arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / arch / mips / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Kernel Probes (KProbes)
4  *  arch/mips/kernel/kprobes.c
5  *
6  *  Copyright 2006 Sony Corp.
7  *  Copyright 2010 Cavium Networks
8  *
9  *  Some portions copied from the powerpc version.
10  *
11  *   Copyright (C) IBM Corporation, 2002, 2004
12  */
13
14 #define pr_fmt(fmt) "kprobes: " fmt
15
16 #include <linux/kprobes.h>
17 #include <linux/preempt.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/slab.h>
21
22 #include <asm/ptrace.h>
23 #include <asm/branch.h>
24 #include <asm/break.h>
25
26 #include "probes-common.h"
27
28 static const union mips_instruction breakpoint_insn = {
29         .b_format = {
30                 .opcode = spec_op,
31                 .code = BRK_KPROBE_BP,
32                 .func = break_op
33         }
34 };
35
36 static const union mips_instruction breakpoint2_insn = {
37         .b_format = {
38                 .opcode = spec_op,
39                 .code = BRK_KPROBE_SSTEPBP,
40                 .func = break_op
41         }
42 };
43
44 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
45 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
46
47 static int insn_has_delayslot(union mips_instruction insn)
48 {
49         return __insn_has_delay_slot(insn);
50 }
51 NOKPROBE_SYMBOL(insn_has_delayslot);
52
53 /*
54  * insn_has_ll_or_sc function checks whether instruction is ll or sc
55  * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
56  * so we need to prevent it and refuse kprobes insertion for such
57  * instructions; cannot do much about breakpoint in the middle of
58  * ll/sc pair; it is upto user to avoid those places
59  */
60 static int insn_has_ll_or_sc(union mips_instruction insn)
61 {
62         int ret = 0;
63
64         switch (insn.i_format.opcode) {
65         case ll_op:
66         case lld_op:
67         case sc_op:
68         case scd_op:
69                 ret = 1;
70                 break;
71         default:
72                 break;
73         }
74         return ret;
75 }
76 NOKPROBE_SYMBOL(insn_has_ll_or_sc);
77
78 int arch_prepare_kprobe(struct kprobe *p)
79 {
80         union mips_instruction insn;
81         union mips_instruction prev_insn;
82         int ret = 0;
83
84         insn = p->addr[0];
85
86         if (insn_has_ll_or_sc(insn)) {
87                 pr_notice("Kprobes for ll and sc instructions are not supported\n");
88                 ret = -EINVAL;
89                 goto out;
90         }
91
92         if (copy_from_kernel_nofault(&prev_insn, p->addr - 1,
93                         sizeof(mips_instruction)) == 0 &&
94             insn_has_delayslot(prev_insn)) {
95                 pr_notice("Kprobes for branch delayslot are not supported\n");
96                 ret = -EINVAL;
97                 goto out;
98         }
99
100         if (__insn_is_compact_branch(insn)) {
101                 pr_notice("Kprobes for compact branches are not supported\n");
102                 ret = -EINVAL;
103                 goto out;
104         }
105
106         /* insn: must be on special executable page on mips. */
107         p->ainsn.insn = get_insn_slot();
108         if (!p->ainsn.insn) {
109                 ret = -ENOMEM;
110                 goto out;
111         }
112
113         /*
114          * In the kprobe->ainsn.insn[] array we store the original
115          * instruction at index zero and a break trap instruction at
116          * index one.
117          *
118          * On MIPS arch if the instruction at probed address is a
119          * branch instruction, we need to execute the instruction at
120          * Branch Delayslot (BD) at the time of probe hit. As MIPS also
121          * doesn't have single stepping support, the BD instruction can
122          * not be executed in-line and it would be executed on SSOL slot
123          * using a normal breakpoint instruction in the next slot.
124          * So, read the instruction and save it for later execution.
125          */
126         if (insn_has_delayslot(insn))
127                 memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
128         else
129                 memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
130
131         p->ainsn.insn[1] = breakpoint2_insn;
132         p->opcode = *p->addr;
133
134 out:
135         return ret;
136 }
137 NOKPROBE_SYMBOL(arch_prepare_kprobe);
138
139 void arch_arm_kprobe(struct kprobe *p)
140 {
141         *p->addr = breakpoint_insn;
142         flush_insn_slot(p);
143 }
144 NOKPROBE_SYMBOL(arch_arm_kprobe);
145
146 void arch_disarm_kprobe(struct kprobe *p)
147 {
148         *p->addr = p->opcode;
149         flush_insn_slot(p);
150 }
151 NOKPROBE_SYMBOL(arch_disarm_kprobe);
152
153 void arch_remove_kprobe(struct kprobe *p)
154 {
155         if (p->ainsn.insn) {
156                 free_insn_slot(p->ainsn.insn, 0);
157                 p->ainsn.insn = NULL;
158         }
159 }
160 NOKPROBE_SYMBOL(arch_remove_kprobe);
161
162 static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
163 {
164         kcb->prev_kprobe.kp = kprobe_running();
165         kcb->prev_kprobe.status = kcb->kprobe_status;
166         kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
167         kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
168         kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
169 }
170
171 static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
172 {
173         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
174         kcb->kprobe_status = kcb->prev_kprobe.status;
175         kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
176         kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
177         kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
178 }
179
180 static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
181                                struct kprobe_ctlblk *kcb)
182 {
183         __this_cpu_write(current_kprobe, p);
184         kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
185         kcb->kprobe_saved_epc = regs->cp0_epc;
186 }
187
188 /**
189  * evaluate_branch_instrucion -
190  *
191  * Evaluate the branch instruction at probed address during probe hit. The
192  * result of evaluation would be the updated epc. The insturction in delayslot
193  * would actually be single stepped using a normal breakpoint) on SSOL slot.
194  *
195  * The result is also saved in the kprobe control block for later use,
196  * in case we need to execute the delayslot instruction. The latter will be
197  * false for NOP instruction in dealyslot and the branch-likely instructions
198  * when the branch is taken. And for those cases we set a flag as
199  * SKIP_DELAYSLOT in the kprobe control block
200  */
201 static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
202                                         struct kprobe_ctlblk *kcb)
203 {
204         union mips_instruction insn = p->opcode;
205         long epc;
206         int ret = 0;
207
208         epc = regs->cp0_epc;
209         if (epc & 3)
210                 goto unaligned;
211
212         if (p->ainsn.insn->word == 0)
213                 kcb->flags |= SKIP_DELAYSLOT;
214         else
215                 kcb->flags &= ~SKIP_DELAYSLOT;
216
217         ret = __compute_return_epc_for_insn(regs, insn);
218         if (ret < 0)
219                 return ret;
220
221         if (ret == BRANCH_LIKELY_TAKEN)
222                 kcb->flags |= SKIP_DELAYSLOT;
223
224         kcb->target_epc = regs->cp0_epc;
225
226         return 0;
227
228 unaligned:
229         pr_notice("Failed to emulate branch instruction because of unaligned epc - sending SIGBUS to %s.\n", current->comm);
230         force_sig(SIGBUS);
231         return -EFAULT;
232
233 }
234
235 static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
236                                                 struct kprobe_ctlblk *kcb)
237 {
238         int ret = 0;
239
240         regs->cp0_status &= ~ST0_IE;
241
242         /* single step inline if the instruction is a break */
243         if (p->opcode.word == breakpoint_insn.word ||
244             p->opcode.word == breakpoint2_insn.word)
245                 regs->cp0_epc = (unsigned long)p->addr;
246         else if (insn_has_delayslot(p->opcode)) {
247                 ret = evaluate_branch_instruction(p, regs, kcb);
248                 if (ret < 0)
249                         return;
250         }
251         regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
252 }
253
254 /*
255  * Called after single-stepping.  p->addr is the address of the
256  * instruction whose first byte has been replaced by the "break 0"
257  * instruction.  To avoid the SMP problems that can occur when we
258  * temporarily put back the original opcode to single-step, we
259  * single-stepped a copy of the instruction.  The address of this
260  * copy is p->ainsn.insn.
261  *
262  * This function prepares to return from the post-single-step
263  * breakpoint trap. In case of branch instructions, the target
264  * epc to be restored.
265  */
266 static void resume_execution(struct kprobe *p,
267                                        struct pt_regs *regs,
268                                        struct kprobe_ctlblk *kcb)
269 {
270         if (insn_has_delayslot(p->opcode))
271                 regs->cp0_epc = kcb->target_epc;
272         else {
273                 unsigned long orig_epc = kcb->kprobe_saved_epc;
274                 regs->cp0_epc = orig_epc + 4;
275         }
276 }
277 NOKPROBE_SYMBOL(resume_execution);
278
279 static int kprobe_handler(struct pt_regs *regs)
280 {
281         struct kprobe *p;
282         int ret = 0;
283         kprobe_opcode_t *addr;
284         struct kprobe_ctlblk *kcb;
285
286         addr = (kprobe_opcode_t *) regs->cp0_epc;
287
288         /*
289          * We don't want to be preempted for the entire
290          * duration of kprobe processing
291          */
292         preempt_disable();
293         kcb = get_kprobe_ctlblk();
294
295         /* Check we're not actually recursing */
296         if (kprobe_running()) {
297                 p = get_kprobe(addr);
298                 if (p) {
299                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
300                             p->ainsn.insn->word == breakpoint_insn.word) {
301                                 regs->cp0_status &= ~ST0_IE;
302                                 regs->cp0_status |= kcb->kprobe_saved_SR;
303                                 goto no_kprobe;
304                         }
305                         /*
306                          * We have reentered the kprobe_handler(), since
307                          * another probe was hit while within the handler.
308                          * We here save the original kprobes variables and
309                          * just single step on the instruction of the new probe
310                          * without calling any user handlers.
311                          */
312                         save_previous_kprobe(kcb);
313                         set_current_kprobe(p, regs, kcb);
314                         kprobes_inc_nmissed_count(p);
315                         prepare_singlestep(p, regs, kcb);
316                         kcb->kprobe_status = KPROBE_REENTER;
317                         if (kcb->flags & SKIP_DELAYSLOT) {
318                                 resume_execution(p, regs, kcb);
319                                 restore_previous_kprobe(kcb);
320                                 preempt_enable_no_resched();
321                         }
322                         return 1;
323                 } else if (addr->word != breakpoint_insn.word) {
324                         /*
325                          * The breakpoint instruction was removed by
326                          * another cpu right after we hit, no further
327                          * handling of this interrupt is appropriate
328                          */
329                         ret = 1;
330                 }
331                 goto no_kprobe;
332         }
333
334         p = get_kprobe(addr);
335         if (!p) {
336                 if (addr->word != breakpoint_insn.word) {
337                         /*
338                          * The breakpoint instruction was removed right
339                          * after we hit it.  Another cpu has removed
340                          * either a probepoint or a debugger breakpoint
341                          * at this address.  In either case, no further
342                          * handling of this interrupt is appropriate.
343                          */
344                         ret = 1;
345                 }
346                 /* Not one of ours: let kernel handle it */
347                 goto no_kprobe;
348         }
349
350         set_current_kprobe(p, regs, kcb);
351         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
352
353         if (p->pre_handler && p->pre_handler(p, regs)) {
354                 /* handler has already set things up, so skip ss setup */
355                 reset_current_kprobe();
356                 preempt_enable_no_resched();
357                 return 1;
358         }
359
360         prepare_singlestep(p, regs, kcb);
361         if (kcb->flags & SKIP_DELAYSLOT) {
362                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
363                 if (p->post_handler)
364                         p->post_handler(p, regs, 0);
365                 resume_execution(p, regs, kcb);
366                 preempt_enable_no_resched();
367         } else
368                 kcb->kprobe_status = KPROBE_HIT_SS;
369
370         return 1;
371
372 no_kprobe:
373         preempt_enable_no_resched();
374         return ret;
375
376 }
377 NOKPROBE_SYMBOL(kprobe_handler);
378
379 static inline int post_kprobe_handler(struct pt_regs *regs)
380 {
381         struct kprobe *cur = kprobe_running();
382         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
383
384         if (!cur)
385                 return 0;
386
387         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
388                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
389                 cur->post_handler(cur, regs, 0);
390         }
391
392         resume_execution(cur, regs, kcb);
393
394         regs->cp0_status |= kcb->kprobe_saved_SR;
395
396         /* Restore back the original saved kprobes variables and continue. */
397         if (kcb->kprobe_status == KPROBE_REENTER) {
398                 restore_previous_kprobe(kcb);
399                 goto out;
400         }
401         reset_current_kprobe();
402 out:
403         preempt_enable_no_resched();
404
405         return 1;
406 }
407
408 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
409 {
410         struct kprobe *cur = kprobe_running();
411         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
412
413         if (kcb->kprobe_status & KPROBE_HIT_SS) {
414                 resume_execution(cur, regs, kcb);
415                 regs->cp0_status |= kcb->kprobe_old_SR;
416
417                 reset_current_kprobe();
418                 preempt_enable_no_resched();
419         }
420         return 0;
421 }
422
423 /*
424  * Wrapper routine for handling exceptions.
425  */
426 int kprobe_exceptions_notify(struct notifier_block *self,
427                                        unsigned long val, void *data)
428 {
429
430         struct die_args *args = (struct die_args *)data;
431         int ret = NOTIFY_DONE;
432
433         switch (val) {
434         case DIE_BREAK:
435                 if (kprobe_handler(args->regs))
436                         ret = NOTIFY_STOP;
437                 break;
438         case DIE_SSTEPBP:
439                 if (post_kprobe_handler(args->regs))
440                         ret = NOTIFY_STOP;
441                 break;
442
443         case DIE_PAGE_FAULT:
444                 /* kprobe_running() needs smp_processor_id() */
445                 preempt_disable();
446
447                 if (kprobe_running()
448                     && kprobe_fault_handler(args->regs, args->trapnr))
449                         ret = NOTIFY_STOP;
450                 preempt_enable();
451                 break;
452         default:
453                 break;
454         }
455         return ret;
456 }
457 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
458
459 /*
460  * Function return probe trampoline:
461  *      - init_kprobes() establishes a probepoint here
462  *      - When the probed function returns, this probe causes the
463  *        handlers to fire
464  */
465 static void __used kretprobe_trampoline_holder(void)
466 {
467         asm volatile(
468                 ".set push\n\t"
469                 /* Keep the assembler from reordering and placing JR here. */
470                 ".set noreorder\n\t"
471                 "nop\n\t"
472                 ".global __kretprobe_trampoline\n"
473                 "__kretprobe_trampoline:\n\t"
474                 "nop\n\t"
475                 ".set pop"
476                 : : : "memory");
477 }
478
479 void __kretprobe_trampoline(void);
480
481 void arch_prepare_kretprobe(struct kretprobe_instance *ri,
482                                       struct pt_regs *regs)
483 {
484         ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
485         ri->fp = NULL;
486
487         /* Replace the return addr with trampoline addr */
488         regs->regs[31] = (unsigned long)__kretprobe_trampoline;
489 }
490 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
491
492 /*
493  * Called when the probe at kretprobe trampoline is hit
494  */
495 static int trampoline_probe_handler(struct kprobe *p,
496                                                 struct pt_regs *regs)
497 {
498         instruction_pointer(regs) = __kretprobe_trampoline_handler(regs, NULL);
499         /*
500          * By returning a non-zero value, we are telling
501          * kprobe_handler() that we don't want the post_handler
502          * to run (and have re-enabled preemption)
503          */
504         return 1;
505 }
506 NOKPROBE_SYMBOL(trampoline_probe_handler);
507
508 int arch_trampoline_kprobe(struct kprobe *p)
509 {
510         if (p->addr == (kprobe_opcode_t *)__kretprobe_trampoline)
511                 return 1;
512
513         return 0;
514 }
515 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
516
517 static struct kprobe trampoline_p = {
518         .addr = (kprobe_opcode_t *)__kretprobe_trampoline,
519         .pre_handler = trampoline_probe_handler
520 };
521
522 int __init arch_init_kprobes(void)
523 {
524         return register_kprobe(&trampoline_p);
525 }