GNU Linux-libre 4.14.251-gnu1
[releases.git] / arch / mips / cavium-octeon / octeon-platform.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2017 Cavium, Inc.
7  * Copyright (C) 2008 Wind River Systems
8  */
9
10 #include <linux/etherdevice.h>
11 #include <linux/of_platform.h>
12 #include <linux/of_fdt.h>
13 #include <linux/libfdt.h>
14
15 #include <asm/octeon/octeon.h>
16 #include <asm/octeon/cvmx-helper-board.h>
17
18 #ifdef CONFIG_USB
19 #include <linux/usb/ehci_def.h>
20 #include <linux/usb/ehci_pdriver.h>
21 #include <linux/usb/ohci_pdriver.h>
22 #include <asm/octeon/cvmx-uctlx-defs.h>
23
24 #define CVMX_UAHCX_EHCI_USBCMD  (CVMX_ADD_IO_SEG(0x00016F0000000010ull))
25 #define CVMX_UAHCX_OHCI_USBCMD  (CVMX_ADD_IO_SEG(0x00016F0000000408ull))
26
27 static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
28
29 static int octeon2_usb_clock_start_cnt;
30
31 static int __init octeon2_usb_reset(void)
32 {
33         union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
34         u32 ucmd;
35
36         if (!OCTEON_IS_OCTEON2())
37                 return 0;
38
39         clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
40         if (clk_rst_ctl.s.hrst) {
41                 ucmd = cvmx_read64_uint32(CVMX_UAHCX_EHCI_USBCMD);
42                 ucmd &= ~CMD_RUN;
43                 cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
44                 mdelay(2);
45                 ucmd |= CMD_RESET;
46                 cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
47                 ucmd = cvmx_read64_uint32(CVMX_UAHCX_OHCI_USBCMD);
48                 ucmd |= CMD_RUN;
49                 cvmx_write64_uint32(CVMX_UAHCX_OHCI_USBCMD, ucmd);
50         }
51
52         return 0;
53 }
54 arch_initcall(octeon2_usb_reset);
55
56 static void octeon2_usb_clocks_start(struct device *dev)
57 {
58         u64 div;
59         union cvmx_uctlx_if_ena if_ena;
60         union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
61         union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
62         int i;
63         unsigned long io_clk_64_to_ns;
64         u32 clock_rate = 12000000;
65         bool is_crystal_clock = false;
66
67
68         mutex_lock(&octeon2_usb_clocks_mutex);
69
70         octeon2_usb_clock_start_cnt++;
71         if (octeon2_usb_clock_start_cnt != 1)
72                 goto exit;
73
74         io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
75
76         if (dev->of_node) {
77                 struct device_node *uctl_node;
78                 const char *clock_type;
79
80                 uctl_node = of_get_parent(dev->of_node);
81                 if (!uctl_node) {
82                         dev_err(dev, "No UCTL device node\n");
83                         goto exit;
84                 }
85                 i = of_property_read_u32(uctl_node,
86                                          "refclk-frequency", &clock_rate);
87                 if (i) {
88                         dev_err(dev, "No UCTL \"refclk-frequency\"\n");
89                         goto exit;
90                 }
91                 i = of_property_read_string(uctl_node,
92                                             "refclk-type", &clock_type);
93
94                 if (!i && strcmp("crystal", clock_type) == 0)
95                         is_crystal_clock = true;
96         }
97
98         /*
99          * Step 1: Wait for voltages stable.  That surely happened
100          * before starting the kernel.
101          *
102          * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
103          */
104         if_ena.u64 = 0;
105         if_ena.s.en = 1;
106         cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
107
108         for (i = 0; i <= 1; i++) {
109                 port_ctl_status.u64 =
110                         cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
111                 /* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
112                 port_ctl_status.s.txvreftune = 15;
113                 port_ctl_status.s.txrisetune = 1;
114                 port_ctl_status.s.txpreemphasistune = 1;
115                 cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
116                                port_ctl_status.u64);
117         }
118
119         /* Step 3: Configure the reference clock, PHY, and HCLK */
120         clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
121
122         /*
123          * If the UCTL looks like it has already been started, skip
124          * the initialization, otherwise bus errors are obtained.
125          */
126         if (clk_rst_ctl.s.hrst)
127                 goto end_clock;
128         /* 3a */
129         clk_rst_ctl.s.p_por = 1;
130         clk_rst_ctl.s.hrst = 0;
131         clk_rst_ctl.s.p_prst = 0;
132         clk_rst_ctl.s.h_clkdiv_rst = 0;
133         clk_rst_ctl.s.o_clkdiv_rst = 0;
134         clk_rst_ctl.s.h_clkdiv_en = 0;
135         clk_rst_ctl.s.o_clkdiv_en = 0;
136         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
137
138         /* 3b */
139         clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
140         switch (clock_rate) {
141         default:
142                 pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
143                         clock_rate);
144                 /* Fall through */
145         case 12000000:
146                 clk_rst_ctl.s.p_refclk_div = 0;
147                 break;
148         case 24000000:
149                 clk_rst_ctl.s.p_refclk_div = 1;
150                 break;
151         case 48000000:
152                 clk_rst_ctl.s.p_refclk_div = 2;
153                 break;
154         }
155         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
156
157         /* 3c */
158         div = octeon_get_io_clock_rate() / 130000000ull;
159
160         switch (div) {
161         case 0:
162                 div = 1;
163                 break;
164         case 1:
165         case 2:
166         case 3:
167         case 4:
168                 break;
169         case 5:
170                 div = 4;
171                 break;
172         case 6:
173         case 7:
174                 div = 6;
175                 break;
176         case 8:
177         case 9:
178         case 10:
179         case 11:
180                 div = 8;
181                 break;
182         default:
183                 div = 12;
184                 break;
185         }
186         clk_rst_ctl.s.h_div = div;
187         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
188         /* Read it back, */
189         clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
190         clk_rst_ctl.s.h_clkdiv_en = 1;
191         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
192         /* 3d */
193         clk_rst_ctl.s.h_clkdiv_rst = 1;
194         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
195
196         /* 3e: delay 64 io clocks */
197         ndelay(io_clk_64_to_ns);
198
199         /*
200          * Step 4: Program the power-on reset field in the UCTL
201          * clock-reset-control register.
202          */
203         clk_rst_ctl.s.p_por = 0;
204         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
205
206         /* Step 5:    Wait 3 ms for the PHY clock to start. */
207         mdelay(3);
208
209         /* Steps 6..9 for ATE only, are skipped. */
210
211         /* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
212         /* 10a */
213         clk_rst_ctl.s.o_clkdiv_rst = 1;
214         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
215
216         /* 10b */
217         clk_rst_ctl.s.o_clkdiv_en = 1;
218         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
219
220         /* 10c */
221         ndelay(io_clk_64_to_ns);
222
223         /*
224          * Step 11: Program the PHY reset field:
225          * UCTL0_CLK_RST_CTL[P_PRST] = 1
226          */
227         clk_rst_ctl.s.p_prst = 1;
228         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
229
230         /* Step 11b */
231         udelay(1);
232
233         /* Step 11c */
234         clk_rst_ctl.s.p_prst = 0;
235         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
236
237         /* Step 11d */
238         mdelay(1);
239
240         /* Step 11e */
241         clk_rst_ctl.s.p_prst = 1;
242         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
243
244         /* Step 12: Wait 1 uS. */
245         udelay(1);
246
247         /* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
248         clk_rst_ctl.s.hrst = 1;
249         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
250
251 end_clock:
252         /* Set uSOF cycle period to 60,000 bits. */
253         cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
254
255 exit:
256         mutex_unlock(&octeon2_usb_clocks_mutex);
257 }
258
259 static void octeon2_usb_clocks_stop(void)
260 {
261         mutex_lock(&octeon2_usb_clocks_mutex);
262         octeon2_usb_clock_start_cnt--;
263         mutex_unlock(&octeon2_usb_clocks_mutex);
264 }
265
266 static int octeon_ehci_power_on(struct platform_device *pdev)
267 {
268         octeon2_usb_clocks_start(&pdev->dev);
269         return 0;
270 }
271
272 static void octeon_ehci_power_off(struct platform_device *pdev)
273 {
274         octeon2_usb_clocks_stop();
275 }
276
277 static struct usb_ehci_pdata octeon_ehci_pdata = {
278         /* Octeon EHCI matches CPU endianness. */
279 #ifdef __BIG_ENDIAN
280         .big_endian_mmio        = 1,
281 #endif
282         /*
283          * We can DMA from anywhere. But the descriptors must be in
284          * the lower 4GB.
285          */
286         .dma_mask_64    = 0,
287         .power_on       = octeon_ehci_power_on,
288         .power_off      = octeon_ehci_power_off,
289 };
290
291 static void __init octeon_ehci_hw_start(struct device *dev)
292 {
293         union cvmx_uctlx_ehci_ctl ehci_ctl;
294
295         octeon2_usb_clocks_start(dev);
296
297         ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
298         /* Use 64-bit addressing. */
299         ehci_ctl.s.ehci_64b_addr_en = 1;
300         ehci_ctl.s.l2c_addr_msb = 0;
301 #ifdef __BIG_ENDIAN
302         ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
303         ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
304 #else
305         ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
306         ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
307         ehci_ctl.s.inv_reg_a2 = 1;
308 #endif
309         cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
310
311         octeon2_usb_clocks_stop();
312 }
313
314 static int __init octeon_ehci_device_init(void)
315 {
316         struct platform_device *pd;
317         struct device_node *ehci_node;
318         int ret = 0;
319
320         ehci_node = of_find_node_by_name(NULL, "ehci");
321         if (!ehci_node)
322                 return 0;
323
324         pd = of_find_device_by_node(ehci_node);
325         of_node_put(ehci_node);
326         if (!pd)
327                 return 0;
328
329         pd->dev.platform_data = &octeon_ehci_pdata;
330         octeon_ehci_hw_start(&pd->dev);
331
332         return ret;
333 }
334 device_initcall(octeon_ehci_device_init);
335
336 static int octeon_ohci_power_on(struct platform_device *pdev)
337 {
338         octeon2_usb_clocks_start(&pdev->dev);
339         return 0;
340 }
341
342 static void octeon_ohci_power_off(struct platform_device *pdev)
343 {
344         octeon2_usb_clocks_stop();
345 }
346
347 static struct usb_ohci_pdata octeon_ohci_pdata = {
348         /* Octeon OHCI matches CPU endianness. */
349 #ifdef __BIG_ENDIAN
350         .big_endian_mmio        = 1,
351 #endif
352         .power_on       = octeon_ohci_power_on,
353         .power_off      = octeon_ohci_power_off,
354 };
355
356 static void __init octeon_ohci_hw_start(struct device *dev)
357 {
358         union cvmx_uctlx_ohci_ctl ohci_ctl;
359
360         octeon2_usb_clocks_start(dev);
361
362         ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
363         ohci_ctl.s.l2c_addr_msb = 0;
364 #ifdef __BIG_ENDIAN
365         ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
366         ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
367 #else
368         ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
369         ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
370         ohci_ctl.s.inv_reg_a2 = 1;
371 #endif
372         cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
373
374         octeon2_usb_clocks_stop();
375 }
376
377 static int __init octeon_ohci_device_init(void)
378 {
379         struct platform_device *pd;
380         struct device_node *ohci_node;
381         int ret = 0;
382
383         ohci_node = of_find_node_by_name(NULL, "ohci");
384         if (!ohci_node)
385                 return 0;
386
387         pd = of_find_device_by_node(ohci_node);
388         of_node_put(ohci_node);
389         if (!pd)
390                 return 0;
391
392         pd->dev.platform_data = &octeon_ohci_pdata;
393         octeon_ohci_hw_start(&pd->dev);
394
395         return ret;
396 }
397 device_initcall(octeon_ohci_device_init);
398
399 #endif /* CONFIG_USB */
400
401 /* Octeon Random Number Generator.  */
402 static int __init octeon_rng_device_init(void)
403 {
404         struct platform_device *pd;
405         int ret = 0;
406
407         struct resource rng_resources[] = {
408                 {
409                         .flags  = IORESOURCE_MEM,
410                         .start  = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
411                         .end    = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
412                 }, {
413                         .flags  = IORESOURCE_MEM,
414                         .start  = cvmx_build_io_address(8, 0),
415                         .end    = cvmx_build_io_address(8, 0) + 0x7
416                 }
417         };
418
419         pd = platform_device_alloc("octeon_rng", -1);
420         if (!pd) {
421                 ret = -ENOMEM;
422                 goto out;
423         }
424
425         ret = platform_device_add_resources(pd, rng_resources,
426                                             ARRAY_SIZE(rng_resources));
427         if (ret)
428                 goto fail;
429
430         ret = platform_device_add(pd);
431         if (ret)
432                 goto fail;
433
434         return ret;
435 fail:
436         platform_device_put(pd);
437
438 out:
439         return ret;
440 }
441 device_initcall(octeon_rng_device_init);
442
443 const struct of_device_id octeon_ids[] __initconst = {
444         { .compatible = "simple-bus", },
445         { .compatible = "cavium,octeon-6335-uctl", },
446         { .compatible = "cavium,octeon-5750-usbn", },
447         { .compatible = "cavium,octeon-3860-bootbus", },
448         { .compatible = "cavium,mdio-mux", },
449         { .compatible = "gpio-leds", },
450         { .compatible = "cavium,octeon-7130-usb-uctl", },
451         {},
452 };
453
454 static bool __init octeon_has_88e1145(void)
455 {
456         return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
457                !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
458                !OCTEON_IS_MODEL(OCTEON_CN56XX);
459 }
460
461 static void __init octeon_fdt_set_phy(int eth, int phy_addr)
462 {
463         const __be32 *phy_handle;
464         const __be32 *alt_phy_handle;
465         const __be32 *reg;
466         u32 phandle;
467         int phy;
468         int alt_phy;
469         const char *p;
470         int current_len;
471         char new_name[20];
472
473         phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
474         if (!phy_handle)
475                 return;
476
477         phandle = be32_to_cpup(phy_handle);
478         phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
479
480         alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
481         if (alt_phy_handle) {
482                 u32 alt_phandle = be32_to_cpup(alt_phy_handle);
483
484                 alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
485         } else {
486                 alt_phy = -1;
487         }
488
489         if (phy_addr < 0 || phy < 0) {
490                 /* Delete the PHY things */
491                 fdt_nop_property(initial_boot_params, eth, "phy-handle");
492                 /* This one may fail */
493                 fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
494                 if (phy >= 0)
495                         fdt_nop_node(initial_boot_params, phy);
496                 if (alt_phy >= 0)
497                         fdt_nop_node(initial_boot_params, alt_phy);
498                 return;
499         }
500
501         if (phy_addr >= 256 && alt_phy > 0) {
502                 const struct fdt_property *phy_prop;
503                 struct fdt_property *alt_prop;
504                 fdt32_t phy_handle_name;
505
506                 /* Use the alt phy node instead.*/
507                 phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
508                 phy_handle_name = phy_prop->nameoff;
509                 fdt_nop_node(initial_boot_params, phy);
510                 fdt_nop_property(initial_boot_params, eth, "phy-handle");
511                 alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
512                 alt_prop->nameoff = phy_handle_name;
513                 phy = alt_phy;
514         }
515
516         phy_addr &= 0xff;
517
518         if (octeon_has_88e1145()) {
519                 fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
520                 memset(new_name, 0, sizeof(new_name));
521                 strcpy(new_name, "marvell,88e1145");
522                 p = fdt_getprop(initial_boot_params, phy, "compatible",
523                                 &current_len);
524                 if (p && current_len >= strlen(new_name))
525                         fdt_setprop_inplace(initial_boot_params, phy,
526                                         "compatible", new_name, current_len);
527         }
528
529         reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
530         if (phy_addr == be32_to_cpup(reg))
531                 return;
532
533         fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
534
535         snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
536
537         p = fdt_get_name(initial_boot_params, phy, &current_len);
538         if (p && current_len == strlen(new_name))
539                 fdt_set_name(initial_boot_params, phy, new_name);
540         else
541                 pr_err("Error: could not rename ethernet phy: <%s>", p);
542 }
543
544 static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
545 {
546         const u8 *old_mac;
547         int old_len;
548         u8 new_mac[6];
549         u64 mac = *pmac;
550         int r;
551
552         old_mac = fdt_getprop(initial_boot_params, n, "local-mac-address",
553                               &old_len);
554         if (!old_mac || old_len != 6 || is_valid_ether_addr(old_mac))
555                 return;
556
557         new_mac[0] = (mac >> 40) & 0xff;
558         new_mac[1] = (mac >> 32) & 0xff;
559         new_mac[2] = (mac >> 24) & 0xff;
560         new_mac[3] = (mac >> 16) & 0xff;
561         new_mac[4] = (mac >> 8) & 0xff;
562         new_mac[5] = mac & 0xff;
563
564         r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
565                                 new_mac, sizeof(new_mac));
566
567         if (r) {
568                 pr_err("Setting \"local-mac-address\" failed %d", r);
569                 return;
570         }
571         *pmac = mac + 1;
572 }
573
574 static void __init octeon_fdt_rm_ethernet(int node)
575 {
576         const __be32 *phy_handle;
577
578         phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
579         if (phy_handle) {
580                 u32 ph = be32_to_cpup(phy_handle);
581                 int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
582
583                 if (p >= 0)
584                         fdt_nop_node(initial_boot_params, p);
585         }
586         fdt_nop_node(initial_boot_params, node);
587 }
588
589 static void __init octeon_fdt_pip_port(int iface, int i, int p, int max)
590 {
591         char name_buffer[20];
592         int eth;
593         int phy_addr;
594         int ipd_port;
595
596         snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
597         eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
598         if (eth < 0)
599                 return;
600         if (p > max) {
601                 pr_debug("Deleting port %x:%x\n", i, p);
602                 octeon_fdt_rm_ethernet(eth);
603                 return;
604         }
605         if (OCTEON_IS_MODEL(OCTEON_CN68XX))
606                 ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
607         else
608                 ipd_port = 16 * i + p;
609
610         phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
611         octeon_fdt_set_phy(eth, phy_addr);
612 }
613
614 static void __init octeon_fdt_pip_iface(int pip, int idx)
615 {
616         char name_buffer[20];
617         int iface;
618         int p;
619         int count = 0;
620
621         snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
622         iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
623         if (iface < 0)
624                 return;
625
626         if (cvmx_helper_interface_enumerate(idx) == 0)
627                 count = cvmx_helper_ports_on_interface(idx);
628
629         for (p = 0; p < 16; p++)
630                 octeon_fdt_pip_port(iface, idx, p, count - 1);
631 }
632
633 void __init octeon_fill_mac_addresses(void)
634 {
635         const char *alias_prop;
636         char name_buffer[20];
637         u64 mac_addr_base;
638         int aliases;
639         int pip;
640         int i;
641
642         aliases = fdt_path_offset(initial_boot_params, "/aliases");
643         if (aliases < 0)
644                 return;
645
646         mac_addr_base =
647                 ((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
648                 ((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
649                 ((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
650                 ((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
651                 ((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
652                  (octeon_bootinfo->mac_addr_base[5] & 0xffull);
653
654         for (i = 0; i < 2; i++) {
655                 int mgmt;
656
657                 snprintf(name_buffer, sizeof(name_buffer), "mix%d", i);
658                 alias_prop = fdt_getprop(initial_boot_params, aliases,
659                                          name_buffer, NULL);
660                 if (!alias_prop)
661                         continue;
662                 mgmt = fdt_path_offset(initial_boot_params, alias_prop);
663                 if (mgmt < 0)
664                         continue;
665                 octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
666         }
667
668         alias_prop = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
669         if (!alias_prop)
670                 return;
671
672         pip = fdt_path_offset(initial_boot_params, alias_prop);
673         if (pip < 0)
674                 return;
675
676         for (i = 0; i <= 4; i++) {
677                 int iface;
678                 int p;
679
680                 snprintf(name_buffer, sizeof(name_buffer), "interface@%d", i);
681                 iface = fdt_subnode_offset(initial_boot_params, pip,
682                                            name_buffer);
683                 if (iface < 0)
684                         continue;
685                 for (p = 0; p < 16; p++) {
686                         int eth;
687
688                         snprintf(name_buffer, sizeof(name_buffer),
689                                  "ethernet@%x", p);
690                         eth = fdt_subnode_offset(initial_boot_params, iface,
691                                                  name_buffer);
692                         if (eth < 0)
693                                 continue;
694                         octeon_fdt_set_mac_addr(eth, &mac_addr_base);
695                 }
696         }
697 }
698
699 int __init octeon_prune_device_tree(void)
700 {
701         int i, max_port, uart_mask;
702         const char *pip_path;
703         const char *alias_prop;
704         char name_buffer[20];
705         int aliases;
706
707         if (fdt_check_header(initial_boot_params))
708                 panic("Corrupt Device Tree.");
709
710         WARN(octeon_bootinfo->board_type == CVMX_BOARD_TYPE_CUST_DSR1000N,
711              "Built-in DTB booting is deprecated on %s. Please switch to use appended DTB.",
712              cvmx_board_type_to_string(octeon_bootinfo->board_type));
713
714         aliases = fdt_path_offset(initial_boot_params, "/aliases");
715         if (aliases < 0) {
716                 pr_err("Error: No /aliases node in device tree.");
717                 return -EINVAL;
718         }
719
720         if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
721                 max_port = 2;
722         else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
723                 max_port = 1;
724         else
725                 max_port = 0;
726
727         if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
728                 max_port = 0;
729
730         for (i = 0; i < 2; i++) {
731                 int mgmt;
732
733                 snprintf(name_buffer, sizeof(name_buffer),
734                          "mix%d", i);
735                 alias_prop = fdt_getprop(initial_boot_params, aliases,
736                                         name_buffer, NULL);
737                 if (alias_prop) {
738                         mgmt = fdt_path_offset(initial_boot_params, alias_prop);
739                         if (mgmt < 0)
740                                 continue;
741                         if (i >= max_port) {
742                                 pr_debug("Deleting mix%d\n", i);
743                                 octeon_fdt_rm_ethernet(mgmt);
744                                 fdt_nop_property(initial_boot_params, aliases,
745                                                  name_buffer);
746                         } else {
747                                 int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
748
749                                 octeon_fdt_set_phy(mgmt, phy_addr);
750                         }
751                 }
752         }
753
754         pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
755         if (pip_path) {
756                 int pip = fdt_path_offset(initial_boot_params, pip_path);
757
758                 if (pip  >= 0)
759                         for (i = 0; i <= 4; i++)
760                                 octeon_fdt_pip_iface(pip, i);
761         }
762
763         /* I2C */
764         if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
765             OCTEON_IS_MODEL(OCTEON_CN63XX) ||
766             OCTEON_IS_MODEL(OCTEON_CN68XX) ||
767             OCTEON_IS_MODEL(OCTEON_CN56XX))
768                 max_port = 2;
769         else
770                 max_port = 1;
771
772         for (i = 0; i < 2; i++) {
773                 int i2c;
774
775                 snprintf(name_buffer, sizeof(name_buffer),
776                          "twsi%d", i);
777                 alias_prop = fdt_getprop(initial_boot_params, aliases,
778                                         name_buffer, NULL);
779
780                 if (alias_prop) {
781                         i2c = fdt_path_offset(initial_boot_params, alias_prop);
782                         if (i2c < 0)
783                                 continue;
784                         if (i >= max_port) {
785                                 pr_debug("Deleting twsi%d\n", i);
786                                 fdt_nop_node(initial_boot_params, i2c);
787                                 fdt_nop_property(initial_boot_params, aliases,
788                                                  name_buffer);
789                         }
790                 }
791         }
792
793         /* SMI/MDIO */
794         if (OCTEON_IS_MODEL(OCTEON_CN68XX))
795                 max_port = 4;
796         else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
797                  OCTEON_IS_MODEL(OCTEON_CN63XX) ||
798                  OCTEON_IS_MODEL(OCTEON_CN56XX))
799                 max_port = 2;
800         else
801                 max_port = 1;
802
803         for (i = 0; i < 2; i++) {
804                 int i2c;
805
806                 snprintf(name_buffer, sizeof(name_buffer),
807                          "smi%d", i);
808                 alias_prop = fdt_getprop(initial_boot_params, aliases,
809                                         name_buffer, NULL);
810                 if (alias_prop) {
811                         i2c = fdt_path_offset(initial_boot_params, alias_prop);
812                         if (i2c < 0)
813                                 continue;
814                         if (i >= max_port) {
815                                 pr_debug("Deleting smi%d\n", i);
816                                 fdt_nop_node(initial_boot_params, i2c);
817                                 fdt_nop_property(initial_boot_params, aliases,
818                                                  name_buffer);
819                         }
820                 }
821         }
822
823         /* Serial */
824         uart_mask = 3;
825
826         /* Right now CN52XX is the only chip with a third uart */
827         if (OCTEON_IS_MODEL(OCTEON_CN52XX))
828                 uart_mask |= 4; /* uart2 */
829
830         for (i = 0; i < 3; i++) {
831                 int uart;
832
833                 snprintf(name_buffer, sizeof(name_buffer),
834                          "uart%d", i);
835                 alias_prop = fdt_getprop(initial_boot_params, aliases,
836                                         name_buffer, NULL);
837
838                 if (alias_prop) {
839                         uart = fdt_path_offset(initial_boot_params, alias_prop);
840                         if (uart_mask & (1 << i)) {
841                                 __be32 f;
842
843                                 f = cpu_to_be32(octeon_get_io_clock_rate());
844                                 fdt_setprop_inplace(initial_boot_params,
845                                                     uart, "clock-frequency",
846                                                     &f, sizeof(f));
847                                 continue;
848                         }
849                         pr_debug("Deleting uart%d\n", i);
850                         fdt_nop_node(initial_boot_params, uart);
851                         fdt_nop_property(initial_boot_params, aliases,
852                                          name_buffer);
853                 }
854         }
855
856         /* Compact Flash */
857         alias_prop = fdt_getprop(initial_boot_params, aliases,
858                                  "cf0", NULL);
859         if (alias_prop) {
860                 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
861                 unsigned long base_ptr, region_base, region_size;
862                 unsigned long region1_base = 0;
863                 unsigned long region1_size = 0;
864                 int cs, bootbus;
865                 bool is_16bit = false;
866                 bool is_true_ide = false;
867                 __be32 new_reg[6];
868                 __be32 *ranges;
869                 int len;
870
871                 int cf = fdt_path_offset(initial_boot_params, alias_prop);
872
873                 base_ptr = 0;
874                 if (octeon_bootinfo->major_version == 1
875                         && octeon_bootinfo->minor_version >= 1) {
876                         if (octeon_bootinfo->compact_flash_common_base_addr)
877                                 base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
878                 } else {
879                         base_ptr = 0x1d000800;
880                 }
881
882                 if (!base_ptr)
883                         goto no_cf;
884
885                 /* Find CS0 region. */
886                 for (cs = 0; cs < 8; cs++) {
887                         mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
888                         region_base = mio_boot_reg_cfg.s.base << 16;
889                         region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
890                         if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
891                                 && base_ptr < region_base + region_size) {
892                                 is_16bit = mio_boot_reg_cfg.s.width;
893                                 break;
894                         }
895                 }
896                 if (cs >= 7) {
897                         /* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
898                         goto no_cf;
899                 }
900
901                 if (!(base_ptr & 0xfffful)) {
902                         /*
903                          * Boot loader signals availability of DMA (true_ide
904                          * mode) by setting low order bits of base_ptr to
905                          * zero.
906                          */
907
908                         /* Asume that CS1 immediately follows. */
909                         mio_boot_reg_cfg.u64 =
910                                 cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
911                         region1_base = mio_boot_reg_cfg.s.base << 16;
912                         region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
913                         if (!mio_boot_reg_cfg.s.en)
914                                 goto no_cf;
915                         is_true_ide = true;
916
917                 } else {
918                         fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
919                         fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
920                         if (!is_16bit) {
921                                 __be32 width = cpu_to_be32(8);
922
923                                 fdt_setprop_inplace(initial_boot_params, cf,
924                                                 "cavium,bus-width", &width, sizeof(width));
925                         }
926                 }
927                 new_reg[0] = cpu_to_be32(cs);
928                 new_reg[1] = cpu_to_be32(0);
929                 new_reg[2] = cpu_to_be32(0x10000);
930                 new_reg[3] = cpu_to_be32(cs + 1);
931                 new_reg[4] = cpu_to_be32(0);
932                 new_reg[5] = cpu_to_be32(0x10000);
933                 fdt_setprop_inplace(initial_boot_params, cf,
934                                     "reg",  new_reg, sizeof(new_reg));
935
936                 bootbus = fdt_parent_offset(initial_boot_params, cf);
937                 if (bootbus < 0)
938                         goto no_cf;
939                 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
940                 if (!ranges || len < (5 * 8 * sizeof(__be32)))
941                         goto no_cf;
942
943                 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
944                 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
945                 ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
946                 if (is_true_ide) {
947                         cs++;
948                         ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
949                         ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
950                         ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
951                 }
952                 goto end_cf;
953 no_cf:
954                 fdt_nop_node(initial_boot_params, cf);
955
956 end_cf:
957                 ;
958         }
959
960         /* 8 char LED */
961         alias_prop = fdt_getprop(initial_boot_params, aliases,
962                                  "led0", NULL);
963         if (alias_prop) {
964                 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
965                 unsigned long base_ptr, region_base, region_size;
966                 int cs, bootbus;
967                 __be32 new_reg[6];
968                 __be32 *ranges;
969                 int len;
970                 int led = fdt_path_offset(initial_boot_params, alias_prop);
971
972                 base_ptr = octeon_bootinfo->led_display_base_addr;
973                 if (base_ptr == 0)
974                         goto no_led;
975                 /* Find CS0 region. */
976                 for (cs = 0; cs < 8; cs++) {
977                         mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
978                         region_base = mio_boot_reg_cfg.s.base << 16;
979                         region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
980                         if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
981                                 && base_ptr < region_base + region_size)
982                                 break;
983                 }
984
985                 if (cs > 7)
986                         goto no_led;
987
988                 new_reg[0] = cpu_to_be32(cs);
989                 new_reg[1] = cpu_to_be32(0x20);
990                 new_reg[2] = cpu_to_be32(0x20);
991                 new_reg[3] = cpu_to_be32(cs);
992                 new_reg[4] = cpu_to_be32(0);
993                 new_reg[5] = cpu_to_be32(0x20);
994                 fdt_setprop_inplace(initial_boot_params, led,
995                                     "reg",  new_reg, sizeof(new_reg));
996
997                 bootbus = fdt_parent_offset(initial_boot_params, led);
998                 if (bootbus < 0)
999                         goto no_led;
1000                 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
1001                 if (!ranges || len < (5 * 8 * sizeof(__be32)))
1002                         goto no_led;
1003
1004                 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
1005                 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
1006                 ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
1007                 goto end_led;
1008
1009 no_led:
1010                 fdt_nop_node(initial_boot_params, led);
1011 end_led:
1012                 ;
1013         }
1014
1015 #ifdef CONFIG_USB
1016         /* OHCI/UHCI USB */
1017         alias_prop = fdt_getprop(initial_boot_params, aliases,
1018                                  "uctl", NULL);
1019         if (alias_prop) {
1020                 int uctl = fdt_path_offset(initial_boot_params, alias_prop);
1021
1022                 if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
1023                                   octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
1024                         pr_debug("Deleting uctl\n");
1025                         fdt_nop_node(initial_boot_params, uctl);
1026                         fdt_nop_property(initial_boot_params, aliases, "uctl");
1027                 } else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
1028                            octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
1029                         /* Missing "refclk-type" defaults to crystal. */
1030                         fdt_nop_property(initial_boot_params, uctl, "refclk-type");
1031                 }
1032         }
1033
1034         /* DWC2 USB */
1035         alias_prop = fdt_getprop(initial_boot_params, aliases,
1036                                  "usbn", NULL);
1037         if (alias_prop) {
1038                 int usbn = fdt_path_offset(initial_boot_params, alias_prop);
1039
1040                 if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
1041                                   !octeon_has_feature(OCTEON_FEATURE_USB))) {
1042                         pr_debug("Deleting usbn\n");
1043                         fdt_nop_node(initial_boot_params, usbn);
1044                         fdt_nop_property(initial_boot_params, aliases, "usbn");
1045                 } else  {
1046                         __be32 new_f[1];
1047                         enum cvmx_helper_board_usb_clock_types c;
1048
1049                         c = __cvmx_helper_board_usb_get_clock_type();
1050                         switch (c) {
1051                         case USB_CLOCK_TYPE_REF_48:
1052                                 new_f[0] = cpu_to_be32(48000000);
1053                                 fdt_setprop_inplace(initial_boot_params, usbn,
1054                                                     "refclk-frequency",  new_f, sizeof(new_f));
1055                                 /* Fall through ...*/
1056                         case USB_CLOCK_TYPE_REF_12:
1057                                 /* Missing "refclk-type" defaults to external. */
1058                                 fdt_nop_property(initial_boot_params, usbn, "refclk-type");
1059                                 break;
1060                         default:
1061                                 break;
1062                         }
1063                 }
1064         }
1065 #endif
1066
1067         return 0;
1068 }
1069
1070 static int __init octeon_publish_devices(void)
1071 {
1072         return of_platform_bus_probe(NULL, octeon_ids, NULL);
1073 }
1074 arch_initcall(octeon_publish_devices);