arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / arch / mips / kernel / perf_event_mipsxx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Linux performance counter support for MIPS.
4  *
5  * Copyright (C) 2010 MIPS Technologies, Inc.
6  * Copyright (C) 2011 Cavium Networks, Inc.
7  * Author: Deng-Cheng Zhu
8  *
9  * This code is based on the implementation for ARM, which is in turn
10  * based on the sparc64 perf event code and the x86 code. Performance
11  * counter access is based on the MIPS Oprofile code. And the callchain
12  * support references the code of MIPS stacktrace.c.
13  */
14
15 #include <linux/cpumask.h>
16 #include <linux/interrupt.h>
17 #include <linux/smp.h>
18 #include <linux/kernel.h>
19 #include <linux/perf_event.h>
20 #include <linux/uaccess.h>
21
22 #include <asm/irq.h>
23 #include <asm/irq_regs.h>
24 #include <asm/stacktrace.h>
25 #include <asm/time.h> /* For perf_irq */
26
27 #define MIPS_MAX_HWEVENTS 4
28 #define MIPS_TCS_PER_COUNTER 2
29 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
30
31 struct cpu_hw_events {
32         /* Array of events on this cpu. */
33         struct perf_event       *events[MIPS_MAX_HWEVENTS];
34
35         /*
36          * Set the bit (indexed by the counter number) when the counter
37          * is used for an event.
38          */
39         unsigned long           used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
40
41         /*
42          * Software copy of the control register for each performance counter.
43          * MIPS CPUs vary in performance counters. They use this differently,
44          * and even may not use it.
45          */
46         unsigned int            saved_ctrl[MIPS_MAX_HWEVENTS];
47 };
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49         .saved_ctrl = {0},
50 };
51
52 /* The description of MIPS performance events. */
53 struct mips_perf_event {
54         unsigned int event_id;
55         /*
56          * MIPS performance counters are indexed starting from 0.
57          * CNTR_EVEN indicates the indexes of the counters to be used are
58          * even numbers.
59          */
60         unsigned int cntr_mask;
61         #define CNTR_EVEN       0x55555555
62         #define CNTR_ODD        0xaaaaaaaa
63         #define CNTR_ALL        0xffffffff
64         enum {
65                 T  = 0,
66                 V  = 1,
67                 P  = 2,
68         } range;
69 };
70
71 static struct mips_perf_event raw_event;
72 static DEFINE_MUTEX(raw_event_mutex);
73
74 #define C(x) PERF_COUNT_HW_CACHE_##x
75
76 struct mips_pmu {
77         u64             max_period;
78         u64             valid_count;
79         u64             overflow;
80         const char      *name;
81         int             irq;
82         u64             (*read_counter)(unsigned int idx);
83         void            (*write_counter)(unsigned int idx, u64 val);
84         const struct mips_perf_event *(*map_raw_event)(u64 config);
85         const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
86         const struct mips_perf_event (*cache_event_map)
87                                 [PERF_COUNT_HW_CACHE_MAX]
88                                 [PERF_COUNT_HW_CACHE_OP_MAX]
89                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
90         unsigned int    num_counters;
91 };
92
93 static int counter_bits;
94 static struct mips_pmu mipspmu;
95
96 #define M_PERFCTL_EVENT(event)          (((event) << MIPS_PERFCTRL_EVENT_S) & \
97                                          MIPS_PERFCTRL_EVENT)
98 #define M_PERFCTL_VPEID(vpe)            ((vpe)    << MIPS_PERFCTRL_VPEID_S)
99
100 #ifdef CONFIG_CPU_BMIPS5000
101 #define M_PERFCTL_MT_EN(filter)         0
102 #else /* !CONFIG_CPU_BMIPS5000 */
103 #define M_PERFCTL_MT_EN(filter)         (filter)
104 #endif /* CONFIG_CPU_BMIPS5000 */
105
106 #define    M_TC_EN_ALL                  M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
107 #define    M_TC_EN_VPE                  M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
108 #define    M_TC_EN_TC                   M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
109
110 #define M_PERFCTL_COUNT_EVENT_WHENEVER  (MIPS_PERFCTRL_EXL |            \
111                                          MIPS_PERFCTRL_K |              \
112                                          MIPS_PERFCTRL_U |              \
113                                          MIPS_PERFCTRL_S |              \
114                                          MIPS_PERFCTRL_IE)
115
116 #ifdef CONFIG_MIPS_MT_SMP
117 #define M_PERFCTL_CONFIG_MASK           0x3fff801f
118 #else
119 #define M_PERFCTL_CONFIG_MASK           0x1f
120 #endif
121
122 #define CNTR_BIT_MASK(n)        (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
123
124 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
125 static DEFINE_RWLOCK(pmuint_rwlock);
126
127 #if defined(CONFIG_CPU_BMIPS5000)
128 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
129                          0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
130 #else
131 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
132                          0 : cpu_vpe_id(&current_cpu_data))
133 #endif
134
135 /* Copied from op_model_mipsxx.c */
136 static unsigned int vpe_shift(void)
137 {
138         if (num_possible_cpus() > 1)
139                 return 1;
140
141         return 0;
142 }
143
144 static unsigned int counters_total_to_per_cpu(unsigned int counters)
145 {
146         return counters >> vpe_shift();
147 }
148
149 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
150 #define vpe_id()        0
151
152 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
153
154 static void resume_local_counters(void);
155 static void pause_local_counters(void);
156 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
157 static int mipsxx_pmu_handle_shared_irq(void);
158
159 /* 0: Not Loongson-3
160  * 1: Loongson-3A1000/3B1000/3B1500
161  * 2: Loongson-3A2000/3A3000
162  * 3: Loongson-3A4000+
163  */
164
165 #define LOONGSON_PMU_TYPE0 0
166 #define LOONGSON_PMU_TYPE1 1
167 #define LOONGSON_PMU_TYPE2 2
168 #define LOONGSON_PMU_TYPE3 3
169
170 static inline int get_loongson3_pmu_type(void)
171 {
172         if (boot_cpu_type() != CPU_LOONGSON64)
173                 return LOONGSON_PMU_TYPE0;
174         if ((boot_cpu_data.processor_id & PRID_COMP_MASK) == PRID_COMP_LEGACY)
175                 return LOONGSON_PMU_TYPE1;
176         if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64C)
177                 return LOONGSON_PMU_TYPE2;
178         if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64G)
179                 return LOONGSON_PMU_TYPE3;
180
181         return LOONGSON_PMU_TYPE0;
182 }
183
184 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
185 {
186         if (vpe_id() == 1)
187                 idx = (idx + 2) & 3;
188         return idx;
189 }
190
191 static u64 mipsxx_pmu_read_counter(unsigned int idx)
192 {
193         idx = mipsxx_pmu_swizzle_perf_idx(idx);
194
195         switch (idx) {
196         case 0:
197                 /*
198                  * The counters are unsigned, we must cast to truncate
199                  * off the high bits.
200                  */
201                 return (u32)read_c0_perfcntr0();
202         case 1:
203                 return (u32)read_c0_perfcntr1();
204         case 2:
205                 return (u32)read_c0_perfcntr2();
206         case 3:
207                 return (u32)read_c0_perfcntr3();
208         default:
209                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
210                 return 0;
211         }
212 }
213
214 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
215 {
216         u64 mask = CNTR_BIT_MASK(counter_bits);
217         idx = mipsxx_pmu_swizzle_perf_idx(idx);
218
219         switch (idx) {
220         case 0:
221                 return read_c0_perfcntr0_64() & mask;
222         case 1:
223                 return read_c0_perfcntr1_64() & mask;
224         case 2:
225                 return read_c0_perfcntr2_64() & mask;
226         case 3:
227                 return read_c0_perfcntr3_64() & mask;
228         default:
229                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
230                 return 0;
231         }
232 }
233
234 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
235 {
236         idx = mipsxx_pmu_swizzle_perf_idx(idx);
237
238         switch (idx) {
239         case 0:
240                 write_c0_perfcntr0(val);
241                 return;
242         case 1:
243                 write_c0_perfcntr1(val);
244                 return;
245         case 2:
246                 write_c0_perfcntr2(val);
247                 return;
248         case 3:
249                 write_c0_perfcntr3(val);
250                 return;
251         }
252 }
253
254 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
255 {
256         val &= CNTR_BIT_MASK(counter_bits);
257         idx = mipsxx_pmu_swizzle_perf_idx(idx);
258
259         switch (idx) {
260         case 0:
261                 write_c0_perfcntr0_64(val);
262                 return;
263         case 1:
264                 write_c0_perfcntr1_64(val);
265                 return;
266         case 2:
267                 write_c0_perfcntr2_64(val);
268                 return;
269         case 3:
270                 write_c0_perfcntr3_64(val);
271                 return;
272         }
273 }
274
275 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
276 {
277         idx = mipsxx_pmu_swizzle_perf_idx(idx);
278
279         switch (idx) {
280         case 0:
281                 return read_c0_perfctrl0();
282         case 1:
283                 return read_c0_perfctrl1();
284         case 2:
285                 return read_c0_perfctrl2();
286         case 3:
287                 return read_c0_perfctrl3();
288         default:
289                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
290                 return 0;
291         }
292 }
293
294 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
295 {
296         idx = mipsxx_pmu_swizzle_perf_idx(idx);
297
298         switch (idx) {
299         case 0:
300                 write_c0_perfctrl0(val);
301                 return;
302         case 1:
303                 write_c0_perfctrl1(val);
304                 return;
305         case 2:
306                 write_c0_perfctrl2(val);
307                 return;
308         case 3:
309                 write_c0_perfctrl3(val);
310                 return;
311         }
312 }
313
314 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
315                                     struct hw_perf_event *hwc)
316 {
317         int i;
318         unsigned long cntr_mask;
319
320         /*
321          * We only need to care the counter mask. The range has been
322          * checked definitely.
323          */
324         if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
325                 cntr_mask = (hwc->event_base >> 10) & 0xffff;
326         else
327                 cntr_mask = (hwc->event_base >> 8) & 0xffff;
328
329         for (i = mipspmu.num_counters - 1; i >= 0; i--) {
330                 /*
331                  * Note that some MIPS perf events can be counted by both
332                  * even and odd counters, whereas many other are only by
333                  * even _or_ odd counters. This introduces an issue that
334                  * when the former kind of event takes the counter the
335                  * latter kind of event wants to use, then the "counter
336                  * allocation" for the latter event will fail. In fact if
337                  * they can be dynamically swapped, they both feel happy.
338                  * But here we leave this issue alone for now.
339                  */
340                 if (test_bit(i, &cntr_mask) &&
341                         !test_and_set_bit(i, cpuc->used_mask))
342                         return i;
343         }
344
345         return -EAGAIN;
346 }
347
348 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
349 {
350         struct perf_event *event = container_of(evt, struct perf_event, hw);
351         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
352         unsigned int range = evt->event_base >> 24;
353
354         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
355
356         if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
357                 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0x3ff) |
358                         (evt->config_base & M_PERFCTL_CONFIG_MASK) |
359                         /* Make sure interrupt enabled. */
360                         MIPS_PERFCTRL_IE;
361         else
362                 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
363                         (evt->config_base & M_PERFCTL_CONFIG_MASK) |
364                         /* Make sure interrupt enabled. */
365                         MIPS_PERFCTRL_IE;
366
367         if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) {
368                 /* enable the counter for the calling thread */
369                 cpuc->saved_ctrl[idx] |=
370                         (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
371         } else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) {
372                 /* The counter is processor wide. Set it up to count all TCs. */
373                 pr_debug("Enabling perf counter for all TCs\n");
374                 cpuc->saved_ctrl[idx] |= M_TC_EN_ALL;
375         } else {
376                 unsigned int cpu, ctrl;
377
378                 /*
379                  * Set up the counter for a particular CPU when event->cpu is
380                  * a valid CPU number. Otherwise set up the counter for the CPU
381                  * scheduling this thread.
382                  */
383                 cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
384
385                 ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu]));
386                 ctrl |= M_TC_EN_VPE;
387                 cpuc->saved_ctrl[idx] |= ctrl;
388                 pr_debug("Enabling perf counter for CPU%d\n", cpu);
389         }
390         /*
391          * We do not actually let the counter run. Leave it until start().
392          */
393 }
394
395 static void mipsxx_pmu_disable_event(int idx)
396 {
397         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
398         unsigned long flags;
399
400         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
401
402         local_irq_save(flags);
403         cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
404                 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
405         mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
406         local_irq_restore(flags);
407 }
408
409 static int mipspmu_event_set_period(struct perf_event *event,
410                                     struct hw_perf_event *hwc,
411                                     int idx)
412 {
413         u64 left = local64_read(&hwc->period_left);
414         u64 period = hwc->sample_period;
415         int ret = 0;
416
417         if (unlikely((left + period) & (1ULL << 63))) {
418                 /* left underflowed by more than period. */
419                 left = period;
420                 local64_set(&hwc->period_left, left);
421                 hwc->last_period = period;
422                 ret = 1;
423         } else  if (unlikely((left + period) <= period)) {
424                 /* left underflowed by less than period. */
425                 left += period;
426                 local64_set(&hwc->period_left, left);
427                 hwc->last_period = period;
428                 ret = 1;
429         }
430
431         if (left > mipspmu.max_period) {
432                 left = mipspmu.max_period;
433                 local64_set(&hwc->period_left, left);
434         }
435
436         local64_set(&hwc->prev_count, mipspmu.overflow - left);
437
438         if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
439                 mipsxx_pmu_write_control(idx,
440                                 M_PERFCTL_EVENT(hwc->event_base & 0x3ff));
441
442         mipspmu.write_counter(idx, mipspmu.overflow - left);
443
444         perf_event_update_userpage(event);
445
446         return ret;
447 }
448
449 static void mipspmu_event_update(struct perf_event *event,
450                                  struct hw_perf_event *hwc,
451                                  int idx)
452 {
453         u64 prev_raw_count, new_raw_count;
454         u64 delta;
455
456 again:
457         prev_raw_count = local64_read(&hwc->prev_count);
458         new_raw_count = mipspmu.read_counter(idx);
459
460         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
461                                 new_raw_count) != prev_raw_count)
462                 goto again;
463
464         delta = new_raw_count - prev_raw_count;
465
466         local64_add(delta, &event->count);
467         local64_sub(delta, &hwc->period_left);
468 }
469
470 static void mipspmu_start(struct perf_event *event, int flags)
471 {
472         struct hw_perf_event *hwc = &event->hw;
473
474         if (flags & PERF_EF_RELOAD)
475                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
476
477         hwc->state = 0;
478
479         /* Set the period for the event. */
480         mipspmu_event_set_period(event, hwc, hwc->idx);
481
482         /* Enable the event. */
483         mipsxx_pmu_enable_event(hwc, hwc->idx);
484 }
485
486 static void mipspmu_stop(struct perf_event *event, int flags)
487 {
488         struct hw_perf_event *hwc = &event->hw;
489
490         if (!(hwc->state & PERF_HES_STOPPED)) {
491                 /* We are working on a local event. */
492                 mipsxx_pmu_disable_event(hwc->idx);
493                 barrier();
494                 mipspmu_event_update(event, hwc, hwc->idx);
495                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
496         }
497 }
498
499 static int mipspmu_add(struct perf_event *event, int flags)
500 {
501         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
502         struct hw_perf_event *hwc = &event->hw;
503         int idx;
504         int err = 0;
505
506         perf_pmu_disable(event->pmu);
507
508         /* To look for a free counter for this event. */
509         idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
510         if (idx < 0) {
511                 err = idx;
512                 goto out;
513         }
514
515         /*
516          * If there is an event in the counter we are going to use then
517          * make sure it is disabled.
518          */
519         event->hw.idx = idx;
520         mipsxx_pmu_disable_event(idx);
521         cpuc->events[idx] = event;
522
523         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
524         if (flags & PERF_EF_START)
525                 mipspmu_start(event, PERF_EF_RELOAD);
526
527         /* Propagate our changes to the userspace mapping. */
528         perf_event_update_userpage(event);
529
530 out:
531         perf_pmu_enable(event->pmu);
532         return err;
533 }
534
535 static void mipspmu_del(struct perf_event *event, int flags)
536 {
537         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
538         struct hw_perf_event *hwc = &event->hw;
539         int idx = hwc->idx;
540
541         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
542
543         mipspmu_stop(event, PERF_EF_UPDATE);
544         cpuc->events[idx] = NULL;
545         clear_bit(idx, cpuc->used_mask);
546
547         perf_event_update_userpage(event);
548 }
549
550 static void mipspmu_read(struct perf_event *event)
551 {
552         struct hw_perf_event *hwc = &event->hw;
553
554         /* Don't read disabled counters! */
555         if (hwc->idx < 0)
556                 return;
557
558         mipspmu_event_update(event, hwc, hwc->idx);
559 }
560
561 static void mipspmu_enable(struct pmu *pmu)
562 {
563 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
564         write_unlock(&pmuint_rwlock);
565 #endif
566         resume_local_counters();
567 }
568
569 /*
570  * MIPS performance counters can be per-TC. The control registers can
571  * not be directly accessed across CPUs. Hence if we want to do global
572  * control, we need cross CPU calls. on_each_cpu() can help us, but we
573  * can not make sure this function is called with interrupts enabled. So
574  * here we pause local counters and then grab a rwlock and leave the
575  * counters on other CPUs alone. If any counter interrupt raises while
576  * we own the write lock, simply pause local counters on that CPU and
577  * spin in the handler. Also we know we won't be switched to another
578  * CPU after pausing local counters and before grabbing the lock.
579  */
580 static void mipspmu_disable(struct pmu *pmu)
581 {
582         pause_local_counters();
583 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
584         write_lock(&pmuint_rwlock);
585 #endif
586 }
587
588 static atomic_t active_events = ATOMIC_INIT(0);
589 static DEFINE_MUTEX(pmu_reserve_mutex);
590 static int (*save_perf_irq)(void);
591
592 static int mipspmu_get_irq(void)
593 {
594         int err;
595
596         if (mipspmu.irq >= 0) {
597                 /* Request my own irq handler. */
598                 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
599                                   IRQF_PERCPU | IRQF_NOBALANCING |
600                                   IRQF_NO_THREAD | IRQF_NO_SUSPEND |
601                                   IRQF_SHARED,
602                                   "mips_perf_pmu", &mipspmu);
603                 if (err) {
604                         pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
605                                 mipspmu.irq);
606                 }
607         } else if (cp0_perfcount_irq < 0) {
608                 /*
609                  * We are sharing the irq number with the timer interrupt.
610                  */
611                 save_perf_irq = perf_irq;
612                 perf_irq = mipsxx_pmu_handle_shared_irq;
613                 err = 0;
614         } else {
615                 pr_warn("The platform hasn't properly defined its interrupt controller\n");
616                 err = -ENOENT;
617         }
618
619         return err;
620 }
621
622 static void mipspmu_free_irq(void)
623 {
624         if (mipspmu.irq >= 0)
625                 free_irq(mipspmu.irq, &mipspmu);
626         else if (cp0_perfcount_irq < 0)
627                 perf_irq = save_perf_irq;
628 }
629
630 /*
631  * mipsxx/rm9000/loongson2 have different performance counters, they have
632  * specific low-level init routines.
633  */
634 static void reset_counters(void *arg);
635 static int __hw_perf_event_init(struct perf_event *event);
636
637 static void hw_perf_event_destroy(struct perf_event *event)
638 {
639         if (atomic_dec_and_mutex_lock(&active_events,
640                                 &pmu_reserve_mutex)) {
641                 /*
642                  * We must not call the destroy function with interrupts
643                  * disabled.
644                  */
645                 on_each_cpu(reset_counters,
646                         (void *)(long)mipspmu.num_counters, 1);
647                 mipspmu_free_irq();
648                 mutex_unlock(&pmu_reserve_mutex);
649         }
650 }
651
652 static int mipspmu_event_init(struct perf_event *event)
653 {
654         int err = 0;
655
656         /* does not support taken branch sampling */
657         if (has_branch_stack(event))
658                 return -EOPNOTSUPP;
659
660         switch (event->attr.type) {
661         case PERF_TYPE_RAW:
662         case PERF_TYPE_HARDWARE:
663         case PERF_TYPE_HW_CACHE:
664                 break;
665
666         default:
667                 return -ENOENT;
668         }
669
670         if (event->cpu >= 0 && !cpu_online(event->cpu))
671                 return -ENODEV;
672
673         if (!atomic_inc_not_zero(&active_events)) {
674                 mutex_lock(&pmu_reserve_mutex);
675                 if (atomic_read(&active_events) == 0)
676                         err = mipspmu_get_irq();
677
678                 if (!err)
679                         atomic_inc(&active_events);
680                 mutex_unlock(&pmu_reserve_mutex);
681         }
682
683         if (err)
684                 return err;
685
686         return __hw_perf_event_init(event);
687 }
688
689 static struct pmu pmu = {
690         .pmu_enable     = mipspmu_enable,
691         .pmu_disable    = mipspmu_disable,
692         .event_init     = mipspmu_event_init,
693         .add            = mipspmu_add,
694         .del            = mipspmu_del,
695         .start          = mipspmu_start,
696         .stop           = mipspmu_stop,
697         .read           = mipspmu_read,
698 };
699
700 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
701 {
702 /*
703  * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
704  * event_id.
705  */
706 #ifdef CONFIG_MIPS_MT_SMP
707         if (num_possible_cpus() > 1)
708                 return ((unsigned int)pev->range << 24) |
709                         (pev->cntr_mask & 0xffff00) |
710                         (pev->event_id & 0xff);
711         else
712 #endif /* CONFIG_MIPS_MT_SMP */
713         {
714                 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
715                         return (pev->cntr_mask & 0xfffc00) |
716                                 (pev->event_id & 0x3ff);
717                 else
718                         return (pev->cntr_mask & 0xffff00) |
719                                 (pev->event_id & 0xff);
720         }
721 }
722
723 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
724 {
725
726         if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
727                 return ERR_PTR(-EOPNOTSUPP);
728         return &(*mipspmu.general_event_map)[idx];
729 }
730
731 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
732 {
733         unsigned int cache_type, cache_op, cache_result;
734         const struct mips_perf_event *pev;
735
736         cache_type = (config >> 0) & 0xff;
737         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
738                 return ERR_PTR(-EINVAL);
739
740         cache_op = (config >> 8) & 0xff;
741         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
742                 return ERR_PTR(-EINVAL);
743
744         cache_result = (config >> 16) & 0xff;
745         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
746                 return ERR_PTR(-EINVAL);
747
748         pev = &((*mipspmu.cache_event_map)
749                                         [cache_type]
750                                         [cache_op]
751                                         [cache_result]);
752
753         if (pev->cntr_mask == 0)
754                 return ERR_PTR(-EOPNOTSUPP);
755
756         return pev;
757
758 }
759
760 static int validate_group(struct perf_event *event)
761 {
762         struct perf_event *sibling, *leader = event->group_leader;
763         struct cpu_hw_events fake_cpuc;
764
765         memset(&fake_cpuc, 0, sizeof(fake_cpuc));
766
767         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
768                 return -EINVAL;
769
770         for_each_sibling_event(sibling, leader) {
771                 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
772                         return -EINVAL;
773         }
774
775         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
776                 return -EINVAL;
777
778         return 0;
779 }
780
781 /* This is needed by specific irq handlers in perf_event_*.c */
782 static void handle_associated_event(struct cpu_hw_events *cpuc,
783                                     int idx, struct perf_sample_data *data,
784                                     struct pt_regs *regs)
785 {
786         struct perf_event *event = cpuc->events[idx];
787         struct hw_perf_event *hwc = &event->hw;
788
789         mipspmu_event_update(event, hwc, idx);
790         data->period = event->hw.last_period;
791         if (!mipspmu_event_set_period(event, hwc, idx))
792                 return;
793
794         if (perf_event_overflow(event, data, regs))
795                 mipsxx_pmu_disable_event(idx);
796 }
797
798
799 static int __n_counters(void)
800 {
801         if (!cpu_has_perf)
802                 return 0;
803         if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
804                 return 1;
805         if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
806                 return 2;
807         if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
808                 return 3;
809
810         return 4;
811 }
812
813 static int n_counters(void)
814 {
815         int counters;
816
817         switch (current_cpu_type()) {
818         case CPU_R10000:
819                 counters = 2;
820                 break;
821
822         case CPU_R12000:
823         case CPU_R14000:
824         case CPU_R16000:
825                 counters = 4;
826                 break;
827
828         default:
829                 counters = __n_counters();
830         }
831
832         return counters;
833 }
834
835 static void loongson3_reset_counters(void *arg)
836 {
837         int counters = (int)(long)arg;
838
839         switch (counters) {
840         case 4:
841                 mipsxx_pmu_write_control(3, 0);
842                 mipspmu.write_counter(3, 0);
843                 mipsxx_pmu_write_control(3, 127<<5);
844                 mipspmu.write_counter(3, 0);
845                 mipsxx_pmu_write_control(3, 191<<5);
846                 mipspmu.write_counter(3, 0);
847                 mipsxx_pmu_write_control(3, 255<<5);
848                 mipspmu.write_counter(3, 0);
849                 mipsxx_pmu_write_control(3, 319<<5);
850                 mipspmu.write_counter(3, 0);
851                 mipsxx_pmu_write_control(3, 383<<5);
852                 mipspmu.write_counter(3, 0);
853                 mipsxx_pmu_write_control(3, 575<<5);
854                 mipspmu.write_counter(3, 0);
855                 fallthrough;
856         case 3:
857                 mipsxx_pmu_write_control(2, 0);
858                 mipspmu.write_counter(2, 0);
859                 mipsxx_pmu_write_control(2, 127<<5);
860                 mipspmu.write_counter(2, 0);
861                 mipsxx_pmu_write_control(2, 191<<5);
862                 mipspmu.write_counter(2, 0);
863                 mipsxx_pmu_write_control(2, 255<<5);
864                 mipspmu.write_counter(2, 0);
865                 mipsxx_pmu_write_control(2, 319<<5);
866                 mipspmu.write_counter(2, 0);
867                 mipsxx_pmu_write_control(2, 383<<5);
868                 mipspmu.write_counter(2, 0);
869                 mipsxx_pmu_write_control(2, 575<<5);
870                 mipspmu.write_counter(2, 0);
871                 fallthrough;
872         case 2:
873                 mipsxx_pmu_write_control(1, 0);
874                 mipspmu.write_counter(1, 0);
875                 mipsxx_pmu_write_control(1, 127<<5);
876                 mipspmu.write_counter(1, 0);
877                 mipsxx_pmu_write_control(1, 191<<5);
878                 mipspmu.write_counter(1, 0);
879                 mipsxx_pmu_write_control(1, 255<<5);
880                 mipspmu.write_counter(1, 0);
881                 mipsxx_pmu_write_control(1, 319<<5);
882                 mipspmu.write_counter(1, 0);
883                 mipsxx_pmu_write_control(1, 383<<5);
884                 mipspmu.write_counter(1, 0);
885                 mipsxx_pmu_write_control(1, 575<<5);
886                 mipspmu.write_counter(1, 0);
887                 fallthrough;
888         case 1:
889                 mipsxx_pmu_write_control(0, 0);
890                 mipspmu.write_counter(0, 0);
891                 mipsxx_pmu_write_control(0, 127<<5);
892                 mipspmu.write_counter(0, 0);
893                 mipsxx_pmu_write_control(0, 191<<5);
894                 mipspmu.write_counter(0, 0);
895                 mipsxx_pmu_write_control(0, 255<<5);
896                 mipspmu.write_counter(0, 0);
897                 mipsxx_pmu_write_control(0, 319<<5);
898                 mipspmu.write_counter(0, 0);
899                 mipsxx_pmu_write_control(0, 383<<5);
900                 mipspmu.write_counter(0, 0);
901                 mipsxx_pmu_write_control(0, 575<<5);
902                 mipspmu.write_counter(0, 0);
903                 break;
904         }
905 }
906
907 static void reset_counters(void *arg)
908 {
909         int counters = (int)(long)arg;
910
911         if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
912                 loongson3_reset_counters(arg);
913                 return;
914         }
915
916         switch (counters) {
917         case 4:
918                 mipsxx_pmu_write_control(3, 0);
919                 mipspmu.write_counter(3, 0);
920                 fallthrough;
921         case 3:
922                 mipsxx_pmu_write_control(2, 0);
923                 mipspmu.write_counter(2, 0);
924                 fallthrough;
925         case 2:
926                 mipsxx_pmu_write_control(1, 0);
927                 mipspmu.write_counter(1, 0);
928                 fallthrough;
929         case 1:
930                 mipsxx_pmu_write_control(0, 0);
931                 mipspmu.write_counter(0, 0);
932                 break;
933         }
934 }
935
936 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
937 static const struct mips_perf_event mipsxxcore_event_map
938                                 [PERF_COUNT_HW_MAX] = {
939         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
940         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
941         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
942         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
943 };
944
945 /* 74K/proAptiv core has different branch event code. */
946 static const struct mips_perf_event mipsxxcore_event_map2
947                                 [PERF_COUNT_HW_MAX] = {
948         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
949         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
950         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
951         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
952 };
953
954 static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
955         [PERF_COUNT_HW_CPU_CYCLES]          = { 0x00, CNTR_EVEN | CNTR_ODD },
956         [PERF_COUNT_HW_INSTRUCTIONS]        = { 0x01, CNTR_EVEN | CNTR_ODD },
957         /* These only count dcache, not icache */
958         [PERF_COUNT_HW_CACHE_REFERENCES]    = { 0x45, CNTR_EVEN | CNTR_ODD },
959         [PERF_COUNT_HW_CACHE_MISSES]        = { 0x48, CNTR_EVEN | CNTR_ODD },
960         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
961         [PERF_COUNT_HW_BRANCH_MISSES]       = { 0x16, CNTR_EVEN | CNTR_ODD },
962 };
963
964 static const struct mips_perf_event loongson3_event_map1[PERF_COUNT_HW_MAX] = {
965         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
966         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
967         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
968         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
969 };
970
971 static const struct mips_perf_event loongson3_event_map2[PERF_COUNT_HW_MAX] = {
972         [PERF_COUNT_HW_CPU_CYCLES] = { 0x80, CNTR_ALL },
973         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x81, CNTR_ALL },
974         [PERF_COUNT_HW_CACHE_MISSES] = { 0x18, CNTR_ALL },
975         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x94, CNTR_ALL },
976         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x9c, CNTR_ALL },
977 };
978
979 static const struct mips_perf_event loongson3_event_map3[PERF_COUNT_HW_MAX] = {
980         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_ALL },
981         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_ALL },
982         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x1c, CNTR_ALL },
983         [PERF_COUNT_HW_CACHE_MISSES] = { 0x1d, CNTR_ALL },
984         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_ALL },
985         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x08, CNTR_ALL },
986 };
987
988 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
989         [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
990         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
991         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
992         [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
993         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
994         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
995         [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
996 };
997
998 static const struct mips_perf_event bmips5000_event_map
999                                 [PERF_COUNT_HW_MAX] = {
1000         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
1001         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
1002         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
1003 };
1004
1005 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
1006 static const struct mips_perf_event mipsxxcore_cache_map
1007                                 [PERF_COUNT_HW_CACHE_MAX]
1008                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1009                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1010 [C(L1D)] = {
1011         /*
1012          * Like some other architectures (e.g. ARM), the performance
1013          * counters don't differentiate between read and write
1014          * accesses/misses, so this isn't strictly correct, but it's the
1015          * best we can do. Writes and reads get combined.
1016          */
1017         [C(OP_READ)] = {
1018                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
1019                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
1020         },
1021         [C(OP_WRITE)] = {
1022                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
1023                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
1024         },
1025 },
1026 [C(L1I)] = {
1027         [C(OP_READ)] = {
1028                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
1029                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
1030         },
1031         [C(OP_WRITE)] = {
1032                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
1033                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
1034         },
1035         [C(OP_PREFETCH)] = {
1036                 [C(RESULT_ACCESS)]      = { 0x14, CNTR_EVEN, T },
1037                 /*
1038                  * Note that MIPS has only "hit" events countable for
1039                  * the prefetch operation.
1040                  */
1041         },
1042 },
1043 [C(LL)] = {
1044         [C(OP_READ)] = {
1045                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
1046                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
1047         },
1048         [C(OP_WRITE)] = {
1049                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
1050                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
1051         },
1052 },
1053 [C(DTLB)] = {
1054         [C(OP_READ)] = {
1055                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
1056                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
1057         },
1058         [C(OP_WRITE)] = {
1059                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
1060                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
1061         },
1062 },
1063 [C(ITLB)] = {
1064         [C(OP_READ)] = {
1065                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
1066                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
1067         },
1068         [C(OP_WRITE)] = {
1069                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
1070                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
1071         },
1072 },
1073 [C(BPU)] = {
1074         /* Using the same code for *HW_BRANCH* */
1075         [C(OP_READ)] = {
1076                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
1077                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1078         },
1079         [C(OP_WRITE)] = {
1080                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
1081                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1082         },
1083 },
1084 };
1085
1086 /* 74K/proAptiv core has completely different cache event map. */
1087 static const struct mips_perf_event mipsxxcore_cache_map2
1088                                 [PERF_COUNT_HW_CACHE_MAX]
1089                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1090                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1091 [C(L1D)] = {
1092         /*
1093          * Like some other architectures (e.g. ARM), the performance
1094          * counters don't differentiate between read and write
1095          * accesses/misses, so this isn't strictly correct, but it's the
1096          * best we can do. Writes and reads get combined.
1097          */
1098         [C(OP_READ)] = {
1099                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
1100                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
1101         },
1102         [C(OP_WRITE)] = {
1103                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
1104                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
1105         },
1106 },
1107 [C(L1I)] = {
1108         [C(OP_READ)] = {
1109                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
1110                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
1111         },
1112         [C(OP_WRITE)] = {
1113                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
1114                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
1115         },
1116         [C(OP_PREFETCH)] = {
1117                 [C(RESULT_ACCESS)]      = { 0x34, CNTR_EVEN, T },
1118                 /*
1119                  * Note that MIPS has only "hit" events countable for
1120                  * the prefetch operation.
1121                  */
1122         },
1123 },
1124 [C(LL)] = {
1125         [C(OP_READ)] = {
1126                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
1127                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
1128         },
1129         [C(OP_WRITE)] = {
1130                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
1131                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
1132         },
1133 },
1134 /*
1135  * 74K core does not have specific DTLB events. proAptiv core has
1136  * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1137  * not included here. One can use raw events if really needed.
1138  */
1139 [C(ITLB)] = {
1140         [C(OP_READ)] = {
1141                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
1142                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
1143         },
1144         [C(OP_WRITE)] = {
1145                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
1146                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
1147         },
1148 },
1149 [C(BPU)] = {
1150         /* Using the same code for *HW_BRANCH* */
1151         [C(OP_READ)] = {
1152                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1153                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1154         },
1155         [C(OP_WRITE)] = {
1156                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1157                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1158         },
1159 },
1160 };
1161
1162 static const struct mips_perf_event i6x00_cache_map
1163                                 [PERF_COUNT_HW_CACHE_MAX]
1164                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1165                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1166 [C(L1D)] = {
1167         [C(OP_READ)] = {
1168                 [C(RESULT_ACCESS)]      = { 0x46, CNTR_EVEN | CNTR_ODD },
1169                 [C(RESULT_MISS)]        = { 0x49, CNTR_EVEN | CNTR_ODD },
1170         },
1171         [C(OP_WRITE)] = {
1172                 [C(RESULT_ACCESS)]      = { 0x47, CNTR_EVEN | CNTR_ODD },
1173                 [C(RESULT_MISS)]        = { 0x4a, CNTR_EVEN | CNTR_ODD },
1174         },
1175 },
1176 [C(L1I)] = {
1177         [C(OP_READ)] = {
1178                 [C(RESULT_ACCESS)]      = { 0x84, CNTR_EVEN | CNTR_ODD },
1179                 [C(RESULT_MISS)]        = { 0x85, CNTR_EVEN | CNTR_ODD },
1180         },
1181 },
1182 [C(DTLB)] = {
1183         /* Can't distinguish read & write */
1184         [C(OP_READ)] = {
1185                 [C(RESULT_ACCESS)]      = { 0x40, CNTR_EVEN | CNTR_ODD },
1186                 [C(RESULT_MISS)]        = { 0x41, CNTR_EVEN | CNTR_ODD },
1187         },
1188         [C(OP_WRITE)] = {
1189                 [C(RESULT_ACCESS)]      = { 0x40, CNTR_EVEN | CNTR_ODD },
1190                 [C(RESULT_MISS)]        = { 0x41, CNTR_EVEN | CNTR_ODD },
1191         },
1192 },
1193 [C(BPU)] = {
1194         /* Conditional branches / mispredicted */
1195         [C(OP_READ)] = {
1196                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_EVEN | CNTR_ODD },
1197                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN | CNTR_ODD },
1198         },
1199 },
1200 };
1201
1202 static const struct mips_perf_event loongson3_cache_map1
1203                                 [PERF_COUNT_HW_CACHE_MAX]
1204                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1205                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1206 [C(L1D)] = {
1207         /*
1208          * Like some other architectures (e.g. ARM), the performance
1209          * counters don't differentiate between read and write
1210          * accesses/misses, so this isn't strictly correct, but it's the
1211          * best we can do. Writes and reads get combined.
1212          */
1213         [C(OP_READ)] = {
1214                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1215         },
1216         [C(OP_WRITE)] = {
1217                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1218         },
1219 },
1220 [C(L1I)] = {
1221         [C(OP_READ)] = {
1222                 [C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1223         },
1224         [C(OP_WRITE)] = {
1225                 [C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1226         },
1227 },
1228 [C(DTLB)] = {
1229         [C(OP_READ)] = {
1230                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1231         },
1232         [C(OP_WRITE)] = {
1233                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1234         },
1235 },
1236 [C(ITLB)] = {
1237         [C(OP_READ)] = {
1238                 [C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1239         },
1240         [C(OP_WRITE)] = {
1241                 [C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1242         },
1243 },
1244 [C(BPU)] = {
1245         /* Using the same code for *HW_BRANCH* */
1246         [C(OP_READ)] = {
1247                 [C(RESULT_ACCESS)]      = { 0x01, CNTR_EVEN },
1248                 [C(RESULT_MISS)]        = { 0x01, CNTR_ODD },
1249         },
1250         [C(OP_WRITE)] = {
1251                 [C(RESULT_ACCESS)]      = { 0x01, CNTR_EVEN },
1252                 [C(RESULT_MISS)]        = { 0x01, CNTR_ODD },
1253         },
1254 },
1255 };
1256
1257 static const struct mips_perf_event loongson3_cache_map2
1258                                 [PERF_COUNT_HW_CACHE_MAX]
1259                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1260                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1261 [C(L1D)] = {
1262         /*
1263          * Like some other architectures (e.g. ARM), the performance
1264          * counters don't differentiate between read and write
1265          * accesses/misses, so this isn't strictly correct, but it's the
1266          * best we can do. Writes and reads get combined.
1267          */
1268         [C(OP_READ)] = {
1269                 [C(RESULT_ACCESS)]      = { 0x156, CNTR_ALL },
1270         },
1271         [C(OP_WRITE)] = {
1272                 [C(RESULT_ACCESS)]      = { 0x155, CNTR_ALL },
1273                 [C(RESULT_MISS)]        = { 0x153, CNTR_ALL },
1274         },
1275 },
1276 [C(L1I)] = {
1277         [C(OP_READ)] = {
1278                 [C(RESULT_MISS)]        = { 0x18, CNTR_ALL },
1279         },
1280         [C(OP_WRITE)] = {
1281                 [C(RESULT_MISS)]        = { 0x18, CNTR_ALL },
1282         },
1283 },
1284 [C(LL)] = {
1285         [C(OP_READ)] = {
1286                 [C(RESULT_ACCESS)]      = { 0x1b6, CNTR_ALL },
1287         },
1288         [C(OP_WRITE)] = {
1289                 [C(RESULT_ACCESS)]      = { 0x1b7, CNTR_ALL },
1290         },
1291         [C(OP_PREFETCH)] = {
1292                 [C(RESULT_ACCESS)]      = { 0x1bf, CNTR_ALL },
1293         },
1294 },
1295 [C(DTLB)] = {
1296         [C(OP_READ)] = {
1297                 [C(RESULT_MISS)]        = { 0x92, CNTR_ALL },
1298         },
1299         [C(OP_WRITE)] = {
1300                 [C(RESULT_MISS)]        = { 0x92, CNTR_ALL },
1301         },
1302 },
1303 [C(ITLB)] = {
1304         [C(OP_READ)] = {
1305                 [C(RESULT_MISS)]        = { 0x1a, CNTR_ALL },
1306         },
1307         [C(OP_WRITE)] = {
1308                 [C(RESULT_MISS)]        = { 0x1a, CNTR_ALL },
1309         },
1310 },
1311 [C(BPU)] = {
1312         /* Using the same code for *HW_BRANCH* */
1313         [C(OP_READ)] = {
1314                 [C(RESULT_ACCESS)]      = { 0x94, CNTR_ALL },
1315                 [C(RESULT_MISS)]        = { 0x9c, CNTR_ALL },
1316         },
1317 },
1318 };
1319
1320 static const struct mips_perf_event loongson3_cache_map3
1321                                 [PERF_COUNT_HW_CACHE_MAX]
1322                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1323                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1324 [C(L1D)] = {
1325         /*
1326          * Like some other architectures (e.g. ARM), the performance
1327          * counters don't differentiate between read and write
1328          * accesses/misses, so this isn't strictly correct, but it's the
1329          * best we can do. Writes and reads get combined.
1330          */
1331         [C(OP_READ)] = {
1332                 [C(RESULT_ACCESS)]      = { 0x1e, CNTR_ALL },
1333                 [C(RESULT_MISS)]        = { 0x1f, CNTR_ALL },
1334         },
1335         [C(OP_PREFETCH)] = {
1336                 [C(RESULT_ACCESS)]      = { 0xaa, CNTR_ALL },
1337                 [C(RESULT_MISS)]        = { 0xa9, CNTR_ALL },
1338         },
1339 },
1340 [C(L1I)] = {
1341         [C(OP_READ)] = {
1342                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ALL },
1343                 [C(RESULT_MISS)]        = { 0x1d, CNTR_ALL },
1344         },
1345 },
1346 [C(LL)] = {
1347         [C(OP_READ)] = {
1348                 [C(RESULT_ACCESS)]      = { 0x2e, CNTR_ALL },
1349                 [C(RESULT_MISS)]        = { 0x2f, CNTR_ALL },
1350         },
1351 },
1352 [C(DTLB)] = {
1353         [C(OP_READ)] = {
1354                 [C(RESULT_ACCESS)]      = { 0x14, CNTR_ALL },
1355                 [C(RESULT_MISS)]        = { 0x1b, CNTR_ALL },
1356         },
1357 },
1358 [C(ITLB)] = {
1359         [C(OP_READ)] = {
1360                 [C(RESULT_MISS)]        = { 0x1a, CNTR_ALL },
1361         },
1362 },
1363 [C(BPU)] = {
1364         /* Using the same code for *HW_BRANCH* */
1365         [C(OP_READ)] = {
1366                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_ALL },
1367                 [C(RESULT_MISS)]        = { 0x08, CNTR_ALL },
1368         },
1369 },
1370 };
1371
1372 /* BMIPS5000 */
1373 static const struct mips_perf_event bmips5000_cache_map
1374                                 [PERF_COUNT_HW_CACHE_MAX]
1375                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1376                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1377 [C(L1D)] = {
1378         /*
1379          * Like some other architectures (e.g. ARM), the performance
1380          * counters don't differentiate between read and write
1381          * accesses/misses, so this isn't strictly correct, but it's the
1382          * best we can do. Writes and reads get combined.
1383          */
1384         [C(OP_READ)] = {
1385                 [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1386                 [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1387         },
1388         [C(OP_WRITE)] = {
1389                 [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1390                 [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1391         },
1392 },
1393 [C(L1I)] = {
1394         [C(OP_READ)] = {
1395                 [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1396                 [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1397         },
1398         [C(OP_WRITE)] = {
1399                 [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1400                 [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1401         },
1402         [C(OP_PREFETCH)] = {
1403                 [C(RESULT_ACCESS)]      = { 23, CNTR_EVEN, T },
1404                 /*
1405                  * Note that MIPS has only "hit" events countable for
1406                  * the prefetch operation.
1407                  */
1408         },
1409 },
1410 [C(LL)] = {
1411         [C(OP_READ)] = {
1412                 [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1413                 [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1414         },
1415         [C(OP_WRITE)] = {
1416                 [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1417                 [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1418         },
1419 },
1420 [C(BPU)] = {
1421         /* Using the same code for *HW_BRANCH* */
1422         [C(OP_READ)] = {
1423                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1424         },
1425         [C(OP_WRITE)] = {
1426                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1427         },
1428 },
1429 };
1430
1431 static const struct mips_perf_event octeon_cache_map
1432                                 [PERF_COUNT_HW_CACHE_MAX]
1433                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1434                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1435 [C(L1D)] = {
1436         [C(OP_READ)] = {
1437                 [C(RESULT_ACCESS)]      = { 0x2b, CNTR_ALL },
1438                 [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL },
1439         },
1440         [C(OP_WRITE)] = {
1441                 [C(RESULT_ACCESS)]      = { 0x30, CNTR_ALL },
1442         },
1443 },
1444 [C(L1I)] = {
1445         [C(OP_READ)] = {
1446                 [C(RESULT_ACCESS)]      = { 0x18, CNTR_ALL },
1447         },
1448         [C(OP_PREFETCH)] = {
1449                 [C(RESULT_ACCESS)]      = { 0x19, CNTR_ALL },
1450         },
1451 },
1452 [C(DTLB)] = {
1453         /*
1454          * Only general DTLB misses are counted use the same event for
1455          * read and write.
1456          */
1457         [C(OP_READ)] = {
1458                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1459         },
1460         [C(OP_WRITE)] = {
1461                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1462         },
1463 },
1464 [C(ITLB)] = {
1465         [C(OP_READ)] = {
1466                 [C(RESULT_MISS)]        = { 0x37, CNTR_ALL },
1467         },
1468 },
1469 };
1470
1471 static int __hw_perf_event_init(struct perf_event *event)
1472 {
1473         struct perf_event_attr *attr = &event->attr;
1474         struct hw_perf_event *hwc = &event->hw;
1475         const struct mips_perf_event *pev;
1476         int err;
1477
1478         /* Returning MIPS event descriptor for generic perf event. */
1479         if (PERF_TYPE_HARDWARE == event->attr.type) {
1480                 if (event->attr.config >= PERF_COUNT_HW_MAX)
1481                         return -EINVAL;
1482                 pev = mipspmu_map_general_event(event->attr.config);
1483         } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1484                 pev = mipspmu_map_cache_event(event->attr.config);
1485         } else if (PERF_TYPE_RAW == event->attr.type) {
1486                 /* We are working on the global raw event. */
1487                 mutex_lock(&raw_event_mutex);
1488                 pev = mipspmu.map_raw_event(event->attr.config);
1489         } else {
1490                 /* The event type is not (yet) supported. */
1491                 return -EOPNOTSUPP;
1492         }
1493
1494         if (IS_ERR(pev)) {
1495                 if (PERF_TYPE_RAW == event->attr.type)
1496                         mutex_unlock(&raw_event_mutex);
1497                 return PTR_ERR(pev);
1498         }
1499
1500         /*
1501          * We allow max flexibility on how each individual counter shared
1502          * by the single CPU operates (the mode exclusion and the range).
1503          */
1504         hwc->config_base = MIPS_PERFCTRL_IE;
1505
1506         hwc->event_base = mipspmu_perf_event_encode(pev);
1507         if (PERF_TYPE_RAW == event->attr.type)
1508                 mutex_unlock(&raw_event_mutex);
1509
1510         if (!attr->exclude_user)
1511                 hwc->config_base |= MIPS_PERFCTRL_U;
1512         if (!attr->exclude_kernel) {
1513                 hwc->config_base |= MIPS_PERFCTRL_K;
1514                 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1515                 hwc->config_base |= MIPS_PERFCTRL_EXL;
1516         }
1517         if (!attr->exclude_hv)
1518                 hwc->config_base |= MIPS_PERFCTRL_S;
1519
1520         hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1521         /*
1522          * The event can belong to another cpu. We do not assign a local
1523          * counter for it for now.
1524          */
1525         hwc->idx = -1;
1526         hwc->config = 0;
1527
1528         if (!hwc->sample_period) {
1529                 hwc->sample_period  = mipspmu.max_period;
1530                 hwc->last_period    = hwc->sample_period;
1531                 local64_set(&hwc->period_left, hwc->sample_period);
1532         }
1533
1534         err = 0;
1535         if (event->group_leader != event)
1536                 err = validate_group(event);
1537
1538         event->destroy = hw_perf_event_destroy;
1539
1540         if (err)
1541                 event->destroy(event);
1542
1543         return err;
1544 }
1545
1546 static void pause_local_counters(void)
1547 {
1548         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1549         int ctr = mipspmu.num_counters;
1550         unsigned long flags;
1551
1552         local_irq_save(flags);
1553         do {
1554                 ctr--;
1555                 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1556                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1557                                          ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1558         } while (ctr > 0);
1559         local_irq_restore(flags);
1560 }
1561
1562 static void resume_local_counters(void)
1563 {
1564         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1565         int ctr = mipspmu.num_counters;
1566
1567         do {
1568                 ctr--;
1569                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1570         } while (ctr > 0);
1571 }
1572
1573 static int mipsxx_pmu_handle_shared_irq(void)
1574 {
1575         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1576         struct perf_sample_data data;
1577         unsigned int counters = mipspmu.num_counters;
1578         u64 counter;
1579         int n, handled = IRQ_NONE;
1580         struct pt_regs *regs;
1581
1582         if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1583                 return handled;
1584         /*
1585          * First we pause the local counters, so that when we are locked
1586          * here, the counters are all paused. When it gets locked due to
1587          * perf_disable(), the timer interrupt handler will be delayed.
1588          *
1589          * See also mipsxx_pmu_start().
1590          */
1591         pause_local_counters();
1592 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1593         read_lock(&pmuint_rwlock);
1594 #endif
1595
1596         regs = get_irq_regs();
1597
1598         perf_sample_data_init(&data, 0, 0);
1599
1600         for (n = counters - 1; n >= 0; n--) {
1601                 if (!test_bit(n, cpuc->used_mask))
1602                         continue;
1603
1604                 counter = mipspmu.read_counter(n);
1605                 if (!(counter & mipspmu.overflow))
1606                         continue;
1607
1608                 handle_associated_event(cpuc, n, &data, regs);
1609                 handled = IRQ_HANDLED;
1610         }
1611
1612 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1613         read_unlock(&pmuint_rwlock);
1614 #endif
1615         resume_local_counters();
1616
1617         /*
1618          * Do all the work for the pending perf events. We can do this
1619          * in here because the performance counter interrupt is a regular
1620          * interrupt, not NMI.
1621          */
1622         if (handled == IRQ_HANDLED)
1623                 irq_work_run();
1624
1625         return handled;
1626 }
1627
1628 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1629 {
1630         return mipsxx_pmu_handle_shared_irq();
1631 }
1632
1633 /* 24K */
1634 #define IS_BOTH_COUNTERS_24K_EVENT(b)                                   \
1635         ((b) == 0 || (b) == 1 || (b) == 11)
1636
1637 /* 34K */
1638 #define IS_BOTH_COUNTERS_34K_EVENT(b)                                   \
1639         ((b) == 0 || (b) == 1 || (b) == 11)
1640 #ifdef CONFIG_MIPS_MT_SMP
1641 #define IS_RANGE_P_34K_EVENT(r, b)                                      \
1642         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1643          (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||           \
1644          (r) == 176 || ((b) >= 50 && (b) <= 55) ||                      \
1645          ((b) >= 64 && (b) <= 67))
1646 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1647 #endif
1648
1649 /* 74K */
1650 #define IS_BOTH_COUNTERS_74K_EVENT(b)                                   \
1651         ((b) == 0 || (b) == 1)
1652
1653 /* proAptiv */
1654 #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)                              \
1655         ((b) == 0 || (b) == 1)
1656 /* P5600 */
1657 #define IS_BOTH_COUNTERS_P5600_EVENT(b)                                 \
1658         ((b) == 0 || (b) == 1)
1659
1660 /* 1004K */
1661 #define IS_BOTH_COUNTERS_1004K_EVENT(b)                                 \
1662         ((b) == 0 || (b) == 1 || (b) == 11)
1663 #ifdef CONFIG_MIPS_MT_SMP
1664 #define IS_RANGE_P_1004K_EVENT(r, b)                                    \
1665         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1666          (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||            \
1667          (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||        \
1668          (r) == 188 || (b) == 61 || (b) == 62 ||                        \
1669          ((b) >= 64 && (b) <= 67))
1670 #define IS_RANGE_V_1004K_EVENT(r)       ((r) == 47)
1671 #endif
1672
1673 /* interAptiv */
1674 #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)                            \
1675         ((b) == 0 || (b) == 1 || (b) == 11)
1676 #ifdef CONFIG_MIPS_MT_SMP
1677 /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1678 #define IS_RANGE_P_INTERAPTIV_EVENT(r, b)                               \
1679         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1680          (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||            \
1681          (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&         \
1682          (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||          \
1683          ((b) >= 64 && (b) <= 67))
1684 #define IS_RANGE_V_INTERAPTIV_EVENT(r)  ((r) == 47 || (r) == 175)
1685 #endif
1686
1687 /* BMIPS5000 */
1688 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)                             \
1689         ((b) == 0 || (b) == 1)
1690
1691
1692 /*
1693  * For most cores the user can use 0-255 raw events, where 0-127 for the events
1694  * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1695  * indicate the even/odd bank selector. So, for example, when user wants to take
1696  * the Event Num of 15 for odd counters (by referring to the user manual), then
1697  * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1698  * to be used.
1699  *
1700  * Some newer cores have even more events, in which case the user can use raw
1701  * events 0-511, where 0-255 are for the events of even counters, and 256-511
1702  * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1703  */
1704 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1705 {
1706         /* currently most cores have 7-bit event numbers */
1707         int pmu_type;
1708         unsigned int raw_id = config & 0xff;
1709         unsigned int base_id = raw_id & 0x7f;
1710
1711         switch (current_cpu_type()) {
1712         case CPU_24K:
1713                 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1714                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1715                 else
1716                         raw_event.cntr_mask =
1717                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1718 #ifdef CONFIG_MIPS_MT_SMP
1719                 /*
1720                  * This is actually doing nothing. Non-multithreading
1721                  * CPUs will not check and calculate the range.
1722                  */
1723                 raw_event.range = P;
1724 #endif
1725                 break;
1726         case CPU_34K:
1727                 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1728                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1729                 else
1730                         raw_event.cntr_mask =
1731                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1732 #ifdef CONFIG_MIPS_MT_SMP
1733                 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1734                         raw_event.range = P;
1735                 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1736                         raw_event.range = V;
1737                 else
1738                         raw_event.range = T;
1739 #endif
1740                 break;
1741         case CPU_74K:
1742         case CPU_1074K:
1743                 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1744                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1745                 else
1746                         raw_event.cntr_mask =
1747                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1748 #ifdef CONFIG_MIPS_MT_SMP
1749                 raw_event.range = P;
1750 #endif
1751                 break;
1752         case CPU_PROAPTIV:
1753                 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1754                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1755                 else
1756                         raw_event.cntr_mask =
1757                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1758 #ifdef CONFIG_MIPS_MT_SMP
1759                 raw_event.range = P;
1760 #endif
1761                 break;
1762         case CPU_P5600:
1763         case CPU_P6600:
1764                 /* 8-bit event numbers */
1765                 raw_id = config & 0x1ff;
1766                 base_id = raw_id & 0xff;
1767                 if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1768                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1769                 else
1770                         raw_event.cntr_mask =
1771                                 raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1772 #ifdef CONFIG_MIPS_MT_SMP
1773                 raw_event.range = P;
1774 #endif
1775                 break;
1776         case CPU_I6400:
1777         case CPU_I6500:
1778                 /* 8-bit event numbers */
1779                 base_id = config & 0xff;
1780                 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1781                 break;
1782         case CPU_1004K:
1783                 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1784                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1785                 else
1786                         raw_event.cntr_mask =
1787                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1788 #ifdef CONFIG_MIPS_MT_SMP
1789                 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1790                         raw_event.range = P;
1791                 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1792                         raw_event.range = V;
1793                 else
1794                         raw_event.range = T;
1795 #endif
1796                 break;
1797         case CPU_INTERAPTIV:
1798                 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1799                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1800                 else
1801                         raw_event.cntr_mask =
1802                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1803 #ifdef CONFIG_MIPS_MT_SMP
1804                 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1805                         raw_event.range = P;
1806                 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1807                         raw_event.range = V;
1808                 else
1809                         raw_event.range = T;
1810 #endif
1811                 break;
1812         case CPU_BMIPS5000:
1813                 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1814                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1815                 else
1816                         raw_event.cntr_mask =
1817                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1818                 break;
1819         case CPU_LOONGSON64:
1820                 pmu_type = get_loongson3_pmu_type();
1821
1822                 switch (pmu_type) {
1823                 case LOONGSON_PMU_TYPE1:
1824                         raw_event.cntr_mask =
1825                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1826                         break;
1827                 case LOONGSON_PMU_TYPE2:
1828                         base_id = config & 0x3ff;
1829                         raw_event.cntr_mask = CNTR_ALL;
1830
1831                         if ((base_id >= 1 && base_id < 28) ||
1832                                 (base_id >= 64 && base_id < 90) ||
1833                                 (base_id >= 128 && base_id < 164) ||
1834                                 (base_id >= 192 && base_id < 200) ||
1835                                 (base_id >= 256 && base_id < 275) ||
1836                                 (base_id >= 320 && base_id < 361) ||
1837                                 (base_id >= 384 && base_id < 574))
1838                                 break;
1839
1840                         return ERR_PTR(-EOPNOTSUPP);
1841                 case LOONGSON_PMU_TYPE3:
1842                         base_id = raw_id;
1843                         raw_event.cntr_mask = CNTR_ALL;
1844                         break;
1845                 }
1846                 break;
1847         }
1848
1849         raw_event.event_id = base_id;
1850
1851         return &raw_event;
1852 }
1853
1854 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1855 {
1856         unsigned int base_id = config & 0x7f;
1857         unsigned int event_max;
1858
1859
1860         raw_event.cntr_mask = CNTR_ALL;
1861         raw_event.event_id = base_id;
1862
1863         if (current_cpu_type() == CPU_CAVIUM_OCTEON3)
1864                 event_max = 0x5f;
1865         else if (current_cpu_type() == CPU_CAVIUM_OCTEON2)
1866                 event_max = 0x42;
1867         else
1868                 event_max = 0x3a;
1869
1870         if (base_id > event_max) {
1871                 return ERR_PTR(-EOPNOTSUPP);
1872         }
1873
1874         switch (base_id) {
1875         case 0x00:
1876         case 0x0f:
1877         case 0x1e:
1878         case 0x1f:
1879         case 0x2f:
1880         case 0x34:
1881         case 0x3e ... 0x3f:
1882                 return ERR_PTR(-EOPNOTSUPP);
1883         default:
1884                 break;
1885         }
1886
1887         return &raw_event;
1888 }
1889
1890 static int __init
1891 init_hw_perf_events(void)
1892 {
1893         int counters, irq, pmu_type;
1894
1895         pr_info("Performance counters: ");
1896
1897         counters = n_counters();
1898         if (counters == 0) {
1899                 pr_cont("No available PMU.\n");
1900                 return -ENODEV;
1901         }
1902
1903 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1904         if (!cpu_has_mipsmt_pertccounters)
1905                 counters = counters_total_to_per_cpu(counters);
1906 #endif
1907
1908         if (get_c0_perfcount_int)
1909                 irq = get_c0_perfcount_int();
1910         else if (cp0_perfcount_irq >= 0)
1911                 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1912         else
1913                 irq = -1;
1914
1915         mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1916
1917         switch (current_cpu_type()) {
1918         case CPU_24K:
1919                 mipspmu.name = "mips/24K";
1920                 mipspmu.general_event_map = &mipsxxcore_event_map;
1921                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1922                 break;
1923         case CPU_34K:
1924                 mipspmu.name = "mips/34K";
1925                 mipspmu.general_event_map = &mipsxxcore_event_map;
1926                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1927                 break;
1928         case CPU_74K:
1929                 mipspmu.name = "mips/74K";
1930                 mipspmu.general_event_map = &mipsxxcore_event_map2;
1931                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1932                 break;
1933         case CPU_PROAPTIV:
1934                 mipspmu.name = "mips/proAptiv";
1935                 mipspmu.general_event_map = &mipsxxcore_event_map2;
1936                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1937                 break;
1938         case CPU_P5600:
1939                 mipspmu.name = "mips/P5600";
1940                 mipspmu.general_event_map = &mipsxxcore_event_map2;
1941                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1942                 break;
1943         case CPU_P6600:
1944                 mipspmu.name = "mips/P6600";
1945                 mipspmu.general_event_map = &mipsxxcore_event_map2;
1946                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1947                 break;
1948         case CPU_I6400:
1949                 mipspmu.name = "mips/I6400";
1950                 mipspmu.general_event_map = &i6x00_event_map;
1951                 mipspmu.cache_event_map = &i6x00_cache_map;
1952                 break;
1953         case CPU_I6500:
1954                 mipspmu.name = "mips/I6500";
1955                 mipspmu.general_event_map = &i6x00_event_map;
1956                 mipspmu.cache_event_map = &i6x00_cache_map;
1957                 break;
1958         case CPU_1004K:
1959                 mipspmu.name = "mips/1004K";
1960                 mipspmu.general_event_map = &mipsxxcore_event_map;
1961                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1962                 break;
1963         case CPU_1074K:
1964                 mipspmu.name = "mips/1074K";
1965                 mipspmu.general_event_map = &mipsxxcore_event_map;
1966                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1967                 break;
1968         case CPU_INTERAPTIV:
1969                 mipspmu.name = "mips/interAptiv";
1970                 mipspmu.general_event_map = &mipsxxcore_event_map;
1971                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1972                 break;
1973         case CPU_LOONGSON32:
1974                 mipspmu.name = "mips/loongson1";
1975                 mipspmu.general_event_map = &mipsxxcore_event_map;
1976                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1977                 break;
1978         case CPU_LOONGSON64:
1979                 mipspmu.name = "mips/loongson3";
1980                 pmu_type = get_loongson3_pmu_type();
1981
1982                 switch (pmu_type) {
1983                 case LOONGSON_PMU_TYPE1:
1984                         counters = 2;
1985                         mipspmu.general_event_map = &loongson3_event_map1;
1986                         mipspmu.cache_event_map = &loongson3_cache_map1;
1987                         break;
1988                 case LOONGSON_PMU_TYPE2:
1989                         counters = 4;
1990                         mipspmu.general_event_map = &loongson3_event_map2;
1991                         mipspmu.cache_event_map = &loongson3_cache_map2;
1992                         break;
1993                 case LOONGSON_PMU_TYPE3:
1994                         counters = 4;
1995                         mipspmu.general_event_map = &loongson3_event_map3;
1996                         mipspmu.cache_event_map = &loongson3_cache_map3;
1997                         break;
1998                 }
1999                 break;
2000         case CPU_CAVIUM_OCTEON:
2001         case CPU_CAVIUM_OCTEON_PLUS:
2002         case CPU_CAVIUM_OCTEON2:
2003         case CPU_CAVIUM_OCTEON3:
2004                 mipspmu.name = "octeon";
2005                 mipspmu.general_event_map = &octeon_event_map;
2006                 mipspmu.cache_event_map = &octeon_cache_map;
2007                 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
2008                 break;
2009         case CPU_BMIPS5000:
2010                 mipspmu.name = "BMIPS5000";
2011                 mipspmu.general_event_map = &bmips5000_event_map;
2012                 mipspmu.cache_event_map = &bmips5000_cache_map;
2013                 break;
2014         default:
2015                 pr_cont("Either hardware does not support performance "
2016                         "counters, or not yet implemented.\n");
2017                 return -ENODEV;
2018         }
2019
2020         mipspmu.num_counters = counters;
2021         mipspmu.irq = irq;
2022
2023         if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
2024                 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
2025                         counter_bits = 48;
2026                         mipspmu.max_period = (1ULL << 47) - 1;
2027                         mipspmu.valid_count = (1ULL << 47) - 1;
2028                         mipspmu.overflow = 1ULL << 47;
2029                 } else {
2030                         counter_bits = 64;
2031                         mipspmu.max_period = (1ULL << 63) - 1;
2032                         mipspmu.valid_count = (1ULL << 63) - 1;
2033                         mipspmu.overflow = 1ULL << 63;
2034                 }
2035                 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
2036                 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
2037         } else {
2038                 counter_bits = 32;
2039                 mipspmu.max_period = (1ULL << 31) - 1;
2040                 mipspmu.valid_count = (1ULL << 31) - 1;
2041                 mipspmu.overflow = 1ULL << 31;
2042                 mipspmu.read_counter = mipsxx_pmu_read_counter;
2043                 mipspmu.write_counter = mipsxx_pmu_write_counter;
2044         }
2045
2046         on_each_cpu(reset_counters, (void *)(long)counters, 1);
2047
2048         pr_cont("%s PMU enabled, %d %d-bit counters available to each "
2049                 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
2050                 irq < 0 ? " (share with timer interrupt)" : "");
2051
2052         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2053
2054         return 0;
2055 }
2056 early_initcall(init_hw_perf_events);