblings(cpu, cpu_death_sibling))
485                                 continue;
486
487                         /*
488                          * There is an online VPE within the core. Just halt
489                          * this TC and leave the core alone.
490                          */
491                         cpu_death = CPU_DEATH_HALT;
492                         break;
493                 }
494         }
495
496         /* This CPU has chosen its way out */
497         (void)cpu_report_death();
498
499         cps_shutdown_this_cpu(cpu_death);
500
501         /* This should never be reached */
502         panic("Failed to offline CPU %u", cpu);
503 }
504
505 static void wait_for_sibling_halt(void *ptr_cpu)
506 {
507         unsigned cpu = (unsigned long)ptr_cpu;
508         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
509         unsigned halted;
510         unsigned long flags;
511
512         do {
513                 local_irq_save(flags);
514                 settc(vpe_id);
515                 halted = read_tc_c0_tchalt();
516                 local_irq_restore(flags);
517         } while (!(halted & TCHALT_H));
518 }
519
520 static void cps_cpu_die(unsigned int cpu)
521 {
522         unsigned core = cpu_core(&cpu_data[cpu]);
523         unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
524         ktime_t fail_time;
525         unsigned stat;
526         int err;
527
528         /* Wait for the cpu to choose its way out */
529         if (!cpu_wait_death(cpu, 5)) {
530                 pr_err("CPU%u: didn't offline\n", cpu);
531                 return;
532         }
533
534         /*
535          * Now wait for the CPU to actually offline. Without doing this that
536          * offlining may race with one or more of:
537          *
538          *   - Onlining the CPU again.
539          *   - Powering down the core if another VPE within it is offlined.
540          *   - A sibling VPE entering a non-coherent state.
541          *
542          * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
543          * with which we could race, so do nothing.
544          */
545         if (cpu_death == CPU_DEATH_POWER) {
546                 /*
547                  * Wait for the core to enter a powered down or clock gated
548                  * state, the latter happening when a JTAG probe is connected
549                  * in which case the CPC will refuse to power down the core.
550                  */
551                 fail_time = ktime_add_ms(ktime_get(), 2000);
552                 do {
553                         mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
554                         mips_cpc_lock_other(core);
555                         stat = read_cpc_co_stat_conf();
556                         stat &= CPC_Cx_STAT_CONF_SEQSTATE;
557                         stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
558                         mips_cpc_unlock_other();
559                         mips_cm_unlock_other();
560
561                         if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
562                             stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
563                             stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
564                                 break;
565
566                         /*
567                          * The core ought to have powered down, but didn't &
568                          * now we don't really know what state it's in. It's
569                          * likely that its _pwr_up pin has been wired to logic
570                          * 1 & it powered back up as soon as we powered it
571                          * down...
572                          *
573                          * The best we can do is warn the user & continue in
574                          * the hope that the core is doing nothing harmful &
575                          * might behave properly if we online it later.
576                          */
577                         if (WARN(ktime_after(ktime_get(), fail_time),
578                                  "CPU%u hasn't powered down, seq. state %u\n",
579                                  cpu, stat))
580                                 break;
581                 } while (1);
582
583                 /* Indicate the core is powered off */
584                 bitmap_clear(core_power, core, 1);
585         } else if (cpu_has_mipsmt) {
586                 /*
587                  * Have a CPU with access to the offlined CPUs registers wait
588                  * for its TC to halt.
589                  */
590                 err = smp_call_function_single(cpu_death_sibling,
591                                                wait_for_sibling_halt,
592                                                (void *)(unsigned long)cpu, 1);
593                 if (err)
594                         panic("Failed to call remote sibling CPU\n");
595         } else if (cpu_has_vp) {
596                 do {
597                         mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
598                         stat = read_cpc_co_vp_running();
599                         mips_cm_unlock_other();
600                 } while (stat & (1 << vpe_id));
601         }
602 }
603
604 #endif /* CONFIG_HOTPLUG_CPU */
605
606 static const struct plat_smp_ops cps_smp_ops = {
607         .smp_setup              = cps_smp_setup,
608         .prepare_cpus           = cps_prepare_cpus,
609         .boot_secondary         = cps_boot_secondary,
610         .init_secondary         = cps_init_secondary,
611         .smp_finish             = cps_smp_finish,
612         .send_ipi_single        = mips_smp_send_ipi_single,
613         .send_ipi_mask          = mips_smp_send_ipi_mask,
614 #ifdef CONFIG_HOTPLUG_CPU
615         .cpu_disable            = cps_cpu_disable,
616         .cpu_die                = cps_cpu_die,
617 #endif
618 #ifdef CONFIG_KEXEC
619         .kexec_nonboot_cpu      = cps_kexec_nonboot_cpu,
620 #endif
621 };
622
623 bool mips_cps_smp_in_use(void)
624 {
625         extern const struct plat_smp_ops *mp_ops;
626         return mp_ops == &cps_smp_ops;
627 }
628
629 int register_cps_smp_ops(void)
630 {
631         if (!mips_cm_present()) {
632                 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
633                 return -ENODEV;
634         }
635
636         /* check we have a GIC - we need one for IPIs */
637         if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
638                 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
639                 return -ENODEV;
640         }
641
642         register_smp_ops(&cps_smp_ops);
643         return 0;
644 }