GNU Linux-libre 4.14.319-gnu1
[releases.git] / arch / mips / kernel / setup.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/decompress/generic.h>
30 #include <linux/of_fdt.h>
31
32 #include <asm/addrspace.h>
33 #include <asm/bootinfo.h>
34 #include <asm/bugs.h>
35 #include <asm/cache.h>
36 #include <asm/cdmm.h>
37 #include <asm/cpu.h>
38 #include <asm/debug.h>
39 #include <asm/sections.h>
40 #include <asm/setup.h>
41 #include <asm/smp-ops.h>
42 #include <asm/prom.h>
43
44 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
45 const char __section(.appended_dtb) __appended_dtb[0x100000];
46 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
47
48 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
49
50 EXPORT_SYMBOL(cpu_data);
51
52 #ifdef CONFIG_VT
53 struct screen_info screen_info;
54 #endif
55
56 /*
57  * Setup information
58  *
59  * These are initialized so they are in the .data section
60  */
61 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
62
63 EXPORT_SYMBOL(mips_machtype);
64
65 struct boot_mem_map boot_mem_map;
66
67 static char __initdata command_line[COMMAND_LINE_SIZE];
68 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
69
70 #ifdef CONFIG_CMDLINE_BOOL
71 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
72 #endif
73
74 /*
75  * mips_io_port_base is the begin of the address space to which x86 style
76  * I/O ports are mapped.
77  */
78 unsigned long mips_io_port_base = -1;
79 EXPORT_SYMBOL(mips_io_port_base);
80
81 static struct resource code_resource = { .name = "Kernel code", };
82 static struct resource data_resource = { .name = "Kernel data", };
83
84 static void *detect_magic __initdata = detect_memory_region;
85
86 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
87 {
88         int x = boot_mem_map.nr_map;
89         int i;
90
91         /*
92          * If the region reaches the top of the physical address space, adjust
93          * the size slightly so that (start + size) doesn't overflow
94          */
95         if (start + size - 1 == (phys_addr_t)ULLONG_MAX)
96                 --size;
97
98         /* Sanity check */
99         if (start + size < start) {
100                 pr_warn("Trying to add an invalid memory region, skipped\n");
101                 return;
102         }
103
104         /*
105          * Try to merge with existing entry, if any.
106          */
107         for (i = 0; i < boot_mem_map.nr_map; i++) {
108                 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
109                 unsigned long top;
110
111                 if (entry->type != type)
112                         continue;
113
114                 if (start + size < entry->addr)
115                         continue;                       /* no overlap */
116
117                 if (entry->addr + entry->size < start)
118                         continue;                       /* no overlap */
119
120                 top = max(entry->addr + entry->size, start + size);
121                 entry->addr = min(entry->addr, start);
122                 entry->size = top - entry->addr;
123
124                 return;
125         }
126
127         if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
128                 pr_err("Ooops! Too many entries in the memory map!\n");
129                 return;
130         }
131
132         boot_mem_map.map[x].addr = start;
133         boot_mem_map.map[x].size = size;
134         boot_mem_map.map[x].type = type;
135         boot_mem_map.nr_map++;
136 }
137
138 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
139 {
140         void *dm = &detect_magic;
141         phys_addr_t size;
142
143         for (size = sz_min; size < sz_max; size <<= 1) {
144                 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
145                         break;
146         }
147
148         pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
149                 ((unsigned long long) size) / SZ_1M,
150                 (unsigned long long) start,
151                 ((unsigned long long) sz_min) / SZ_1M,
152                 ((unsigned long long) sz_max) / SZ_1M);
153
154         add_memory_region(start, size, BOOT_MEM_RAM);
155 }
156
157 bool __init memory_region_available(phys_addr_t start, phys_addr_t size)
158 {
159         int i;
160         bool in_ram = false, free = true;
161
162         for (i = 0; i < boot_mem_map.nr_map; i++) {
163                 phys_addr_t start_, end_;
164
165                 start_ = boot_mem_map.map[i].addr;
166                 end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
167
168                 switch (boot_mem_map.map[i].type) {
169                 case BOOT_MEM_RAM:
170                         if (start >= start_ && start + size <= end_)
171                                 in_ram = true;
172                         break;
173                 case BOOT_MEM_RESERVED:
174                         if ((start >= start_ && start < end_) ||
175                             (start < start_ && start + size >= start_))
176                                 free = false;
177                         break;
178                 default:
179                         continue;
180                 }
181         }
182
183         return in_ram && free;
184 }
185
186 static void __init print_memory_map(void)
187 {
188         int i;
189         const int field = 2 * sizeof(unsigned long);
190
191         for (i = 0; i < boot_mem_map.nr_map; i++) {
192                 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
193                        field, (unsigned long long) boot_mem_map.map[i].size,
194                        field, (unsigned long long) boot_mem_map.map[i].addr);
195
196                 switch (boot_mem_map.map[i].type) {
197                 case BOOT_MEM_RAM:
198                         printk(KERN_CONT "(usable)\n");
199                         break;
200                 case BOOT_MEM_INIT_RAM:
201                         printk(KERN_CONT "(usable after init)\n");
202                         break;
203                 case BOOT_MEM_ROM_DATA:
204                         printk(KERN_CONT "(ROM data)\n");
205                         break;
206                 case BOOT_MEM_RESERVED:
207                         printk(KERN_CONT "(reserved)\n");
208                         break;
209                 default:
210                         printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
211                         break;
212                 }
213         }
214 }
215
216 /*
217  * Manage initrd
218  */
219 #ifdef CONFIG_BLK_DEV_INITRD
220
221 static int __init rd_start_early(char *p)
222 {
223         unsigned long start = memparse(p, &p);
224
225 #ifdef CONFIG_64BIT
226         /* Guess if the sign extension was forgotten by bootloader */
227         if (start < XKPHYS)
228                 start = (int)start;
229 #endif
230         initrd_start = start;
231         initrd_end += start;
232         return 0;
233 }
234 early_param("rd_start", rd_start_early);
235
236 static int __init rd_size_early(char *p)
237 {
238         initrd_end += memparse(p, &p);
239         return 0;
240 }
241 early_param("rd_size", rd_size_early);
242
243 /* it returns the next free pfn after initrd */
244 static unsigned long __init init_initrd(void)
245 {
246         unsigned long end;
247
248         /*
249          * Board specific code or command line parser should have
250          * already set up initrd_start and initrd_end. In these cases
251          * perfom sanity checks and use them if all looks good.
252          */
253         if (!initrd_start || initrd_end <= initrd_start)
254                 goto disable;
255
256         if (initrd_start & ~PAGE_MASK) {
257                 pr_err("initrd start must be page aligned\n");
258                 goto disable;
259         }
260
261         /*
262          * Sanitize initrd addresses. For example firmware
263          * can't guess if they need to pass them through
264          * 64-bits values if the kernel has been built in pure
265          * 32-bit. We need also to switch from KSEG0 to XKPHYS
266          * addresses now, so the code can now safely use __pa().
267          */
268         end = __pa(initrd_end);
269         initrd_end = (unsigned long)__va(end);
270         initrd_start = (unsigned long)__va(__pa(initrd_start));
271
272         if (initrd_start < PAGE_OFFSET) {
273                 pr_err("initrd start < PAGE_OFFSET\n");
274                 goto disable;
275         }
276
277         ROOT_DEV = Root_RAM0;
278         return PFN_UP(end);
279 disable:
280         initrd_start = 0;
281         initrd_end = 0;
282         return 0;
283 }
284
285 /* In some conditions (e.g. big endian bootloader with a little endian
286    kernel), the initrd might appear byte swapped.  Try to detect this and
287    byte swap it if needed.  */
288 static void __init maybe_bswap_initrd(void)
289 {
290 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
291         u64 buf;
292
293         /* Check for CPIO signature */
294         if (!memcmp((void *)initrd_start, "070701", 6))
295                 return;
296
297         /* Check for compressed initrd */
298         if (decompress_method((unsigned char *)initrd_start, 8, NULL))
299                 return;
300
301         /* Try again with a byte swapped header */
302         buf = swab64p((u64 *)initrd_start);
303         if (!memcmp(&buf, "070701", 6) ||
304             decompress_method((unsigned char *)(&buf), 8, NULL)) {
305                 unsigned long i;
306
307                 pr_info("Byteswapped initrd detected\n");
308                 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
309                         swab64s((u64 *)i);
310         }
311 #endif
312 }
313
314 static void __init finalize_initrd(void)
315 {
316         unsigned long size = initrd_end - initrd_start;
317
318         if (size == 0) {
319                 printk(KERN_INFO "Initrd not found or empty");
320                 goto disable;
321         }
322         if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
323                 printk(KERN_ERR "Initrd extends beyond end of memory");
324                 goto disable;
325         }
326
327         maybe_bswap_initrd();
328
329         reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
330         initrd_below_start_ok = 1;
331
332         pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
333                 initrd_start, size);
334         return;
335 disable:
336         printk(KERN_CONT " - disabling initrd\n");
337         initrd_start = 0;
338         initrd_end = 0;
339 }
340
341 #else  /* !CONFIG_BLK_DEV_INITRD */
342
343 static unsigned long __init init_initrd(void)
344 {
345         return 0;
346 }
347
348 #define finalize_initrd()       do {} while (0)
349
350 #endif
351
352 /*
353  * Initialize the bootmem allocator. It also setup initrd related data
354  * if needed.
355  */
356 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
357
358 static void __init bootmem_init(void)
359 {
360         init_initrd();
361         finalize_initrd();
362 }
363
364 #else  /* !CONFIG_SGI_IP27 */
365
366 static unsigned long __init bootmap_bytes(unsigned long pages)
367 {
368         unsigned long bytes = DIV_ROUND_UP(pages, 8);
369
370         return ALIGN(bytes, sizeof(long));
371 }
372
373 static void __init bootmem_init(void)
374 {
375         unsigned long reserved_end;
376         unsigned long mapstart = ~0UL;
377         unsigned long bootmap_size;
378         phys_addr_t ramstart = (phys_addr_t)ULLONG_MAX;
379         bool bootmap_valid = false;
380         int i;
381
382         /*
383          * Sanity check any INITRD first. We don't take it into account
384          * for bootmem setup initially, rely on the end-of-kernel-code
385          * as our memory range starting point. Once bootmem is inited we
386          * will reserve the area used for the initrd.
387          */
388         init_initrd();
389         reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
390
391         /*
392          * max_low_pfn is not a number of pages. The number of pages
393          * of the system is given by 'max_low_pfn - min_low_pfn'.
394          */
395         min_low_pfn = ~0UL;
396         max_low_pfn = 0;
397
398         /*
399          * Find the highest page frame number we have available
400          * and the lowest used RAM address
401          */
402         for (i = 0; i < boot_mem_map.nr_map; i++) {
403                 unsigned long start, end;
404
405                 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
406                         continue;
407
408                 start = PFN_UP(boot_mem_map.map[i].addr);
409                 end = PFN_DOWN(boot_mem_map.map[i].addr
410                                 + boot_mem_map.map[i].size);
411
412                 ramstart = min(ramstart, boot_mem_map.map[i].addr);
413
414 #ifndef CONFIG_HIGHMEM
415                 /*
416                  * Skip highmem here so we get an accurate max_low_pfn if low
417                  * memory stops short of high memory.
418                  * If the region overlaps HIGHMEM_START, end is clipped so
419                  * max_pfn excludes the highmem portion.
420                  */
421                 if (start >= PFN_DOWN(HIGHMEM_START))
422                         continue;
423                 if (end > PFN_DOWN(HIGHMEM_START))
424                         end = PFN_DOWN(HIGHMEM_START);
425 #endif
426
427                 if (end > max_low_pfn)
428                         max_low_pfn = end;
429                 if (start < min_low_pfn)
430                         min_low_pfn = start;
431                 if (end <= reserved_end)
432                         continue;
433 #ifdef CONFIG_BLK_DEV_INITRD
434                 /* Skip zones before initrd and initrd itself */
435                 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
436                         continue;
437 #endif
438                 if (start >= mapstart)
439                         continue;
440                 mapstart = max(reserved_end, start);
441         }
442
443         /*
444          * Reserve any memory between the start of RAM and PHYS_OFFSET
445          */
446         if (ramstart > PHYS_OFFSET)
447                 add_memory_region(PHYS_OFFSET, ramstart - PHYS_OFFSET,
448                                   BOOT_MEM_RESERVED);
449
450         if (min_low_pfn >= max_low_pfn)
451                 panic("Incorrect memory mapping !!!");
452         if (min_low_pfn > ARCH_PFN_OFFSET) {
453                 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
454                         (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
455                         min_low_pfn - ARCH_PFN_OFFSET);
456         } else if (min_low_pfn < ARCH_PFN_OFFSET) {
457                 pr_info("%lu free pages won't be used\n",
458                         ARCH_PFN_OFFSET - min_low_pfn);
459         }
460         min_low_pfn = ARCH_PFN_OFFSET;
461
462         /*
463          * Determine low and high memory ranges
464          */
465         max_pfn = max_low_pfn;
466         if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
467 #ifdef CONFIG_HIGHMEM
468                 highstart_pfn = PFN_DOWN(HIGHMEM_START);
469                 highend_pfn = max_low_pfn;
470 #endif
471                 max_low_pfn = PFN_DOWN(HIGHMEM_START);
472         }
473
474 #ifdef CONFIG_BLK_DEV_INITRD
475         /*
476          * mapstart should be after initrd_end
477          */
478         if (initrd_end)
479                 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
480 #endif
481
482         /*
483          * check that mapstart doesn't overlap with any of
484          * memory regions that have been reserved through eg. DTB
485          */
486         bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
487
488         bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
489                                                 bootmap_size);
490         for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
491                 unsigned long mapstart_addr;
492
493                 switch (boot_mem_map.map[i].type) {
494                 case BOOT_MEM_RESERVED:
495                         mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
496                                                 boot_mem_map.map[i].size);
497                         if (PHYS_PFN(mapstart_addr) < mapstart)
498                                 break;
499
500                         bootmap_valid = memory_region_available(mapstart_addr,
501                                                                 bootmap_size);
502                         if (bootmap_valid)
503                                 mapstart = PHYS_PFN(mapstart_addr);
504                         break;
505                 default:
506                         break;
507                 }
508         }
509
510         if (!bootmap_valid)
511                 panic("No memory area to place a bootmap bitmap");
512
513         /*
514          * Initialize the boot-time allocator with low memory only.
515          */
516         if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
517                                          min_low_pfn, max_low_pfn))
518                 panic("Unexpected memory size required for bootmap");
519
520         for (i = 0; i < boot_mem_map.nr_map; i++) {
521                 unsigned long start, end;
522
523                 start = PFN_UP(boot_mem_map.map[i].addr);
524                 end = PFN_DOWN(boot_mem_map.map[i].addr
525                                 + boot_mem_map.map[i].size);
526
527                 if (start <= min_low_pfn)
528                         start = min_low_pfn;
529                 if (start >= end)
530                         continue;
531
532 #ifndef CONFIG_HIGHMEM
533                 if (end > max_low_pfn)
534                         end = max_low_pfn;
535
536                 /*
537                  * ... finally, is the area going away?
538                  */
539                 if (end <= start)
540                         continue;
541 #endif
542
543                 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
544         }
545
546         /*
547          * Register fully available low RAM pages with the bootmem allocator.
548          */
549         for (i = 0; i < boot_mem_map.nr_map; i++) {
550                 unsigned long start, end, size;
551
552                 start = PFN_UP(boot_mem_map.map[i].addr);
553                 end   = PFN_DOWN(boot_mem_map.map[i].addr
554                                     + boot_mem_map.map[i].size);
555
556                 /*
557                  * Reserve usable memory.
558                  */
559                 switch (boot_mem_map.map[i].type) {
560                 case BOOT_MEM_RAM:
561                         break;
562                 case BOOT_MEM_INIT_RAM:
563                         memory_present(0, start, end);
564                         continue;
565                 default:
566                         /* Not usable memory */
567                         if (start > min_low_pfn && end < max_low_pfn)
568                                 reserve_bootmem(boot_mem_map.map[i].addr,
569                                                 boot_mem_map.map[i].size,
570                                                 BOOTMEM_DEFAULT);
571                         continue;
572                 }
573
574                 /*
575                  * We are rounding up the start address of usable memory
576                  * and at the end of the usable range downwards.
577                  */
578                 if (start >= max_low_pfn)
579                         continue;
580                 if (start < reserved_end)
581                         start = reserved_end;
582                 if (end > max_low_pfn)
583                         end = max_low_pfn;
584
585                 /*
586                  * ... finally, is the area going away?
587                  */
588                 if (end <= start)
589                         continue;
590                 size = end - start;
591
592                 /* Register lowmem ranges */
593                 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
594                 memory_present(0, start, end);
595         }
596
597         /*
598          * Reserve the bootmap memory.
599          */
600         reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
601
602 #ifdef CONFIG_RELOCATABLE
603         /*
604          * The kernel reserves all memory below its _end symbol as bootmem,
605          * but the kernel may now be at a much higher address. The memory
606          * between the original and new locations may be returned to the system.
607          */
608         if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
609                 unsigned long offset;
610                 extern void show_kernel_relocation(const char *level);
611
612                 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
613                 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
614
615 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
616                 /*
617                  * This information is necessary when debugging the kernel
618                  * But is a security vulnerability otherwise!
619                  */
620                 show_kernel_relocation(KERN_INFO);
621 #endif
622         }
623 #endif
624
625         /*
626          * Reserve initrd memory if needed.
627          */
628         finalize_initrd();
629 }
630
631 #endif  /* CONFIG_SGI_IP27 */
632
633 /*
634  * arch_mem_init - initialize memory management subsystem
635  *
636  *  o plat_mem_setup() detects the memory configuration and will record detected
637  *    memory areas using add_memory_region.
638  *
639  * At this stage the memory configuration of the system is known to the
640  * kernel but generic memory management system is still entirely uninitialized.
641  *
642  *  o bootmem_init()
643  *  o sparse_init()
644  *  o paging_init()
645  *  o dma_contiguous_reserve()
646  *
647  * At this stage the bootmem allocator is ready to use.
648  *
649  * NOTE: historically plat_mem_setup did the entire platform initialization.
650  *       This was rather impractical because it meant plat_mem_setup had to
651  * get away without any kind of memory allocator.  To keep old code from
652  * breaking plat_setup was just renamed to plat_mem_setup and a second platform
653  * initialization hook for anything else was introduced.
654  */
655
656 static int usermem __initdata;
657
658 static int __init early_parse_mem(char *p)
659 {
660         phys_addr_t start, size;
661
662         /*
663          * If a user specifies memory size, we
664          * blow away any automatically generated
665          * size.
666          */
667         if (usermem == 0) {
668                 boot_mem_map.nr_map = 0;
669                 usermem = 1;
670         }
671         start = 0;
672         size = memparse(p, &p);
673         if (*p == '@')
674                 start = memparse(p + 1, &p);
675
676         add_memory_region(start, size, BOOT_MEM_RAM);
677
678         return 0;
679 }
680 early_param("mem", early_parse_mem);
681
682 static int __init early_parse_memmap(char *p)
683 {
684         char *oldp;
685         u64 start_at, mem_size;
686
687         if (!p)
688                 return -EINVAL;
689
690         if (!strncmp(p, "exactmap", 8)) {
691                 pr_err("\"memmap=exactmap\" invalid on MIPS\n");
692                 return 0;
693         }
694
695         oldp = p;
696         mem_size = memparse(p, &p);
697         if (p == oldp)
698                 return -EINVAL;
699
700         if (*p == '@') {
701                 start_at = memparse(p+1, &p);
702                 add_memory_region(start_at, mem_size, BOOT_MEM_RAM);
703         } else if (*p == '#') {
704                 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
705                 return -EINVAL;
706         } else if (*p == '$') {
707                 start_at = memparse(p+1, &p);
708                 add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED);
709         } else {
710                 pr_err("\"memmap\" invalid format!\n");
711                 return -EINVAL;
712         }
713
714         if (*p == '\0') {
715                 usermem = 1;
716                 return 0;
717         } else
718                 return -EINVAL;
719 }
720 early_param("memmap", early_parse_memmap);
721
722 #ifdef CONFIG_PROC_VMCORE
723 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
724 static int __init early_parse_elfcorehdr(char *p)
725 {
726         int i;
727
728         setup_elfcorehdr = memparse(p, &p);
729
730         for (i = 0; i < boot_mem_map.nr_map; i++) {
731                 unsigned long start = boot_mem_map.map[i].addr;
732                 unsigned long end = (boot_mem_map.map[i].addr +
733                                      boot_mem_map.map[i].size);
734                 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
735                         /*
736                          * Reserve from the elf core header to the end of
737                          * the memory segment, that should all be kdump
738                          * reserved memory.
739                          */
740                         setup_elfcorehdr_size = end - setup_elfcorehdr;
741                         break;
742                 }
743         }
744         /*
745          * If we don't find it in the memory map, then we shouldn't
746          * have to worry about it, as the new kernel won't use it.
747          */
748         return 0;
749 }
750 early_param("elfcorehdr", early_parse_elfcorehdr);
751 #endif
752
753 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
754 {
755         phys_addr_t size;
756         int i;
757
758         size = end - mem;
759         if (!size)
760                 return;
761
762         /* Make sure it is in the boot_mem_map */
763         for (i = 0; i < boot_mem_map.nr_map; i++) {
764                 if (mem >= boot_mem_map.map[i].addr &&
765                     mem < (boot_mem_map.map[i].addr +
766                            boot_mem_map.map[i].size))
767                         return;
768         }
769         add_memory_region(mem, size, type);
770 }
771
772 #ifdef CONFIG_KEXEC
773 static inline unsigned long long get_total_mem(void)
774 {
775         unsigned long long total;
776
777         total = max_pfn - min_low_pfn;
778         return total << PAGE_SHIFT;
779 }
780
781 static void __init mips_parse_crashkernel(void)
782 {
783         unsigned long long total_mem;
784         unsigned long long crash_size, crash_base;
785         int ret;
786
787         total_mem = get_total_mem();
788         ret = parse_crashkernel(boot_command_line, total_mem,
789                                 &crash_size, &crash_base);
790         if (ret != 0 || crash_size <= 0)
791                 return;
792
793         if (!memory_region_available(crash_base, crash_size)) {
794                 pr_warn("Invalid memory region reserved for crash kernel\n");
795                 return;
796         }
797
798         crashk_res.start = crash_base;
799         crashk_res.end   = crash_base + crash_size - 1;
800 }
801
802 static void __init request_crashkernel(struct resource *res)
803 {
804         int ret;
805
806         if (crashk_res.start == crashk_res.end)
807                 return;
808
809         ret = request_resource(res, &crashk_res);
810         if (!ret)
811                 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
812                         (unsigned long)((crashk_res.end -
813                                          crashk_res.start + 1) >> 20),
814                         (unsigned long)(crashk_res.start  >> 20));
815 }
816 #else /* !defined(CONFIG_KEXEC)         */
817 static void __init mips_parse_crashkernel(void)
818 {
819 }
820
821 static void __init request_crashkernel(struct resource *res)
822 {
823 }
824 #endif /* !defined(CONFIG_KEXEC)  */
825
826 #define USE_PROM_CMDLINE        IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
827 #define USE_DTB_CMDLINE         IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
828 #define EXTEND_WITH_PROM        IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
829 #define BUILTIN_EXTEND_WITH_PROM        \
830         IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
831
832 static void __init arch_mem_init(char **cmdline_p)
833 {
834         struct memblock_region *reg;
835         extern void plat_mem_setup(void);
836
837         /* call board setup routine */
838         plat_mem_setup();
839
840         /*
841          * Make sure all kernel memory is in the maps.  The "UP" and
842          * "DOWN" are opposite for initdata since if it crosses over
843          * into another memory section you don't want that to be
844          * freed when the initdata is freed.
845          */
846         arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
847                          PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
848                          BOOT_MEM_RAM);
849         arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
850                          PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
851                          BOOT_MEM_INIT_RAM);
852
853         pr_info("Determined physical RAM map:\n");
854         print_memory_map();
855
856 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
857         strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
858 #else
859         if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
860             (USE_DTB_CMDLINE && !boot_command_line[0]))
861                 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
862
863         if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
864                 if (boot_command_line[0])
865                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
866                 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
867         }
868
869 #if defined(CONFIG_CMDLINE_BOOL)
870         if (builtin_cmdline[0]) {
871                 if (boot_command_line[0])
872                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
873                 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
874         }
875
876         if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
877                 if (boot_command_line[0])
878                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
879                 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
880         }
881 #endif
882 #endif
883         strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
884
885         *cmdline_p = command_line;
886
887         parse_early_param();
888
889         if (usermem) {
890                 pr_info("User-defined physical RAM map:\n");
891                 print_memory_map();
892         }
893
894         early_init_fdt_reserve_self();
895         early_init_fdt_scan_reserved_mem();
896
897         bootmem_init();
898 #ifdef CONFIG_PROC_VMCORE
899         if (setup_elfcorehdr && setup_elfcorehdr_size) {
900                 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
901                        setup_elfcorehdr, setup_elfcorehdr_size);
902                 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
903                                 BOOTMEM_DEFAULT);
904         }
905 #endif
906
907         mips_parse_crashkernel();
908 #ifdef CONFIG_KEXEC
909         if (crashk_res.start != crashk_res.end)
910                 reserve_bootmem(crashk_res.start,
911                                 crashk_res.end - crashk_res.start + 1,
912                                 BOOTMEM_DEFAULT);
913 #endif
914         device_tree_init();
915
916         /*
917          * In order to reduce the possibility of kernel panic when failed to
918          * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate
919          * low memory as small as possible before plat_swiotlb_setup(), so
920          * make sparse_init() using top-down allocation.
921          */
922         memblock_set_bottom_up(false);
923         sparse_init();
924         memblock_set_bottom_up(true);
925
926         plat_swiotlb_setup();
927
928         dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
929         /* Tell bootmem about cma reserved memblock section */
930         for_each_memblock(reserved, reg)
931                 if (reg->size != 0)
932                         reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
933
934         reserve_bootmem_region(__pa_symbol(&__nosave_begin),
935                         __pa_symbol(&__nosave_end)); /* Reserve for hibernation */
936 }
937
938 static void __init resource_init(void)
939 {
940         int i;
941
942         if (UNCAC_BASE != IO_BASE)
943                 return;
944
945         code_resource.start = __pa_symbol(&_text);
946         code_resource.end = __pa_symbol(&_etext) - 1;
947         data_resource.start = __pa_symbol(&_etext);
948         data_resource.end = __pa_symbol(&_edata) - 1;
949
950         for (i = 0; i < boot_mem_map.nr_map; i++) {
951                 struct resource *res;
952                 unsigned long start, end;
953
954                 start = boot_mem_map.map[i].addr;
955                 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
956                 if (start >= HIGHMEM_START)
957                         continue;
958                 if (end >= HIGHMEM_START)
959                         end = HIGHMEM_START - 1;
960
961                 res = alloc_bootmem(sizeof(struct resource));
962
963                 res->start = start;
964                 res->end = end;
965                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
966
967                 switch (boot_mem_map.map[i].type) {
968                 case BOOT_MEM_RAM:
969                 case BOOT_MEM_INIT_RAM:
970                 case BOOT_MEM_ROM_DATA:
971                         res->name = "System RAM";
972                         res->flags |= IORESOURCE_SYSRAM;
973                         break;
974                 case BOOT_MEM_RESERVED:
975                 default:
976                         res->name = "reserved";
977                 }
978
979                 request_resource(&iomem_resource, res);
980
981                 /*
982                  *  We don't know which RAM region contains kernel data,
983                  *  so we try it repeatedly and let the resource manager
984                  *  test it.
985                  */
986                 request_resource(res, &code_resource);
987                 request_resource(res, &data_resource);
988                 request_crashkernel(res);
989         }
990 }
991
992 #ifdef CONFIG_SMP
993 static void __init prefill_possible_map(void)
994 {
995         int i, possible = num_possible_cpus();
996
997         if (possible > nr_cpu_ids)
998                 possible = nr_cpu_ids;
999
1000         for (i = 0; i < possible; i++)
1001                 set_cpu_possible(i, true);
1002         for (; i < NR_CPUS; i++)
1003                 set_cpu_possible(i, false);
1004
1005         nr_cpu_ids = possible;
1006 }
1007 #else
1008 static inline void prefill_possible_map(void) {}
1009 #endif
1010
1011 void __init setup_arch(char **cmdline_p)
1012 {
1013         cpu_probe();
1014         mips_cm_probe();
1015         prom_init();
1016
1017         setup_early_fdc_console();
1018 #ifdef CONFIG_EARLY_PRINTK
1019         setup_early_printk();
1020 #endif
1021         cpu_report();
1022         check_bugs_early();
1023
1024 #if defined(CONFIG_VT)
1025 #if defined(CONFIG_VGA_CONSOLE)
1026         conswitchp = &vga_con;
1027 #elif defined(CONFIG_DUMMY_CONSOLE)
1028         conswitchp = &dummy_con;
1029 #endif
1030 #endif
1031
1032         arch_mem_init(cmdline_p);
1033
1034         resource_init();
1035         plat_smp_setup();
1036         prefill_possible_map();
1037
1038         cpu_cache_init();
1039         paging_init();
1040 }
1041
1042 unsigned long kernelsp[NR_CPUS];
1043 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
1044
1045 #ifdef CONFIG_USE_OF
1046 unsigned long fw_passed_dtb;
1047 #endif
1048
1049 #ifdef CONFIG_DEBUG_FS
1050 struct dentry *mips_debugfs_dir;
1051 static int __init debugfs_mips(void)
1052 {
1053         struct dentry *d;
1054
1055         d = debugfs_create_dir("mips", NULL);
1056         if (!d)
1057                 return -ENOMEM;
1058         mips_debugfs_dir = d;
1059         return 0;
1060 }
1061 arch_initcall(debugfs_mips);
1062 #endif