GNU Linux-libre 6.1.90-gnu
[releases.git] / arch / mips / kernel / smp-bmips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/delay.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
23 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 #include <linux/kexec.h>
29 #include <linux/irq.h>
30
31 #include <asm/time.h>
32 #include <asm/processor.h>
33 #include <asm/bootinfo.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bmips.h>
38 #include <asm/traps.h>
39 #include <asm/barrier.h>
40 #include <asm/cpu-features.h>
41
42 static int __maybe_unused max_cpus = 1;
43
44 /* these may be configured by the platform code */
45 int bmips_smp_enabled = 1;
46 int bmips_cpu_offset;
47 cpumask_t bmips_booted_mask;
48 unsigned long bmips_tp1_irqs = IE_IRQ1;
49
50 #define RESET_FROM_KSEG0                0x80080800
51 #define RESET_FROM_KSEG1                0xa0080800
52
53 static void bmips_set_reset_vec(int cpu, u32 val);
54
55 #ifdef CONFIG_SMP
56
57 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
58 unsigned long bmips_smp_boot_sp;
59 unsigned long bmips_smp_boot_gp;
60
61 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
62 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
63 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
64 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
65
66 /* SW interrupts 0,1 are used for interprocessor signaling */
67 #define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
68 #define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
69
70 #define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
71 #define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
72 #define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
73 #define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
74
75 static void __init bmips_smp_setup(void)
76 {
77         int i, cpu = 1, boot_cpu = 0;
78         int cpu_hw_intr;
79
80         switch (current_cpu_type()) {
81         case CPU_BMIPS4350:
82         case CPU_BMIPS4380:
83                 /* arbitration priority */
84                 clear_c0_brcm_cmt_ctrl(0x30);
85
86                 /* NBK and weak order flags */
87                 set_c0_brcm_config_0(0x30000);
88
89                 /* Find out if we are running on TP0 or TP1 */
90                 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
91
92                 /*
93                  * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
94                  * thread
95                  * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
96                  * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
97                  */
98                 if (boot_cpu == 0)
99                         cpu_hw_intr = 0x02;
100                 else
101                         cpu_hw_intr = 0x1d;
102
103                 change_c0_brcm_cmt_intr(0xf8018000,
104                                         (cpu_hw_intr << 27) | (0x03 << 15));
105
106                 /* single core, 2 threads (2 pipelines) */
107                 max_cpus = 2;
108
109                 break;
110         case CPU_BMIPS5000:
111                 /* enable raceless SW interrupts */
112                 set_c0_brcm_config(0x03 << 22);
113
114                 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
115                 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
116
117                 /* N cores, 2 threads per core */
118                 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
119
120                 /* clear any pending SW interrupts */
121                 for (i = 0; i < max_cpus; i++) {
122                         write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
123                         write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
124                 }
125
126                 break;
127         default:
128                 max_cpus = 1;
129         }
130
131         if (!bmips_smp_enabled)
132                 max_cpus = 1;
133
134         /* this can be overridden by the BSP */
135         if (!board_ebase_setup)
136                 board_ebase_setup = &bmips_ebase_setup;
137
138         if (max_cpus > 1) {
139                 __cpu_number_map[boot_cpu] = 0;
140                 __cpu_logical_map[0] = boot_cpu;
141
142                 for (i = 0; i < max_cpus; i++) {
143                         if (i != boot_cpu) {
144                                 __cpu_number_map[i] = cpu;
145                                 __cpu_logical_map[cpu] = i;
146                                 cpu++;
147                         }
148                         set_cpu_possible(i, 1);
149                         set_cpu_present(i, 1);
150                 }
151         } else {
152                 __cpu_number_map[0] = boot_cpu;
153                 __cpu_logical_map[0] = 0;
154                 set_cpu_possible(0, 1);
155                 set_cpu_present(0, 1);
156         }
157 }
158
159 /*
160  * IPI IRQ setup - runs on CPU0
161  */
162 static void bmips_prepare_cpus(unsigned int max_cpus)
163 {
164         irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
165
166         switch (current_cpu_type()) {
167         case CPU_BMIPS4350:
168         case CPU_BMIPS4380:
169                 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
170                 break;
171         case CPU_BMIPS5000:
172                 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
173                 break;
174         default:
175                 return;
176         }
177
178         if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
179                         IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
180                 panic("Can't request IPI0 interrupt");
181         if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
182                         IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
183                 panic("Can't request IPI1 interrupt");
184 }
185
186 /*
187  * Tell the hardware to boot CPUx - runs on CPU0
188  */
189 static int bmips_boot_secondary(int cpu, struct task_struct *idle)
190 {
191         bmips_smp_boot_sp = __KSTK_TOS(idle);
192         bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
193         mb();
194
195         /*
196          * Initial boot sequence for secondary CPU:
197          *   bmips_reset_nmi_vec @ a000_0000 ->
198          *   bmips_smp_entry ->
199          *   plat_wired_tlb_setup (cached function call; optional) ->
200          *   start_secondary (cached jump)
201          *
202          * Warm restart sequence:
203          *   play_dead WAIT loop ->
204          *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
205          *   eret to play_dead ->
206          *   bmips_secondary_reentry ->
207          *   start_secondary
208          */
209
210         pr_info("SMP: Booting CPU%d...\n", cpu);
211
212         if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
213                 /* kseg1 might not exist if this CPU enabled XKS01 */
214                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
215
216                 switch (current_cpu_type()) {
217                 case CPU_BMIPS4350:
218                 case CPU_BMIPS4380:
219                         bmips43xx_send_ipi_single(cpu, 0);
220                         break;
221                 case CPU_BMIPS5000:
222                         bmips5000_send_ipi_single(cpu, 0);
223                         break;
224                 }
225         } else {
226                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
227
228                 switch (current_cpu_type()) {
229                 case CPU_BMIPS4350:
230                 case CPU_BMIPS4380:
231                         /* Reset slave TP1 if booting from TP0 */
232                         if (cpu_logical_map(cpu) == 1)
233                                 set_c0_brcm_cmt_ctrl(0x01);
234                         break;
235                 case CPU_BMIPS5000:
236                         write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
237                         break;
238                 }
239                 cpumask_set_cpu(cpu, &bmips_booted_mask);
240         }
241
242         return 0;
243 }
244
245 /*
246  * Early setup - runs on secondary CPU after cache probe
247  */
248 static void bmips_init_secondary(void)
249 {
250         bmips_cpu_setup();
251
252         switch (current_cpu_type()) {
253         case CPU_BMIPS4350:
254         case CPU_BMIPS4380:
255                 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
256                 break;
257         case CPU_BMIPS5000:
258                 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
259                 cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
260                 break;
261         }
262 }
263
264 /*
265  * Late setup - runs on secondary CPU before entering the idle loop
266  */
267 static void bmips_smp_finish(void)
268 {
269         pr_info("SMP: CPU%d is running\n", smp_processor_id());
270
271         /* make sure there won't be a timer interrupt for a little while */
272         write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
273
274         irq_enable_hazard();
275         set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
276         irq_enable_hazard();
277 }
278
279 /*
280  * BMIPS5000 raceless IPIs
281  *
282  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
283  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
284  * IPI1 is used for SMP_CALL_FUNCTION
285  */
286
287 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
288 {
289         write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
290 }
291
292 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
293 {
294         int action = irq - IPI0_IRQ;
295
296         write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
297
298         if (action == 0)
299                 scheduler_ipi();
300         else
301                 generic_smp_call_function_interrupt();
302
303         return IRQ_HANDLED;
304 }
305
306 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
307         unsigned int action)
308 {
309         unsigned int i;
310
311         for_each_cpu(i, mask)
312                 bmips5000_send_ipi_single(i, action);
313 }
314
315 /*
316  * BMIPS43xx racey IPIs
317  *
318  * We use one inbound SW IRQ for each CPU.
319  *
320  * A spinlock must be held in order to keep CPUx from accidentally clearing
321  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
322  * same spinlock is used to protect the action masks.
323  */
324
325 static DEFINE_SPINLOCK(ipi_lock);
326 static DEFINE_PER_CPU(int, ipi_action_mask);
327
328 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
329 {
330         unsigned long flags;
331
332         spin_lock_irqsave(&ipi_lock, flags);
333         set_c0_cause(cpu ? C_SW1 : C_SW0);
334         per_cpu(ipi_action_mask, cpu) |= action;
335         irq_enable_hazard();
336         spin_unlock_irqrestore(&ipi_lock, flags);
337 }
338
339 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
340 {
341         unsigned long flags;
342         int action, cpu = irq - IPI0_IRQ;
343
344         spin_lock_irqsave(&ipi_lock, flags);
345         action = __this_cpu_read(ipi_action_mask);
346         per_cpu(ipi_action_mask, cpu) = 0;
347         clear_c0_cause(cpu ? C_SW1 : C_SW0);
348         spin_unlock_irqrestore(&ipi_lock, flags);
349
350         if (action & SMP_RESCHEDULE_YOURSELF)
351                 scheduler_ipi();
352         if (action & SMP_CALL_FUNCTION)
353                 generic_smp_call_function_interrupt();
354
355         return IRQ_HANDLED;
356 }
357
358 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
359         unsigned int action)
360 {
361         unsigned int i;
362
363         for_each_cpu(i, mask)
364                 bmips43xx_send_ipi_single(i, action);
365 }
366
367 #ifdef CONFIG_HOTPLUG_CPU
368
369 static int bmips_cpu_disable(void)
370 {
371         unsigned int cpu = smp_processor_id();
372
373         pr_info("SMP: CPU%d is offline\n", cpu);
374
375         set_cpu_online(cpu, false);
376         calculate_cpu_foreign_map();
377         irq_migrate_all_off_this_cpu();
378         clear_c0_status(IE_IRQ5);
379
380         local_flush_tlb_all();
381         local_flush_icache_range(0, ~0);
382
383         return 0;
384 }
385
386 static void bmips_cpu_die(unsigned int cpu)
387 {
388 }
389
390 void __ref play_dead(void)
391 {
392         idle_task_exit();
393
394         /* flush data cache */
395         _dma_cache_wback_inv(0, ~0);
396
397         /*
398          * Wakeup is on SW0 or SW1; disable everything else
399          * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
400          * IRQ handlers; this clears ST0_IE and returns immediately.
401          */
402         clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
403         change_c0_status(
404                 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
405                 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
406         irq_disable_hazard();
407
408         /*
409          * wait for SW interrupt from bmips_boot_secondary(), then jump
410          * back to start_secondary()
411          */
412         __asm__ __volatile__(
413         "       wait\n"
414         "       j       bmips_secondary_reentry\n"
415         : : : "memory");
416 }
417
418 #endif /* CONFIG_HOTPLUG_CPU */
419
420 const struct plat_smp_ops bmips43xx_smp_ops = {
421         .smp_setup              = bmips_smp_setup,
422         .prepare_cpus           = bmips_prepare_cpus,
423         .boot_secondary         = bmips_boot_secondary,
424         .smp_finish             = bmips_smp_finish,
425         .init_secondary         = bmips_init_secondary,
426         .send_ipi_single        = bmips43xx_send_ipi_single,
427         .send_ipi_mask          = bmips43xx_send_ipi_mask,
428 #ifdef CONFIG_HOTPLUG_CPU
429         .cpu_disable            = bmips_cpu_disable,
430         .cpu_die                = bmips_cpu_die,
431 #endif
432 #ifdef CONFIG_KEXEC
433         .kexec_nonboot_cpu      = kexec_nonboot_cpu_jump,
434 #endif
435 };
436
437 const struct plat_smp_ops bmips5000_smp_ops = {
438         .smp_setup              = bmips_smp_setup,
439         .prepare_cpus           = bmips_prepare_cpus,
440         .boot_secondary         = bmips_boot_secondary,
441         .smp_finish             = bmips_smp_finish,
442         .init_secondary         = bmips_init_secondary,
443         .send_ipi_single        = bmips5000_send_ipi_single,
444         .send_ipi_mask          = bmips5000_send_ipi_mask,
445 #ifdef CONFIG_HOTPLUG_CPU
446         .cpu_disable            = bmips_cpu_disable,
447         .cpu_die                = bmips_cpu_die,
448 #endif
449 #ifdef CONFIG_KEXEC
450         .kexec_nonboot_cpu      = kexec_nonboot_cpu_jump,
451 #endif
452 };
453
454 #endif /* CONFIG_SMP */
455
456 /***********************************************************************
457  * BMIPS vector relocation
458  * This is primarily used for SMP boot, but it is applicable to some
459  * UP BMIPS systems as well.
460  ***********************************************************************/
461
462 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
463 {
464         memcpy((void *)dst, start, end - start);
465         dma_cache_wback(dst, end - start);
466         local_flush_icache_range(dst, dst + (end - start));
467         instruction_hazard();
468 }
469
470 static inline void bmips_nmi_handler_setup(void)
471 {
472         bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
473                 bmips_reset_nmi_vec_end);
474         bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
475                 bmips_smp_int_vec_end);
476 }
477
478 struct reset_vec_info {
479         int cpu;
480         u32 val;
481 };
482
483 static void bmips_set_reset_vec_remote(void *vinfo)
484 {
485         struct reset_vec_info *info = vinfo;
486         int shift = info->cpu & 0x01 ? 16 : 0;
487         u32 mask = ~(0xffff << shift), val = info->val >> 16;
488
489         preempt_disable();
490         if (smp_processor_id() > 0) {
491                 smp_call_function_single(0, &bmips_set_reset_vec_remote,
492                                          info, 1);
493         } else {
494                 if (info->cpu & 0x02) {
495                         /* BMIPS5200 "should" use mask/shift, but it's buggy */
496                         bmips_write_zscm_reg(0xa0, (val << 16) | val);
497                         bmips_read_zscm_reg(0xa0);
498                 } else {
499                         write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
500                                               (val << shift));
501                 }
502         }
503         preempt_enable();
504 }
505
506 static void bmips_set_reset_vec(int cpu, u32 val)
507 {
508         struct reset_vec_info info;
509
510         if (current_cpu_type() == CPU_BMIPS5000) {
511                 /* this needs to run from CPU0 (which is always online) */
512                 info.cpu = cpu;
513                 info.val = val;
514                 bmips_set_reset_vec_remote(&info);
515         } else {
516                 void __iomem *cbr = BMIPS_GET_CBR();
517
518                 if (cpu == 0)
519                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
520                 else {
521                         if (current_cpu_type() != CPU_BMIPS4380)
522                                 return;
523                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
524                 }
525         }
526         __sync();
527         back_to_back_c0_hazard();
528 }
529
530 void bmips_ebase_setup(void)
531 {
532         unsigned long new_ebase = ebase;
533
534         BUG_ON(ebase != CKSEG0);
535
536         switch (current_cpu_type()) {
537         case CPU_BMIPS4350:
538                 /*
539                  * BMIPS4350 cannot relocate the normal vectors, but it
540                  * can relocate the BEV=1 vectors.  So CPU1 starts up at
541                  * the relocated BEV=1, IV=0 general exception vector @
542                  * 0xa000_0380.
543                  *
544                  * set_uncached_handler() is used here because:
545                  *  - CPU1 will run this from uncached space
546                  *  - None of the cacheflush functions are set up yet
547                  */
548                 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
549                         &bmips_smp_int_vec, 0x80);
550                 __sync();
551                 return;
552         case CPU_BMIPS3300:
553         case CPU_BMIPS4380:
554                 /*
555                  * 0x8000_0000: reset/NMI (initially in kseg1)
556                  * 0x8000_0400: normal vectors
557                  */
558                 new_ebase = 0x80000400;
559                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
560                 break;
561         case CPU_BMIPS5000:
562                 /*
563                  * 0x8000_0000: reset/NMI (initially in kseg1)
564                  * 0x8000_1000: normal vectors
565                  */
566                 new_ebase = 0x80001000;
567                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
568                 write_c0_ebase(new_ebase);
569                 break;
570         default:
571                 return;
572         }
573
574         board_nmi_handler_setup = &bmips_nmi_handler_setup;
575         ebase = new_ebase;
576 }
577
578 asmlinkage void __weak plat_wired_tlb_setup(void)
579 {
580         /*
581          * Called when starting/restarting a secondary CPU.
582          * Kernel stacks and other important data might only be accessible
583          * once the wired entries are present.
584          */
585 }
586
587 void bmips_cpu_setup(void)
588 {
589         void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
590         u32 __maybe_unused cfg;
591
592         switch (current_cpu_type()) {
593         case CPU_BMIPS3300:
594                 /* Set BIU to async mode */
595                 set_c0_brcm_bus_pll(BIT(22));
596                 __sync();
597
598                 /* put the BIU back in sync mode */
599                 clear_c0_brcm_bus_pll(BIT(22));
600
601                 /* clear BHTD to enable branch history table */
602                 clear_c0_brcm_reset(BIT(16));
603
604                 /* Flush and enable RAC */
605                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
606                 __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
607                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
608
609                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
610                 __raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
611                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
612
613                 cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
614                 __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
615                 __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
616                 break;
617
618         case CPU_BMIPS4380:
619                 /* CBG workaround for early BMIPS4380 CPUs */
620                 switch (read_c0_prid()) {
621                 case 0x2a040:
622                 case 0x2a042:
623                 case 0x2a044:
624                 case 0x2a060:
625                         cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
626                         __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
627                         __raw_readl(cbr + BMIPS_L2_CONFIG);
628                 }
629
630                 /* clear BHTD to enable branch history table */
631                 clear_c0_brcm_config_0(BIT(21));
632
633                 /* XI/ROTR enable */
634                 set_c0_brcm_config_0(BIT(23));
635                 set_c0_brcm_cmt_ctrl(BIT(15));
636                 break;
637
638         case CPU_BMIPS5000:
639                 /* enable RDHWR, BRDHWR */
640                 set_c0_brcm_config(BIT(17) | BIT(21));
641
642                 /* Disable JTB */
643                 __asm__ __volatile__(
644                 "       .set    noreorder\n"
645                 "       li      $8, 0x5a455048\n"
646                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
647                 "       .word   0x4008b008\n"   /* mfc0 t0, $22, 8 */
648                 "       li      $9, 0x00008000\n"
649                 "       or      $8, $8, $9\n"
650                 "       .word   0x4088b008\n"   /* mtc0 t0, $22, 8 */
651                 "       sync\n"
652                 "       li      $8, 0x0\n"
653                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
654                 "       .set    reorder\n"
655                 : : : "$8", "$9");
656
657                 /* XI enable */
658                 set_c0_brcm_config(BIT(27));
659
660                 /* enable MIPS32R2 ROR instruction for XI TLB handlers */
661                 __asm__ __volatile__(
662                 "       li      $8, 0x5a455048\n"
663                 "       .word   0x4088b00f\n"   /* mtc0 $8, $22, 15 */
664                 "       nop; nop; nop\n"
665                 "       .word   0x4008b008\n"   /* mfc0 $8, $22, 8 */
666                 "       lui     $9, 0x0100\n"
667                 "       or      $8, $9\n"
668                 "       .word   0x4088b008\n"   /* mtc0 $8, $22, 8 */
669                 : : : "$8", "$9");
670                 break;
671         }
672 }