GNU Linux-libre 4.19.286-gnu1
[releases.git] / arch / mips / kernel / cevt-r4k.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2007 MIPS Technologies, Inc.
7  * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org>
8  */
9 #include <linux/clockchips.h>
10 #include <linux/interrupt.h>
11 #include <linux/percpu.h>
12 #include <linux/smp.h>
13 #include <linux/irq.h>
14
15 #include <asm/time.h>
16 #include <asm/cevt-r4k.h>
17
18 static int mips_next_event(unsigned long delta,
19                            struct clock_event_device *evt)
20 {
21         unsigned int cnt;
22         int res;
23
24         cnt = read_c0_count();
25         cnt += delta;
26         write_c0_compare(cnt);
27         res = ((int)(read_c0_count() - cnt) >= 0) ? -ETIME : 0;
28         return res;
29 }
30
31 /**
32  * calculate_min_delta() - Calculate a good minimum delta for mips_next_event().
33  *
34  * Running under virtualisation can introduce overhead into mips_next_event() in
35  * the form of hypervisor emulation of CP0_Count/CP0_Compare registers,
36  * potentially with an unnatural frequency, which makes a fixed min_delta_ns
37  * value inappropriate as it may be too small.
38  *
39  * It can also introduce occasional latency from the guest being descheduled.
40  *
41  * This function calculates a good minimum delta based roughly on the 75th
42  * percentile of the time taken to do the mips_next_event() sequence, in order
43  * to handle potentially higher overhead while also eliminating outliers due to
44  * unpredictable hypervisor latency (which can be handled by retries).
45  *
46  * Return:      An appropriate minimum delta for the clock event device.
47  */
48 static unsigned int calculate_min_delta(void)
49 {
50         unsigned int cnt, i, j, k, l;
51         unsigned int buf1[4], buf2[3];
52         unsigned int min_delta;
53
54         /*
55          * Calculate the median of 5 75th percentiles of 5 samples of how long
56          * it takes to set CP0_Compare = CP0_Count + delta.
57          */
58         for (i = 0; i < 5; ++i) {
59                 for (j = 0; j < 5; ++j) {
60                         /*
61                          * This is like the code in mips_next_event(), and
62                          * directly measures the borderline "safe" delta.
63                          */
64                         cnt = read_c0_count();
65                         write_c0_compare(cnt);
66                         cnt = read_c0_count() - cnt;
67
68                         /* Sorted insert into buf1 */
69                         for (k = 0; k < j; ++k) {
70                                 if (cnt < buf1[k]) {
71                                         l = min_t(unsigned int,
72                                                   j, ARRAY_SIZE(buf1) - 1);
73                                         for (; l > k; --l)
74                                                 buf1[l] = buf1[l - 1];
75                                         break;
76                                 }
77                         }
78                         if (k < ARRAY_SIZE(buf1))
79                                 buf1[k] = cnt;
80                 }
81
82                 /* Sorted insert of 75th percentile into buf2 */
83                 for (k = 0; k < i && k < ARRAY_SIZE(buf2); ++k) {
84                         if (buf1[ARRAY_SIZE(buf1) - 1] < buf2[k]) {
85                                 l = min_t(unsigned int,
86                                           i, ARRAY_SIZE(buf2) - 1);
87                                 for (; l > k; --l)
88                                         buf2[l] = buf2[l - 1];
89                                 break;
90                         }
91                 }
92                 if (k < ARRAY_SIZE(buf2))
93                         buf2[k] = buf1[ARRAY_SIZE(buf1) - 1];
94         }
95
96         /* Use 2 * median of 75th percentiles */
97         min_delta = buf2[ARRAY_SIZE(buf2) - 1] * 2;
98
99         /* Don't go too low */
100         if (min_delta < 0x300)
101                 min_delta = 0x300;
102
103         pr_debug("%s: median 75th percentile=%#x, min_delta=%#x\n",
104                  __func__, buf2[ARRAY_SIZE(buf2) - 1], min_delta);
105         return min_delta;
106 }
107
108 DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device);
109 int cp0_timer_irq_installed;
110
111 /*
112  * Possibly handle a performance counter interrupt.
113  * Return true if the timer interrupt should not be checked
114  */
115 static inline int handle_perf_irq(int r2)
116 {
117         /*
118          * The performance counter overflow interrupt may be shared with the
119          * timer interrupt (cp0_perfcount_irq < 0). If it is and a
120          * performance counter has overflowed (perf_irq() == IRQ_HANDLED)
121          * and we can't reliably determine if a counter interrupt has also
122          * happened (!r2) then don't check for a timer interrupt.
123          */
124         return (cp0_perfcount_irq < 0) &&
125                 perf_irq() == IRQ_HANDLED &&
126                 !r2;
127 }
128
129 irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
130 {
131         const int r2 = cpu_has_mips_r2_r6;
132         struct clock_event_device *cd;
133         int cpu = smp_processor_id();
134
135         /*
136          * Suckage alert:
137          * Before R2 of the architecture there was no way to see if a
138          * performance counter interrupt was pending, so we have to run
139          * the performance counter interrupt handler anyway.
140          */
141         if (handle_perf_irq(r2))
142                 return IRQ_HANDLED;
143
144         /*
145          * The same applies to performance counter interrupts.  But with the
146          * above we now know that the reason we got here must be a timer
147          * interrupt.  Being the paranoiacs we are we check anyway.
148          */
149         if (!r2 || (read_c0_cause() & CAUSEF_TI)) {
150                 /* Clear Count/Compare Interrupt */
151                 write_c0_compare(read_c0_compare());
152                 cd = &per_cpu(mips_clockevent_device, cpu);
153                 cd->event_handler(cd);
154
155                 return IRQ_HANDLED;
156         }
157
158         return IRQ_NONE;
159 }
160
161 struct irqaction c0_compare_irqaction = {
162         .handler = c0_compare_interrupt,
163         /*
164          * IRQF_SHARED: The timer interrupt may be shared with other interrupts
165          * such as perf counter and FDC interrupts.
166          */
167         .flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED,
168         .name = "timer",
169 };
170
171
172 void mips_event_handler(struct clock_event_device *dev)
173 {
174 }
175
176 /*
177  * FIXME: This doesn't hold for the relocated E9000 compare interrupt.
178  */
179 static int c0_compare_int_pending(void)
180 {
181         /* When cpu_has_mips_r2, this checks Cause.TI instead of Cause.IP7 */
182         return (read_c0_cause() >> cp0_compare_irq_shift) & (1ul << CAUSEB_IP);
183 }
184
185 /*
186  * Compare interrupt can be routed and latched outside the core,
187  * so wait up to worst case number of cycle counter ticks for timer interrupt
188  * changes to propagate to the cause register.
189  */
190 #define COMPARE_INT_SEEN_TICKS 50
191
192 int c0_compare_int_usable(void)
193 {
194         unsigned int delta;
195         unsigned int cnt;
196
197 #ifdef CONFIG_KVM_GUEST
198     return 1;
199 #endif
200
201         /*
202          * IP7 already pending?  Try to clear it by acking the timer.
203          */
204         if (c0_compare_int_pending()) {
205                 cnt = read_c0_count();
206                 write_c0_compare(cnt);
207                 back_to_back_c0_hazard();
208                 while (read_c0_count() < (cnt  + COMPARE_INT_SEEN_TICKS))
209                         if (!c0_compare_int_pending())
210                                 break;
211                 if (c0_compare_int_pending())
212                         return 0;
213         }
214
215         for (delta = 0x10; delta <= 0x400000; delta <<= 1) {
216                 cnt = read_c0_count();
217                 cnt += delta;
218                 write_c0_compare(cnt);
219                 back_to_back_c0_hazard();
220                 if ((int)(read_c0_count() - cnt) < 0)
221                     break;
222                 /* increase delta if the timer was already expired */
223         }
224
225         while ((int)(read_c0_count() - cnt) <= 0)
226                 ;       /* Wait for expiry  */
227
228         while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
229                 if (c0_compare_int_pending())
230                         break;
231         if (!c0_compare_int_pending())
232                 return 0;
233         cnt = read_c0_count();
234         write_c0_compare(cnt);
235         back_to_back_c0_hazard();
236         while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
237                 if (!c0_compare_int_pending())
238                         break;
239         if (c0_compare_int_pending())
240                 return 0;
241
242         /*
243          * Feels like a real count / compare timer.
244          */
245         return 1;
246 }
247
248 unsigned int __weak get_c0_compare_int(void)
249 {
250         return MIPS_CPU_IRQ_BASE + cp0_compare_irq;
251 }
252
253 int r4k_clockevent_init(void)
254 {
255         unsigned int cpu = smp_processor_id();
256         struct clock_event_device *cd;
257         unsigned int irq, min_delta;
258
259         if (!cpu_has_counter || !mips_hpt_frequency)
260                 return -ENXIO;
261
262         if (!c0_compare_int_usable())
263                 return -ENXIO;
264
265         /*
266          * With vectored interrupts things are getting platform specific.
267          * get_c0_compare_int is a hook to allow a platform to return the
268          * interrupt number of its liking.
269          */
270         irq = get_c0_compare_int();
271
272         cd = &per_cpu(mips_clockevent_device, cpu);
273
274         cd->name                = "MIPS";
275         cd->features            = CLOCK_EVT_FEAT_ONESHOT |
276                                   CLOCK_EVT_FEAT_C3STOP |
277                                   CLOCK_EVT_FEAT_PERCPU;
278
279         min_delta               = calculate_min_delta();
280
281         cd->rating              = 300;
282         cd->irq                 = irq;
283         cd->cpumask             = cpumask_of(cpu);
284         cd->set_next_event      = mips_next_event;
285         cd->event_handler       = mips_event_handler;
286
287         clockevents_config_and_register(cd, mips_hpt_frequency, min_delta, 0x7fffffff);
288
289         if (cp0_timer_irq_installed)
290                 return 0;
291
292         cp0_timer_irq_installed = 1;
293
294         setup_irq(irq, &c0_compare_irqaction);
295
296         return 0;
297 }
298