GNU Linux-libre 4.19.286-gnu1
[releases.git] / arch / mips / kernel / setup.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/decompress/generic.h>
30 #include <linux/of_fdt.h>
31
32 #include <asm/addrspace.h>
33 #include <asm/bootinfo.h>
34 #include <asm/bugs.h>
35 #include <asm/cache.h>
36 #include <asm/cdmm.h>
37 #include <asm/cpu.h>
38 #include <asm/debug.h>
39 #include <asm/dma-coherence.h>
40 #include <asm/sections.h>
41 #include <asm/setup.h>
42 #include <asm/smp-ops.h>
43 #include <asm/prom.h>
44
45 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
46 const char __section(.appended_dtb) __appended_dtb[0x100000];
47 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
48
49 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
50
51 EXPORT_SYMBOL(cpu_data);
52
53 #ifdef CONFIG_VT
54 struct screen_info screen_info;
55 #endif
56
57 /*
58  * Setup information
59  *
60  * These are initialized so they are in the .data section
61  */
62 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
63
64 EXPORT_SYMBOL(mips_machtype);
65
66 struct boot_mem_map boot_mem_map;
67
68 static char __initdata command_line[COMMAND_LINE_SIZE];
69 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
70
71 #ifdef CONFIG_CMDLINE_BOOL
72 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
73 #endif
74
75 /*
76  * mips_io_port_base is the begin of the address space to which x86 style
77  * I/O ports are mapped.
78  */
79 unsigned long mips_io_port_base = -1;
80 EXPORT_SYMBOL(mips_io_port_base);
81
82 static struct resource code_resource = { .name = "Kernel code", };
83 static struct resource data_resource = { .name = "Kernel data", };
84 static struct resource bss_resource = { .name = "Kernel bss", };
85
86 static void *detect_magic __initdata = detect_memory_region;
87
88 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
89 unsigned long ARCH_PFN_OFFSET;
90 EXPORT_SYMBOL(ARCH_PFN_OFFSET);
91 #endif
92
93 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
94 {
95         int x = boot_mem_map.nr_map;
96         int i;
97
98         /*
99          * If the region reaches the top of the physical address space, adjust
100          * the size slightly so that (start + size) doesn't overflow
101          */
102         if (start + size - 1 == PHYS_ADDR_MAX)
103                 --size;
104
105         /* Sanity check */
106         if (start + size < start) {
107                 pr_warn("Trying to add an invalid memory region, skipped\n");
108                 return;
109         }
110
111         /*
112          * Try to merge with existing entry, if any.
113          */
114         for (i = 0; i < boot_mem_map.nr_map; i++) {
115                 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
116                 unsigned long top;
117
118                 if (entry->type != type)
119                         continue;
120
121                 if (start + size < entry->addr)
122                         continue;                       /* no overlap */
123
124                 if (entry->addr + entry->size < start)
125                         continue;                       /* no overlap */
126
127                 top = max(entry->addr + entry->size, start + size);
128                 entry->addr = min(entry->addr, start);
129                 entry->size = top - entry->addr;
130
131                 return;
132         }
133
134         if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
135                 pr_err("Ooops! Too many entries in the memory map!\n");
136                 return;
137         }
138
139         boot_mem_map.map[x].addr = start;
140         boot_mem_map.map[x].size = size;
141         boot_mem_map.map[x].type = type;
142         boot_mem_map.nr_map++;
143 }
144
145 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
146 {
147         void *dm = &detect_magic;
148         phys_addr_t size;
149
150         for (size = sz_min; size < sz_max; size <<= 1) {
151                 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
152                         break;
153         }
154
155         pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
156                 ((unsigned long long) size) / SZ_1M,
157                 (unsigned long long) start,
158                 ((unsigned long long) sz_min) / SZ_1M,
159                 ((unsigned long long) sz_max) / SZ_1M);
160
161         add_memory_region(start, size, BOOT_MEM_RAM);
162 }
163
164 static bool __init __maybe_unused memory_region_available(phys_addr_t start,
165                                                           phys_addr_t size)
166 {
167         int i;
168         bool in_ram = false, free = true;
169
170         for (i = 0; i < boot_mem_map.nr_map; i++) {
171                 phys_addr_t start_, end_;
172
173                 start_ = boot_mem_map.map[i].addr;
174                 end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
175
176                 switch (boot_mem_map.map[i].type) {
177                 case BOOT_MEM_RAM:
178                         if (start >= start_ && start + size <= end_)
179                                 in_ram = true;
180                         break;
181                 case BOOT_MEM_RESERVED:
182                         if ((start >= start_ && start < end_) ||
183                             (start < start_ && start + size >= start_))
184                                 free = false;
185                         break;
186                 default:
187                         continue;
188                 }
189         }
190
191         return in_ram && free;
192 }
193
194 static void __init print_memory_map(void)
195 {
196         int i;
197         const int field = 2 * sizeof(unsigned long);
198
199         for (i = 0; i < boot_mem_map.nr_map; i++) {
200                 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
201                        field, (unsigned long long) boot_mem_map.map[i].size,
202                        field, (unsigned long long) boot_mem_map.map[i].addr);
203
204                 switch (boot_mem_map.map[i].type) {
205                 case BOOT_MEM_RAM:
206                         printk(KERN_CONT "(usable)\n");
207                         break;
208                 case BOOT_MEM_INIT_RAM:
209                         printk(KERN_CONT "(usable after init)\n");
210                         break;
211                 case BOOT_MEM_ROM_DATA:
212                         printk(KERN_CONT "(ROM data)\n");
213                         break;
214                 case BOOT_MEM_RESERVED:
215                         printk(KERN_CONT "(reserved)\n");
216                         break;
217                 default:
218                         printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
219                         break;
220                 }
221         }
222 }
223
224 /*
225  * Manage initrd
226  */
227 #ifdef CONFIG_BLK_DEV_INITRD
228
229 static int __init rd_start_early(char *p)
230 {
231         unsigned long start = memparse(p, &p);
232
233 #ifdef CONFIG_64BIT
234         /* Guess if the sign extension was forgotten by bootloader */
235         if (start < XKPHYS)
236                 start = (int)start;
237 #endif
238         initrd_start = start;
239         initrd_end += start;
240         return 0;
241 }
242 early_param("rd_start", rd_start_early);
243
244 static int __init rd_size_early(char *p)
245 {
246         initrd_end += memparse(p, &p);
247         return 0;
248 }
249 early_param("rd_size", rd_size_early);
250
251 /* it returns the next free pfn after initrd */
252 static unsigned long __init init_initrd(void)
253 {
254         unsigned long end;
255
256         /*
257          * Board specific code or command line parser should have
258          * already set up initrd_start and initrd_end. In these cases
259          * perfom sanity checks and use them if all looks good.
260          */
261         if (!initrd_start || initrd_end <= initrd_start)
262                 goto disable;
263
264         if (initrd_start & ~PAGE_MASK) {
265                 pr_err("initrd start must be page aligned\n");
266                 goto disable;
267         }
268         if (initrd_start < PAGE_OFFSET) {
269                 pr_err("initrd start < PAGE_OFFSET\n");
270                 goto disable;
271         }
272
273         /*
274          * Sanitize initrd addresses. For example firmware
275          * can't guess if they need to pass them through
276          * 64-bits values if the kernel has been built in pure
277          * 32-bit. We need also to switch from KSEG0 to XKPHYS
278          * addresses now, so the code can now safely use __pa().
279          */
280         end = __pa(initrd_end);
281         initrd_end = (unsigned long)__va(end);
282         initrd_start = (unsigned long)__va(__pa(initrd_start));
283
284         ROOT_DEV = Root_RAM0;
285         return PFN_UP(end);
286 disable:
287         initrd_start = 0;
288         initrd_end = 0;
289         return 0;
290 }
291
292 /* In some conditions (e.g. big endian bootloader with a little endian
293    kernel), the initrd might appear byte swapped.  Try to detect this and
294    byte swap it if needed.  */
295 static void __init maybe_bswap_initrd(void)
296 {
297 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
298         u64 buf;
299
300         /* Check for CPIO signature */
301         if (!memcmp((void *)initrd_start, "070701", 6))
302                 return;
303
304         /* Check for compressed initrd */
305         if (decompress_method((unsigned char *)initrd_start, 8, NULL))
306                 return;
307
308         /* Try again with a byte swapped header */
309         buf = swab64p((u64 *)initrd_start);
310         if (!memcmp(&buf, "070701", 6) ||
311             decompress_method((unsigned char *)(&buf), 8, NULL)) {
312                 unsigned long i;
313
314                 pr_info("Byteswapped initrd detected\n");
315                 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
316                         swab64s((u64 *)i);
317         }
318 #endif
319 }
320
321 static void __init finalize_initrd(void)
322 {
323         unsigned long size = initrd_end - initrd_start;
324
325         if (size == 0) {
326                 printk(KERN_INFO "Initrd not found or empty");
327                 goto disable;
328         }
329         if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
330                 printk(KERN_ERR "Initrd extends beyond end of memory");
331                 goto disable;
332         }
333
334         maybe_bswap_initrd();
335
336         reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
337         initrd_below_start_ok = 1;
338
339         pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
340                 initrd_start, size);
341         return;
342 disable:
343         printk(KERN_CONT " - disabling initrd\n");
344         initrd_start = 0;
345         initrd_end = 0;
346 }
347
348 #else  /* !CONFIG_BLK_DEV_INITRD */
349
350 static unsigned long __init init_initrd(void)
351 {
352         return 0;
353 }
354
355 #define finalize_initrd()       do {} while (0)
356
357 #endif
358
359 /*
360  * Initialize the bootmem allocator. It also setup initrd related data
361  * if needed.
362  */
363 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
364
365 static void __init bootmem_init(void)
366 {
367         init_initrd();
368         finalize_initrd();
369 }
370
371 #else  /* !CONFIG_SGI_IP27 */
372
373 static unsigned long __init bootmap_bytes(unsigned long pages)
374 {
375         unsigned long bytes = DIV_ROUND_UP(pages, 8);
376
377         return ALIGN(bytes, sizeof(long));
378 }
379
380 static void __init bootmem_init(void)
381 {
382         unsigned long reserved_end;
383         unsigned long mapstart = ~0UL;
384         unsigned long bootmap_size;
385         phys_addr_t ramstart = PHYS_ADDR_MAX;
386         bool bootmap_valid = false;
387         int i;
388
389         /*
390          * Sanity check any INITRD first. We don't take it into account
391          * for bootmem setup initially, rely on the end-of-kernel-code
392          * as our memory range starting point. Once bootmem is inited we
393          * will reserve the area used for the initrd.
394          */
395         init_initrd();
396         reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
397
398         /*
399          * max_low_pfn is not a number of pages. The number of pages
400          * of the system is given by 'max_low_pfn - min_low_pfn'.
401          */
402         min_low_pfn = ~0UL;
403         max_low_pfn = 0;
404
405         /*
406          * Find the highest page frame number we have available
407          * and the lowest used RAM address
408          */
409         for (i = 0; i < boot_mem_map.nr_map; i++) {
410                 unsigned long start, end;
411
412                 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
413                         continue;
414
415                 start = PFN_UP(boot_mem_map.map[i].addr);
416                 end = PFN_DOWN(boot_mem_map.map[i].addr
417                                 + boot_mem_map.map[i].size);
418
419                 ramstart = min(ramstart, boot_mem_map.map[i].addr);
420
421 #ifndef CONFIG_HIGHMEM
422                 /*
423                  * Skip highmem here so we get an accurate max_low_pfn if low
424                  * memory stops short of high memory.
425                  * If the region overlaps HIGHMEM_START, end is clipped so
426                  * max_pfn excludes the highmem portion.
427                  */
428                 if (start >= PFN_DOWN(HIGHMEM_START))
429                         continue;
430                 if (end > PFN_DOWN(HIGHMEM_START))
431                         end = PFN_DOWN(HIGHMEM_START);
432 #endif
433
434                 if (end > max_low_pfn)
435                         max_low_pfn = end;
436                 if (start < min_low_pfn)
437                         min_low_pfn = start;
438                 if (end <= reserved_end)
439                         continue;
440 #ifdef CONFIG_BLK_DEV_INITRD
441                 /* Skip zones before initrd and initrd itself */
442                 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
443                         continue;
444 #endif
445                 if (start >= mapstart)
446                         continue;
447                 mapstart = max(reserved_end, start);
448         }
449
450         if (min_low_pfn >= max_low_pfn)
451                 panic("Incorrect memory mapping !!!");
452
453 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
454         ARCH_PFN_OFFSET = PFN_UP(ramstart);
455 #else
456         /*
457          * Reserve any memory between the start of RAM and PHYS_OFFSET
458          */
459         if (ramstart > PHYS_OFFSET)
460                 add_memory_region(PHYS_OFFSET, ramstart - PHYS_OFFSET,
461                                   BOOT_MEM_RESERVED);
462
463         if (min_low_pfn > ARCH_PFN_OFFSET) {
464                 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
465                         (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
466                         min_low_pfn - ARCH_PFN_OFFSET);
467         } else if (ARCH_PFN_OFFSET - min_low_pfn > 0UL) {
468                 pr_info("%lu free pages won't be used\n",
469                         ARCH_PFN_OFFSET - min_low_pfn);
470         }
471         min_low_pfn = ARCH_PFN_OFFSET;
472 #endif
473
474         /*
475          * Determine low and high memory ranges
476          */
477         max_pfn = max_low_pfn;
478         if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
479 #ifdef CONFIG_HIGHMEM
480                 highstart_pfn = PFN_DOWN(HIGHMEM_START);
481                 highend_pfn = max_low_pfn;
482 #endif
483                 max_low_pfn = PFN_DOWN(HIGHMEM_START);
484         }
485
486 #ifdef CONFIG_BLK_DEV_INITRD
487         /*
488          * mapstart should be after initrd_end
489          */
490         if (initrd_end)
491                 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
492 #endif
493
494         /*
495          * check that mapstart doesn't overlap with any of
496          * memory regions that have been reserved through eg. DTB
497          */
498         bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
499
500         bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
501                                                 bootmap_size);
502         for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
503                 unsigned long mapstart_addr;
504
505                 switch (boot_mem_map.map[i].type) {
506                 case BOOT_MEM_RESERVED:
507                         mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
508                                                 boot_mem_map.map[i].size);
509                         if (PHYS_PFN(mapstart_addr) < mapstart)
510                                 break;
511
512                         bootmap_valid = memory_region_available(mapstart_addr,
513                                                                 bootmap_size);
514                         if (bootmap_valid)
515                                 mapstart = PHYS_PFN(mapstart_addr);
516                         break;
517                 default:
518                         break;
519                 }
520         }
521
522         if (!bootmap_valid)
523                 panic("No memory area to place a bootmap bitmap");
524
525         /*
526          * Initialize the boot-time allocator with low memory only.
527          */
528         if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
529                                          min_low_pfn, max_low_pfn))
530                 panic("Unexpected memory size required for bootmap");
531
532         for (i = 0; i < boot_mem_map.nr_map; i++) {
533                 unsigned long start, end;
534
535                 start = PFN_UP(boot_mem_map.map[i].addr);
536                 end = PFN_DOWN(boot_mem_map.map[i].addr
537                                 + boot_mem_map.map[i].size);
538
539                 if (start <= min_low_pfn)
540                         start = min_low_pfn;
541                 if (start >= end)
542                         continue;
543
544 #ifndef CONFIG_HIGHMEM
545                 if (end > max_low_pfn)
546                         end = max_low_pfn;
547
548                 /*
549                  * ... finally, is the area going away?
550                  */
551                 if (end <= start)
552                         continue;
553 #endif
554
555                 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
556         }
557
558         /*
559          * Register fully available low RAM pages with the bootmem allocator.
560          */
561         for (i = 0; i < boot_mem_map.nr_map; i++) {
562                 unsigned long start, end, size;
563
564                 start = PFN_UP(boot_mem_map.map[i].addr);
565                 end   = PFN_DOWN(boot_mem_map.map[i].addr
566                                     + boot_mem_map.map[i].size);
567
568                 /*
569                  * Reserve usable memory.
570                  */
571                 switch (boot_mem_map.map[i].type) {
572                 case BOOT_MEM_RAM:
573                         break;
574                 case BOOT_MEM_INIT_RAM:
575                         memory_present(0, start, end);
576                         continue;
577                 default:
578                         /* Not usable memory */
579                         if (start > min_low_pfn && end < max_low_pfn)
580                                 reserve_bootmem(boot_mem_map.map[i].addr,
581                                                 boot_mem_map.map[i].size,
582                                                 BOOTMEM_DEFAULT);
583                         continue;
584                 }
585
586                 /*
587                  * We are rounding up the start address of usable memory
588                  * and at the end of the usable range downwards.
589                  */
590                 if (start >= max_low_pfn)
591                         continue;
592                 if (start < reserved_end)
593                         start = reserved_end;
594                 if (end > max_low_pfn)
595                         end = max_low_pfn;
596
597                 /*
598                  * ... finally, is the area going away?
599                  */
600                 if (end <= start)
601                         continue;
602                 size = end - start;
603
604                 /* Register lowmem ranges */
605                 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
606                 memory_present(0, start, end);
607         }
608
609         /*
610          * Reserve the bootmap memory.
611          */
612         reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
613
614 #ifdef CONFIG_RELOCATABLE
615         /*
616          * The kernel reserves all memory below its _end symbol as bootmem,
617          * but the kernel may now be at a much higher address. The memory
618          * between the original and new locations may be returned to the system.
619          */
620         if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
621                 unsigned long offset;
622                 extern void show_kernel_relocation(const char *level);
623
624                 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
625                 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
626
627 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
628                 /*
629                  * This information is necessary when debugging the kernel
630                  * But is a security vulnerability otherwise!
631                  */
632                 show_kernel_relocation(KERN_INFO);
633 #endif
634         }
635 #endif
636
637         /*
638          * Reserve initrd memory if needed.
639          */
640         finalize_initrd();
641 }
642
643 #endif  /* CONFIG_SGI_IP27 */
644
645 /*
646  * arch_mem_init - initialize memory management subsystem
647  *
648  *  o plat_mem_setup() detects the memory configuration and will record detected
649  *    memory areas using add_memory_region.
650  *
651  * At this stage the memory configuration of the system is known to the
652  * kernel but generic memory management system is still entirely uninitialized.
653  *
654  *  o bootmem_init()
655  *  o sparse_init()
656  *  o paging_init()
657  *  o dma_contiguous_reserve()
658  *
659  * At this stage the bootmem allocator is ready to use.
660  *
661  * NOTE: historically plat_mem_setup did the entire platform initialization.
662  *       This was rather impractical because it meant plat_mem_setup had to
663  * get away without any kind of memory allocator.  To keep old code from
664  * breaking plat_setup was just renamed to plat_mem_setup and a second platform
665  * initialization hook for anything else was introduced.
666  */
667
668 static int usermem __initdata;
669
670 static int __init early_parse_mem(char *p)
671 {
672         phys_addr_t start, size;
673
674         /*
675          * If a user specifies memory size, we
676          * blow away any automatically generated
677          * size.
678          */
679         if (usermem == 0) {
680                 boot_mem_map.nr_map = 0;
681                 usermem = 1;
682         }
683         start = 0;
684         size = memparse(p, &p);
685         if (*p == '@')
686                 start = memparse(p + 1, &p);
687
688         add_memory_region(start, size, BOOT_MEM_RAM);
689
690         return 0;
691 }
692 early_param("mem", early_parse_mem);
693
694 static int __init early_parse_memmap(char *p)
695 {
696         char *oldp;
697         u64 start_at, mem_size;
698
699         if (!p)
700                 return -EINVAL;
701
702         if (!strncmp(p, "exactmap", 8)) {
703                 pr_err("\"memmap=exactmap\" invalid on MIPS\n");
704                 return 0;
705         }
706
707         oldp = p;
708         mem_size = memparse(p, &p);
709         if (p == oldp)
710                 return -EINVAL;
711
712         if (*p == '@') {
713                 start_at = memparse(p+1, &p);
714                 add_memory_region(start_at, mem_size, BOOT_MEM_RAM);
715         } else if (*p == '#') {
716                 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
717                 return -EINVAL;
718         } else if (*p == '$') {
719                 start_at = memparse(p+1, &p);
720                 add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED);
721         } else {
722                 pr_err("\"memmap\" invalid format!\n");
723                 return -EINVAL;
724         }
725
726         if (*p == '\0') {
727                 usermem = 1;
728                 return 0;
729         } else
730                 return -EINVAL;
731 }
732 early_param("memmap", early_parse_memmap);
733
734 #ifdef CONFIG_PROC_VMCORE
735 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
736 static int __init early_parse_elfcorehdr(char *p)
737 {
738         int i;
739
740         setup_elfcorehdr = memparse(p, &p);
741
742         for (i = 0; i < boot_mem_map.nr_map; i++) {
743                 unsigned long start = boot_mem_map.map[i].addr;
744                 unsigned long end = (boot_mem_map.map[i].addr +
745                                      boot_mem_map.map[i].size);
746                 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
747                         /*
748                          * Reserve from the elf core header to the end of
749                          * the memory segment, that should all be kdump
750                          * reserved memory.
751                          */
752                         setup_elfcorehdr_size = end - setup_elfcorehdr;
753                         break;
754                 }
755         }
756         /*
757          * If we don't find it in the memory map, then we shouldn't
758          * have to worry about it, as the new kernel won't use it.
759          */
760         return 0;
761 }
762 early_param("elfcorehdr", early_parse_elfcorehdr);
763 #endif
764
765 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
766 {
767         phys_addr_t size;
768         int i;
769
770         size = end - mem;
771         if (!size)
772                 return;
773
774         /* Make sure it is in the boot_mem_map */
775         for (i = 0; i < boot_mem_map.nr_map; i++) {
776                 if (mem >= boot_mem_map.map[i].addr &&
777                     mem < (boot_mem_map.map[i].addr +
778                            boot_mem_map.map[i].size))
779                         return;
780         }
781         add_memory_region(mem, size, type);
782 }
783
784 #ifdef CONFIG_KEXEC
785 static inline unsigned long long get_total_mem(void)
786 {
787         unsigned long long total;
788
789         total = max_pfn - min_low_pfn;
790         return total << PAGE_SHIFT;
791 }
792
793 static void __init mips_parse_crashkernel(void)
794 {
795         unsigned long long total_mem;
796         unsigned long long crash_size, crash_base;
797         int ret;
798
799         total_mem = get_total_mem();
800         ret = parse_crashkernel(boot_command_line, total_mem,
801                                 &crash_size, &crash_base);
802         if (ret != 0 || crash_size <= 0)
803                 return;
804
805         if (!memory_region_available(crash_base, crash_size)) {
806                 pr_warn("Invalid memory region reserved for crash kernel\n");
807                 return;
808         }
809
810         crashk_res.start = crash_base;
811         crashk_res.end   = crash_base + crash_size - 1;
812 }
813
814 static void __init request_crashkernel(struct resource *res)
815 {
816         int ret;
817
818         if (crashk_res.start == crashk_res.end)
819                 return;
820
821         ret = request_resource(res, &crashk_res);
822         if (!ret)
823                 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
824                         (unsigned long)((crashk_res.end -
825                                          crashk_res.start + 1) >> 20),
826                         (unsigned long)(crashk_res.start  >> 20));
827 }
828 #else /* !defined(CONFIG_KEXEC)         */
829 static void __init mips_parse_crashkernel(void)
830 {
831 }
832
833 static void __init request_crashkernel(struct resource *res)
834 {
835 }
836 #endif /* !defined(CONFIG_KEXEC)  */
837
838 #define USE_PROM_CMDLINE        IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
839 #define USE_DTB_CMDLINE         IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
840 #define EXTEND_WITH_PROM        IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
841 #define BUILTIN_EXTEND_WITH_PROM        \
842         IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
843
844 static void __init arch_mem_init(char **cmdline_p)
845 {
846         struct memblock_region *reg;
847         extern void plat_mem_setup(void);
848
849         /*
850          * Initialize boot_command_line to an innocuous but non-empty string in
851          * order to prevent early_init_dt_scan_chosen() from copying
852          * CONFIG_CMDLINE into it without our knowledge. We handle
853          * CONFIG_CMDLINE ourselves below & don't want to duplicate its
854          * content because repeating arguments can be problematic.
855          */
856         strlcpy(boot_command_line, " ", COMMAND_LINE_SIZE);
857
858         /* call board setup routine */
859         plat_mem_setup();
860
861         /*
862          * Make sure all kernel memory is in the maps.  The "UP" and
863          * "DOWN" are opposite for initdata since if it crosses over
864          * into another memory section you don't want that to be
865          * freed when the initdata is freed.
866          */
867         arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
868                          PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
869                          BOOT_MEM_RAM);
870         arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
871                          PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
872                          BOOT_MEM_INIT_RAM);
873
874         pr_info("Determined physical RAM map:\n");
875         print_memory_map();
876
877 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
878         strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
879 #else
880         if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
881             (USE_DTB_CMDLINE && !boot_command_line[0]))
882                 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
883
884         if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
885                 if (boot_command_line[0])
886                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
887                 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
888         }
889
890 #if defined(CONFIG_CMDLINE_BOOL)
891         if (builtin_cmdline[0]) {
892                 if (boot_command_line[0])
893                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
894                 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
895         }
896
897         if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
898                 if (boot_command_line[0])
899                         strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
900                 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
901         }
902 #endif
903 #endif
904         strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
905
906         *cmdline_p = command_line;
907
908         parse_early_param();
909
910         if (usermem) {
911                 pr_info("User-defined physical RAM map:\n");
912                 print_memory_map();
913         }
914
915         early_init_fdt_reserve_self();
916         early_init_fdt_scan_reserved_mem();
917
918         bootmem_init();
919 #ifdef CONFIG_PROC_VMCORE
920         if (setup_elfcorehdr && setup_elfcorehdr_size) {
921                 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
922                        setup_elfcorehdr, setup_elfcorehdr_size);
923                 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
924                                 BOOTMEM_DEFAULT);
925         }
926 #endif
927
928         mips_parse_crashkernel();
929 #ifdef CONFIG_KEXEC
930         if (crashk_res.start != crashk_res.end)
931                 reserve_bootmem(crashk_res.start,
932                                 crashk_res.end - crashk_res.start + 1,
933                                 BOOTMEM_DEFAULT);
934 #endif
935         device_tree_init();
936
937         /*
938          * In order to reduce the possibility of kernel panic when failed to
939          * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate
940          * low memory as small as possible before plat_swiotlb_setup(), so
941          * make sparse_init() using top-down allocation.
942          */
943         memblock_set_bottom_up(false);
944         sparse_init();
945         memblock_set_bottom_up(true);
946
947         plat_swiotlb_setup();
948
949         dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
950         /* Tell bootmem about cma reserved memblock section */
951         for_each_memblock(reserved, reg)
952                 if (reg->size != 0)
953                         reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
954
955         reserve_bootmem_region(__pa_symbol(&__nosave_begin),
956                         __pa_symbol(&__nosave_end)); /* Reserve for hibernation */
957 }
958
959 static void __init resource_init(void)
960 {
961         int i;
962
963         if (UNCAC_BASE != IO_BASE)
964                 return;
965
966         code_resource.start = __pa_symbol(&_text);
967         code_resource.end = __pa_symbol(&_etext) - 1;
968         data_resource.start = __pa_symbol(&_etext);
969         data_resource.end = __pa_symbol(&_edata) - 1;
970         bss_resource.start = __pa_symbol(&__bss_start);
971         bss_resource.end = __pa_symbol(&__bss_stop) - 1;
972
973         for (i = 0; i < boot_mem_map.nr_map; i++) {
974                 struct resource *res;
975                 unsigned long start, end;
976
977                 start = boot_mem_map.map[i].addr;
978                 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
979                 if (start >= HIGHMEM_START)
980                         continue;
981                 if (end >= HIGHMEM_START)
982                         end = HIGHMEM_START - 1;
983
984                 res = alloc_bootmem(sizeof(struct resource));
985
986                 res->start = start;
987                 res->end = end;
988                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
989
990                 switch (boot_mem_map.map[i].type) {
991                 case BOOT_MEM_RAM:
992                 case BOOT_MEM_INIT_RAM:
993                 case BOOT_MEM_ROM_DATA:
994                         res->name = "System RAM";
995                         res->flags |= IORESOURCE_SYSRAM;
996                         break;
997                 case BOOT_MEM_RESERVED:
998                 default:
999                         res->name = "reserved";
1000                 }
1001
1002                 request_resource(&iomem_resource, res);
1003
1004                 /*
1005                  *  We don't know which RAM region contains kernel data,
1006                  *  so we try it repeatedly and let the resource manager
1007                  *  test it.
1008                  */
1009                 request_resource(res, &code_resource);
1010                 request_resource(res, &data_resource);
1011                 request_resource(res, &bss_resource);
1012                 request_crashkernel(res);
1013         }
1014 }
1015
1016 #ifdef CONFIG_SMP
1017 static void __init prefill_possible_map(void)
1018 {
1019         int i, possible = num_possible_cpus();
1020
1021         if (possible > nr_cpu_ids)
1022                 possible = nr_cpu_ids;
1023
1024         for (i = 0; i < possible; i++)
1025                 set_cpu_possible(i, true);
1026         for (; i < NR_CPUS; i++)
1027                 set_cpu_possible(i, false);
1028
1029         nr_cpu_ids = possible;
1030 }
1031 #else
1032 static inline void prefill_possible_map(void) {}
1033 #endif
1034
1035 void __init setup_arch(char **cmdline_p)
1036 {
1037         cpu_probe();
1038         mips_cm_probe();
1039         prom_init();
1040
1041         setup_early_fdc_console();
1042 #ifdef CONFIG_EARLY_PRINTK
1043         setup_early_printk();
1044 #endif
1045         cpu_report();
1046         check_bugs_early();
1047
1048 #if defined(CONFIG_VT)
1049 #if defined(CONFIG_VGA_CONSOLE)
1050         conswitchp = &vga_con;
1051 #elif defined(CONFIG_DUMMY_CONSOLE)
1052         conswitchp = &dummy_con;
1053 #endif
1054 #endif
1055
1056         arch_mem_init(cmdline_p);
1057
1058         resource_init();
1059         plat_smp_setup();
1060         prefill_possible_map();
1061
1062         cpu_cache_init();
1063         paging_init();
1064 }
1065
1066 unsigned long kernelsp[NR_CPUS];
1067 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
1068
1069 #ifdef CONFIG_USE_OF
1070 unsigned long fw_passed_dtb;
1071 #endif
1072
1073 #ifdef CONFIG_DEBUG_FS
1074 struct dentry *mips_debugfs_dir;
1075 static int __init debugfs_mips(void)
1076 {
1077         struct dentry *d;
1078
1079         d = debugfs_create_dir("mips", NULL);
1080         if (!d)
1081                 return -ENOMEM;
1082         mips_debugfs_dir = d;
1083         return 0;
1084 }
1085 arch_initcall(debugfs_mips);
1086 #endif
1087
1088 #if defined(CONFIG_DMA_MAYBE_COHERENT) && !defined(CONFIG_DMA_PERDEV_COHERENT)
1089 /* User defined DMA coherency from command line. */
1090 enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT;
1091 EXPORT_SYMBOL_GPL(coherentio);
1092 int hw_coherentio = 0;  /* Actual hardware supported DMA coherency setting. */
1093
1094 static int __init setcoherentio(char *str)
1095 {
1096         coherentio = IO_COHERENCE_ENABLED;
1097         pr_info("Hardware DMA cache coherency (command line)\n");
1098         return 0;
1099 }
1100 early_param("coherentio", setcoherentio);
1101
1102 static int __init setnocoherentio(char *str)
1103 {
1104         coherentio = IO_COHERENCE_DISABLED;
1105         pr_info("Software DMA cache coherency (command line)\n");
1106         return 0;
1107 }
1108 early_param("nocoherentio", setnocoherentio);
1109 #endif