GNU Linux-libre 4.19.286-gnu1
[releases.git] / arch / mips / kernel / smp-cps.c
1 /*
2  * Copyright (C) 2013 Imagination Technologies
3  * Author: Paul Burton <paul.burton@mips.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10
11 #include <linux/cpu.h>
12 #include <linux/delay.h>
13 #include <linux/io.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/slab.h>
17 #include <linux/smp.h>
18 #include <linux/types.h>
19
20 #include <asm/bcache.h>
21 #include <asm/mips-cps.h>
22 #include <asm/mips_mt.h>
23 #include <asm/mipsregs.h>
24 #include <asm/pm-cps.h>
25 #include <asm/r4kcache.h>
26 #include <asm/smp-cps.h>
27 #include <asm/time.h>
28 #include <asm/uasm.h>
29
30 static bool threads_disabled;
31 static DECLARE_BITMAP(core_power, NR_CPUS);
32
33 struct core_boot_config *mips_cps_core_bootcfg;
34
35 static int __init setup_nothreads(char *s)
36 {
37         threads_disabled = true;
38         return 0;
39 }
40 early_param("nothreads", setup_nothreads);
41
42 static unsigned core_vpe_count(unsigned int cluster, unsigned core)
43 {
44         if (threads_disabled)
45                 return 1;
46
47         return mips_cps_numvps(cluster, core);
48 }
49
50 static void __init cps_smp_setup(void)
51 {
52         unsigned int nclusters, ncores, nvpes, core_vpes;
53         unsigned long core_entry;
54         int cl, c, v;
55
56         /* Detect & record VPE topology */
57         nvpes = 0;
58         nclusters = mips_cps_numclusters();
59         pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
60         for (cl = 0; cl < nclusters; cl++) {
61                 if (cl > 0)
62                         pr_cont(",");
63                 pr_cont("{");
64
65                 ncores = mips_cps_numcores(cl);
66                 for (c = 0; c < ncores; c++) {
67                         core_vpes = core_vpe_count(cl, c);
68
69                         if (c > 0)
70                                 pr_cont(",");
71                         pr_cont("%u", core_vpes);
72
73                         /* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
74                         if (!cl && !c)
75                                 smp_num_siblings = core_vpes;
76
77                         for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
78                                 cpu_set_cluster(&cpu_data[nvpes + v], cl);
79                                 cpu_set_core(&cpu_data[nvpes + v], c);
80                                 cpu_set_vpe_id(&cpu_data[nvpes + v], v);
81                         }
82
83                         nvpes += core_vpes;
84                 }
85
86                 pr_cont("}");
87         }
88         pr_cont(" total %u\n", nvpes);
89
90         /* Indicate present CPUs (CPU being synonymous with VPE) */
91         for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
92                 set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
93                 set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
94                 __cpu_number_map[v] = v;
95                 __cpu_logical_map[v] = v;
96         }
97
98         /* Set a coherent default CCA (CWB) */
99         change_c0_config(CONF_CM_CMASK, 0x5);
100
101         /* Core 0 is powered up (we're running on it) */
102         bitmap_set(core_power, 0, 1);
103
104         /* Initialise core 0 */
105         mips_cps_core_init();
106
107         /* Make core 0 coherent with everything */
108         write_gcr_cl_coherence(0xff);
109
110         if (mips_cm_revision() >= CM_REV_CM3) {
111                 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
112                 write_gcr_bev_base(core_entry);
113         }
114
115 #ifdef CONFIG_MIPS_MT_FPAFF
116         /* If we have an FPU, enroll ourselves in the FPU-full mask */
117         if (cpu_has_fpu)
118                 cpumask_set_cpu(0, &mt_fpu_cpumask);
119 #endif /* CONFIG_MIPS_MT_FPAFF */
120 }
121
122 static void __init cps_prepare_cpus(unsigned int max_cpus)
123 {
124         unsigned ncores, core_vpes, c, cca;
125         bool cca_unsuitable, cores_limited;
126         u32 *entry_code;
127
128         mips_mt_set_cpuoptions();
129
130         /* Detect whether the CCA is unsuited to multi-core SMP */
131         cca = read_c0_config() & CONF_CM_CMASK;
132         switch (cca) {
133         case 0x4: /* CWBE */
134         case 0x5: /* CWB */
135                 /* The CCA is coherent, multi-core is fine */
136                 cca_unsuitable = false;
137                 break;
138
139         default:
140                 /* CCA is not coherent, multi-core is not usable */
141                 cca_unsuitable = true;
142         }
143
144         /* Warn the user if the CCA prevents multi-core */
145         cores_limited = false;
146         if (cca_unsuitable || cpu_has_dc_aliases) {
147                 for_each_present_cpu(c) {
148                         if (cpus_are_siblings(smp_processor_id(), c))
149                                 continue;
150
151                         set_cpu_present(c, false);
152                         cores_limited = true;
153                 }
154         }
155         if (cores_limited)
156                 pr_warn("Using only one core due to %s%s%s\n",
157                         cca_unsuitable ? "unsuitable CCA" : "",
158                         (cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
159                         cpu_has_dc_aliases ? "dcache aliasing" : "");
160
161         /*
162          * Patch the start of mips_cps_core_entry to provide:
163          *
164          * s0 = kseg0 CCA
165          */
166         entry_code = (u32 *)&mips_cps_core_entry;
167         uasm_i_addiu(&entry_code, 16, 0, cca);
168         blast_dcache_range((unsigned long)&mips_cps_core_entry,
169                            (unsigned long)entry_code);
170         bc_wback_inv((unsigned long)&mips_cps_core_entry,
171                      (void *)entry_code - (void *)&mips_cps_core_entry);
172         __sync();
173
174         /* Allocate core boot configuration structs */
175         ncores = mips_cps_numcores(0);
176         mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
177                                         GFP_KERNEL);
178         if (!mips_cps_core_bootcfg) {
179                 pr_err("Failed to allocate boot config for %u cores\n", ncores);
180                 goto err_out;
181         }
182
183         /* Allocate VPE boot configuration structs */
184         for (c = 0; c < ncores; c++) {
185                 core_vpes = core_vpe_count(0, c);
186                 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
187                                 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
188                                 GFP_KERNEL);
189                 if (!mips_cps_core_bootcfg[c].vpe_config) {
190                         pr_err("Failed to allocate %u VPE boot configs\n",
191                                core_vpes);
192                         goto err_out;
193                 }
194         }
195
196         /* Mark this CPU as booted */
197         atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask,
198                    1 << cpu_vpe_id(&current_cpu_data));
199
200         return;
201 err_out:
202         /* Clean up allocations */
203         if (mips_cps_core_bootcfg) {
204                 for (c = 0; c < ncores; c++)
205                         kfree(mips_cps_core_bootcfg[c].vpe_config);
206                 kfree(mips_cps_core_bootcfg);
207                 mips_cps_core_bootcfg = NULL;
208         }
209
210         /* Effectively disable SMP by declaring CPUs not present */
211         for_each_possible_cpu(c) {
212                 if (c == 0)
213                         continue;
214                 set_cpu_present(c, false);
215         }
216 }
217
218 static void boot_core(unsigned int core, unsigned int vpe_id)
219 {
220         u32 stat, seq_state;
221         unsigned timeout;
222
223         /* Select the appropriate core */
224         mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
225
226         /* Set its reset vector */
227         write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
228
229         /* Ensure its coherency is disabled */
230         write_gcr_co_coherence(0);
231
232         /* Start it with the legacy memory map and exception base */
233         write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
234
235         /* Ensure the core can access the GCRs */
236         set_gcr_access(1 << core);
237
238         if (mips_cpc_present()) {
239                 /* Reset the core */
240                 mips_cpc_lock_other(core);
241
242                 if (mips_cm_revision() >= CM_REV_CM3) {
243                         /* Run only the requested VP following the reset */
244                         write_cpc_co_vp_stop(0xf);
245                         write_cpc_co_vp_run(1 << vpe_id);
246
247                         /*
248                          * Ensure that the VP_RUN register is written before the
249                          * core leaves reset.
250                          */
251                         wmb();
252                 }
253
254                 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
255
256                 timeout = 100;
257                 while (true) {
258                         stat = read_cpc_co_stat_conf();
259                         seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
260                         seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
261
262                         /* U6 == coherent execution, ie. the core is up */
263                         if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
264                                 break;
265
266                         /* Delay a little while before we start warning */
267                         if (timeout) {
268                                 timeout--;
269                                 mdelay(10);
270                                 continue;
271                         }
272
273                         pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
274                                 core, stat);
275                         mdelay(1000);
276                 }
277
278                 mips_cpc_unlock_other();
279         } else {
280                 /* Take the core out of reset */
281                 write_gcr_co_reset_release(0);
282         }
283
284         mips_cm_unlock_other();
285
286         /* The core is now powered up */
287         bitmap_set(core_power, core, 1);
288 }
289
290 static void remote_vpe_boot(void *dummy)
291 {
292         unsigned core = cpu_core(&current_cpu_data);
293         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
294
295         mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
296 }
297
298 static int cps_boot_secondary(int cpu, struct task_struct *idle)
299 {
300         unsigned core = cpu_core(&cpu_data[cpu]);
301         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
302         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
303         struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
304         unsigned long core_entry;
305         unsigned int remote;
306         int err;
307
308         /* We don't yet support booting CPUs in other clusters */
309         if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
310                 return -ENOSYS;
311
312         vpe_cfg->pc = (unsigned long)&smp_bootstrap;
313         vpe_cfg->sp = __KSTK_TOS(idle);
314         vpe_cfg->gp = (unsigned long)task_thread_info(idle);
315
316         atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
317
318         preempt_disable();
319
320         if (!test_bit(core, core_power)) {
321                 /* Boot a VPE on a powered down core */
322                 boot_core(core, vpe_id);
323                 goto out;
324         }
325
326         if (cpu_has_vp) {
327                 mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
328                 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
329                 write_gcr_co_reset_base(core_entry);
330                 mips_cm_unlock_other();
331         }
332
333         if (!cpus_are_siblings(cpu, smp_processor_id())) {
334                 /* Boot a VPE on another powered up core */
335                 for (remote = 0; remote < NR_CPUS; remote++) {
336                         if (!cpus_are_siblings(cpu, remote))
337                                 continue;
338                         if (cpu_online(remote))
339                                 break;
340                 }
341                 if (remote >= NR_CPUS) {
342                         pr_crit("No online CPU in core %u to start CPU%d\n",
343                                 core, cpu);
344                         goto out;
345                 }
346
347                 err = smp_call_function_single(remote, remote_vpe_boot,
348                                                NULL, 1);
349                 if (err)
350                         panic("Failed to call remote CPU\n");
351                 goto out;
352         }
353
354         BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
355
356         /* Boot a VPE on this core */
357         mips_cps_boot_vpes(core_cfg, vpe_id);
358 out:
359         preempt_enable();
360         return 0;
361 }
362
363 static void cps_init_secondary(void)
364 {
365         /* Disable MT - we only want to run 1 TC per VPE */
366         if (cpu_has_mipsmt)
367                 dmt();
368
369         if (mips_cm_revision() >= CM_REV_CM3) {
370                 unsigned int ident = read_gic_vl_ident();
371
372                 /*
373                  * Ensure that our calculation of the VP ID matches up with
374                  * what the GIC reports, otherwise we'll have configured
375                  * interrupts incorrectly.
376                  */
377                 BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
378         }
379
380         if (cpu_has_veic)
381                 clear_c0_status(ST0_IM);
382         else
383                 change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
384                                          STATUSF_IP4 | STATUSF_IP5 |
385                                          STATUSF_IP6 | STATUSF_IP7);
386 }
387
388 static void cps_smp_finish(void)
389 {
390         write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
391
392 #ifdef CONFIG_MIPS_MT_FPAFF
393         /* If we have an FPU, enroll ourselves in the FPU-full mask */
394         if (cpu_has_fpu)
395                 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
396 #endif /* CONFIG_MIPS_MT_FPAFF */
397
398         local_irq_enable();
399 }
400
401 #ifdef CONFIG_HOTPLUG_CPU
402
403 static int cps_cpu_disable(void)
404 {
405         unsigned cpu = smp_processor_id();
406         struct core_boot_config *core_cfg;
407
408         if (!cpu)
409                 return -EBUSY;
410
411         if (!cps_pm_support_state(CPS_PM_POWER_GATED))
412                 return -EINVAL;
413
414         core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)];
415         atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
416         smp_mb__after_atomic();
417         set_cpu_online(cpu, false);
418         calculate_cpu_foreign_map();
419
420         return 0;
421 }
422
423 static unsigned cpu_death_sibling;
424 static enum {
425         CPU_DEATH_HALT,
426         CPU_DEATH_POWER,
427 } cpu_death;
428
429 void play_dead(void)
430 {
431         unsigned int cpu, core, vpe_id;
432
433         local_irq_disable();
434         idle_task_exit();
435         cpu = smp_processor_id();
436         core = cpu_core(&cpu_data[cpu]);
437         cpu_death = CPU_DEATH_POWER;
438
439         pr_debug("CPU%d going offline\n", cpu);
440
441         if (cpu_has_mipsmt || cpu_has_vp) {
442                 /* Look for another online VPE within the core */
443                 for_each_online_cpu(cpu_death_sibling) {
444                         if (!cpus_are_siblings(cpu, cpu_death_sibling))
445                                 continue;
446
447                         /*
448                          * There is an online VPE within the core. Just halt
449                          * this TC and leave the core alone.
450                          */
451                         cpu_death = CPU_DEATH_HALT;
452                         break;
453                 }
454         }
455
456         /* This CPU has chosen its way out */
457         (void)cpu_report_death();
458
459         if (cpu_death == CPU_DEATH_HALT) {
460                 vpe_id = cpu_vpe_id(&cpu_data[cpu]);
461
462                 pr_debug("Halting core %d VP%d\n", core, vpe_id);
463                 if (cpu_has_mipsmt) {
464                         /* Halt this TC */
465                         write_c0_tchalt(TCHALT_H);
466                         instruction_hazard();
467                 } else if (cpu_has_vp) {
468                         write_cpc_cl_vp_stop(1 << vpe_id);
469
470                         /* Ensure that the VP_STOP register is written */
471                         wmb();
472                 }
473         } else {
474                 pr_debug("Gating power to core %d\n", core);
475                 /* Power down the core */
476                 cps_pm_enter_state(CPS_PM_POWER_GATED);
477         }
478
479         /* This should never be reached */
480         panic("Failed to offline CPU %u", cpu);
481 }
482
483 static void wait_for_sibling_halt(void *ptr_cpu)
484 {
485         unsigned cpu = (unsigned long)ptr_cpu;
486         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
487         unsigned halted;
488         unsigned long flags;
489
490         do {
491                 local_irq_save(flags);
492                 settc(vpe_id);
493                 halted = read_tc_c0_tchalt();
494                 local_irq_restore(flags);
495         } while (!(halted & TCHALT_H));
496 }
497
498 static void cps_cpu_die(unsigned int cpu)
499 {
500         unsigned core = cpu_core(&cpu_data[cpu]);
501         unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
502         ktime_t fail_time;
503         unsigned stat;
504         int err;
505
506         /* Wait for the cpu to choose its way out */
507         if (!cpu_wait_death(cpu, 5)) {
508                 pr_err("CPU%u: didn't offline\n", cpu);
509                 return;
510         }
511
512         /*
513          * Now wait for the CPU to actually offline. Without doing this that
514          * offlining may race with one or more of:
515          *
516          *   - Onlining the CPU again.
517          *   - Powering down the core if another VPE within it is offlined.
518          *   - A sibling VPE entering a non-coherent state.
519          *
520          * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
521          * with which we could race, so do nothing.
522          */
523         if (cpu_death == CPU_DEATH_POWER) {
524                 /*
525                  * Wait for the core to enter a powered down or clock gated
526                  * state, the latter happening when a JTAG probe is connected
527                  * in which case the CPC will refuse to power down the core.
528                  */
529                 fail_time = ktime_add_ms(ktime_get(), 2000);
530                 do {
531                         mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
532                         mips_cpc_lock_other(core);
533                         stat = read_cpc_co_stat_conf();
534                         stat &= CPC_Cx_STAT_CONF_SEQSTATE;
535                         stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
536                         mips_cpc_unlock_other();
537                         mips_cm_unlock_other();
538
539                         if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
540                             stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
541                             stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
542                                 break;
543
544                         /*
545                          * The core ought to have powered down, but didn't &
546                          * now we don't really know what state it's in. It's
547                          * likely that its _pwr_up pin has been wired to logic
548                          * 1 & it powered back up as soon as we powered it
549                          * down...
550                          *
551                          * The best we can do is warn the user & continue in
552                          * the hope that the core is doing nothing harmful &
553                          * might behave properly if we online it later.
554                          */
555                         if (WARN(ktime_after(ktime_get(), fail_time),
556                                  "CPU%u hasn't powered down, seq. state %u\n",
557                                  cpu, stat))
558                                 break;
559                 } while (1);
560
561                 /* Indicate the core is powered off */
562                 bitmap_clear(core_power, core, 1);
563         } else if (cpu_has_mipsmt) {
564                 /*
565                  * Have a CPU with access to the offlined CPUs registers wait
566                  * for its TC to halt.
567                  */
568                 err = smp_call_function_single(cpu_death_sibling,
569                                                wait_for_sibling_halt,
570                                                (void *)(unsigned long)cpu, 1);
571                 if (err)
572                         panic("Failed to call remote sibling CPU\n");
573         } else if (cpu_has_vp) {
574                 do {
575                         mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
576                         stat = read_cpc_co_vp_running();
577                         mips_cm_unlock_other();
578                 } while (stat & (1 << vpe_id));
579         }
580 }
581
582 #endif /* CONFIG_HOTPLUG_CPU */
583
584 static const struct plat_smp_ops cps_smp_ops = {
585         .smp_setup              = cps_smp_setup,
586         .prepare_cpus           = cps_prepare_cpus,
587         .boot_secondary         = cps_boot_secondary,
588         .init_secondary         = cps_init_secondary,
589         .smp_finish             = cps_smp_finish,
590         .send_ipi_single        = mips_smp_send_ipi_single,
591         .send_ipi_mask          = mips_smp_send_ipi_mask,
592 #ifdef CONFIG_HOTPLUG_CPU
593         .cpu_disable            = cps_cpu_disable,
594         .cpu_die                = cps_cpu_die,
595 #endif
596 };
597
598 bool mips_cps_smp_in_use(void)
599 {
600         extern const struct plat_smp_ops *mp_ops;
601         return mp_ops == &cps_smp_ops;
602 }
603
604 int register_cps_smp_ops(void)
605 {
606         if (!mips_cm_present()) {
607                 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
608                 return -ENODEV;
609         }
610
611         /* check we have a GIC - we need one for IPIs */
612         if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
613                 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
614                 return -ENODEV;
615         }
616
617         register_smp_ops(&cps_smp_ops);
618         return 0;
619 }