GNU Linux-libre 5.15.54-gnu
[releases.git] / arch / mips / cavium-octeon / octeon-platform.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2017 Cavium, Inc.
7  * Copyright (C) 2008 Wind River Systems
8  */
9
10 #include <linux/etherdevice.h>
11 #include <linux/of_platform.h>
12 #include <linux/of_fdt.h>
13 #include <linux/libfdt.h>
14
15 #include <asm/octeon/octeon.h>
16 #include <asm/octeon/cvmx-helper-board.h>
17
18 #ifdef CONFIG_USB
19 #include <linux/usb/ehci_def.h>
20 #include <linux/usb/ehci_pdriver.h>
21 #include <linux/usb/ohci_pdriver.h>
22 #include <asm/octeon/cvmx-uctlx-defs.h>
23
24 #define CVMX_UAHCX_EHCI_USBCMD  (CVMX_ADD_IO_SEG(0x00016F0000000010ull))
25 #define CVMX_UAHCX_OHCI_USBCMD  (CVMX_ADD_IO_SEG(0x00016F0000000408ull))
26
27 static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
28
29 static int octeon2_usb_clock_start_cnt;
30
31 static int __init octeon2_usb_reset(void)
32 {
33         union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
34         u32 ucmd;
35
36         if (!OCTEON_IS_OCTEON2())
37                 return 0;
38
39         clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
40         if (clk_rst_ctl.s.hrst) {
41                 ucmd = cvmx_read64_uint32(CVMX_UAHCX_EHCI_USBCMD);
42                 ucmd &= ~CMD_RUN;
43                 cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
44                 mdelay(2);
45                 ucmd |= CMD_RESET;
46                 cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
47                 ucmd = cvmx_read64_uint32(CVMX_UAHCX_OHCI_USBCMD);
48                 ucmd |= CMD_RUN;
49                 cvmx_write64_uint32(CVMX_UAHCX_OHCI_USBCMD, ucmd);
50         }
51
52         return 0;
53 }
54 arch_initcall(octeon2_usb_reset);
55
56 static void octeon2_usb_clocks_start(struct device *dev)
57 {
58         u64 div;
59         union cvmx_uctlx_if_ena if_ena;
60         union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
61         union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
62         int i;
63         unsigned long io_clk_64_to_ns;
64         u32 clock_rate = 12000000;
65         bool is_crystal_clock = false;
66
67
68         mutex_lock(&octeon2_usb_clocks_mutex);
69
70         octeon2_usb_clock_start_cnt++;
71         if (octeon2_usb_clock_start_cnt != 1)
72                 goto exit;
73
74         io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
75
76         if (dev->of_node) {
77                 struct device_node *uctl_node;
78                 const char *clock_type;
79
80                 uctl_node = of_get_parent(dev->of_node);
81                 if (!uctl_node) {
82                         dev_err(dev, "No UCTL device node\n");
83                         goto exit;
84                 }
85                 i = of_property_read_u32(uctl_node,
86                                          "refclk-frequency", &clock_rate);
87                 if (i) {
88                         dev_err(dev, "No UCTL \"refclk-frequency\"\n");
89                         goto exit;
90                 }
91                 i = of_property_read_string(uctl_node,
92                                             "refclk-type", &clock_type);
93
94                 if (!i && strcmp("crystal", clock_type) == 0)
95                         is_crystal_clock = true;
96         }
97
98         /*
99          * Step 1: Wait for voltages stable.  That surely happened
100          * before starting the kernel.
101          *
102          * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
103          */
104         if_ena.u64 = 0;
105         if_ena.s.en = 1;
106         cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
107
108         for (i = 0; i <= 1; i++) {
109                 port_ctl_status.u64 =
110                         cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
111                 /* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
112                 port_ctl_status.s.txvreftune = 15;
113                 port_ctl_status.s.txrisetune = 1;
114                 port_ctl_status.s.txpreemphasistune = 1;
115                 cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
116                                port_ctl_status.u64);
117         }
118
119         /* Step 3: Configure the reference clock, PHY, and HCLK */
120         clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
121
122         /*
123          * If the UCTL looks like it has already been started, skip
124          * the initialization, otherwise bus errors are obtained.
125          */
126         if (clk_rst_ctl.s.hrst)
127                 goto end_clock;
128         /* 3a */
129         clk_rst_ctl.s.p_por = 1;
130         clk_rst_ctl.s.hrst = 0;
131         clk_rst_ctl.s.p_prst = 0;
132         clk_rst_ctl.s.h_clkdiv_rst = 0;
133         clk_rst_ctl.s.o_clkdiv_rst = 0;
134         clk_rst_ctl.s.h_clkdiv_en = 0;
135         clk_rst_ctl.s.o_clkdiv_en = 0;
136         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
137
138         /* 3b */
139         clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
140         switch (clock_rate) {
141         default:
142                 pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
143                         clock_rate);
144                 fallthrough;
145         case 12000000:
146                 clk_rst_ctl.s.p_refclk_div = 0;
147                 break;
148         case 24000000:
149                 clk_rst_ctl.s.p_refclk_div = 1;
150                 break;
151         case 48000000:
152                 clk_rst_ctl.s.p_refclk_div = 2;
153                 break;
154         }
155         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
156
157         /* 3c */
158         div = octeon_get_io_clock_rate() / 130000000ull;
159
160         switch (div) {
161         case 0:
162                 div = 1;
163                 break;
164         case 1:
165         case 2:
166         case 3:
167         case 4:
168                 break;
169         case 5:
170                 div = 4;
171                 break;
172         case 6:
173         case 7:
174                 div = 6;
175                 break;
176         case 8:
177         case 9:
178         case 10:
179         case 11:
180                 div = 8;
181                 break;
182         default:
183                 div = 12;
184                 break;
185         }
186         clk_rst_ctl.s.h_div = div;
187         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
188         /* Read it back, */
189         clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
190         clk_rst_ctl.s.h_clkdiv_en = 1;
191         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
192         /* 3d */
193         clk_rst_ctl.s.h_clkdiv_rst = 1;
194         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
195
196         /* 3e: delay 64 io clocks */
197         ndelay(io_clk_64_to_ns);
198
199         /*
200          * Step 4: Program the power-on reset field in the UCTL
201          * clock-reset-control register.
202          */
203         clk_rst_ctl.s.p_por = 0;
204         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
205
206         /* Step 5:    Wait 3 ms for the PHY clock to start. */
207         mdelay(3);
208
209         /* Steps 6..9 for ATE only, are skipped. */
210
211         /* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
212         /* 10a */
213         clk_rst_ctl.s.o_clkdiv_rst = 1;
214         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
215
216         /* 10b */
217         clk_rst_ctl.s.o_clkdiv_en = 1;
218         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
219
220         /* 10c */
221         ndelay(io_clk_64_to_ns);
222
223         /*
224          * Step 11: Program the PHY reset field:
225          * UCTL0_CLK_RST_CTL[P_PRST] = 1
226          */
227         clk_rst_ctl.s.p_prst = 1;
228         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
229
230         /* Step 11b */
231         udelay(1);
232
233         /* Step 11c */
234         clk_rst_ctl.s.p_prst = 0;
235         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
236
237         /* Step 11d */
238         mdelay(1);
239
240         /* Step 11e */
241         clk_rst_ctl.s.p_prst = 1;
242         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
243
244         /* Step 12: Wait 1 uS. */
245         udelay(1);
246
247         /* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
248         clk_rst_ctl.s.hrst = 1;
249         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
250
251 end_clock:
252         /* Set uSOF cycle period to 60,000 bits. */
253         cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
254
255 exit:
256         mutex_unlock(&octeon2_usb_clocks_mutex);
257 }
258
259 static void octeon2_usb_clocks_stop(void)
260 {
261         mutex_lock(&octeon2_usb_clocks_mutex);
262         octeon2_usb_clock_start_cnt--;
263         mutex_unlock(&octeon2_usb_clocks_mutex);
264 }
265
266 static int octeon_ehci_power_on(struct platform_device *pdev)
267 {
268         octeon2_usb_clocks_start(&pdev->dev);
269         return 0;
270 }
271
272 static void octeon_ehci_power_off(struct platform_device *pdev)
273 {
274         octeon2_usb_clocks_stop();
275 }
276
277 static struct usb_ehci_pdata octeon_ehci_pdata = {
278         /* Octeon EHCI matches CPU endianness. */
279 #ifdef __BIG_ENDIAN
280         .big_endian_mmio        = 1,
281 #endif
282         /*
283          * We can DMA from anywhere. But the descriptors must be in
284          * the lower 4GB.
285          */
286         .dma_mask_64    = 0,
287         .power_on       = octeon_ehci_power_on,
288         .power_off      = octeon_ehci_power_off,
289 };
290
291 static void __init octeon_ehci_hw_start(struct device *dev)
292 {
293         union cvmx_uctlx_ehci_ctl ehci_ctl;
294
295         octeon2_usb_clocks_start(dev);
296
297         ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
298         /* Use 64-bit addressing. */
299         ehci_ctl.s.ehci_64b_addr_en = 1;
300         ehci_ctl.s.l2c_addr_msb = 0;
301 #ifdef __BIG_ENDIAN
302         ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
303         ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
304 #else
305         ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
306         ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
307         ehci_ctl.s.inv_reg_a2 = 1;
308 #endif
309         cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
310
311         octeon2_usb_clocks_stop();
312 }
313
314 static int __init octeon_ehci_device_init(void)
315 {
316         struct platform_device *pd;
317         struct device_node *ehci_node;
318         int ret = 0;
319
320         ehci_node = of_find_node_by_name(NULL, "ehci");
321         if (!ehci_node)
322                 return 0;
323
324         pd = of_find_device_by_node(ehci_node);
325         of_node_put(ehci_node);
326         if (!pd)
327                 return 0;
328
329         pd->dev.platform_data = &octeon_ehci_pdata;
330         octeon_ehci_hw_start(&pd->dev);
331         put_device(&pd->dev);
332
333         return ret;
334 }
335 device_initcall(octeon_ehci_device_init);
336
337 static int octeon_ohci_power_on(struct platform_device *pdev)
338 {
339         octeon2_usb_clocks_start(&pdev->dev);
340         return 0;
341 }
342
343 static void octeon_ohci_power_off(struct platform_device *pdev)
344 {
345         octeon2_usb_clocks_stop();
346 }
347
348 static struct usb_ohci_pdata octeon_ohci_pdata = {
349         /* Octeon OHCI matches CPU endianness. */
350 #ifdef __BIG_ENDIAN
351         .big_endian_mmio        = 1,
352 #endif
353         .power_on       = octeon_ohci_power_on,
354         .power_off      = octeon_ohci_power_off,
355 };
356
357 static void __init octeon_ohci_hw_start(struct device *dev)
358 {
359         union cvmx_uctlx_ohci_ctl ohci_ctl;
360
361         octeon2_usb_clocks_start(dev);
362
363         ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
364         ohci_ctl.s.l2c_addr_msb = 0;
365 #ifdef __BIG_ENDIAN
366         ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
367         ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
368 #else
369         ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
370         ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
371         ohci_ctl.s.inv_reg_a2 = 1;
372 #endif
373         cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
374
375         octeon2_usb_clocks_stop();
376 }
377
378 static int __init octeon_ohci_device_init(void)
379 {
380         struct platform_device *pd;
381         struct device_node *ohci_node;
382         int ret = 0;
383
384         ohci_node = of_find_node_by_name(NULL, "ohci");
385         if (!ohci_node)
386                 return 0;
387
388         pd = of_find_device_by_node(ohci_node);
389         of_node_put(ohci_node);
390         if (!pd)
391                 return 0;
392
393         pd->dev.platform_data = &octeon_ohci_pdata;
394         octeon_ohci_hw_start(&pd->dev);
395         put_device(&pd->dev);
396
397         return ret;
398 }
399 device_initcall(octeon_ohci_device_init);
400
401 #endif /* CONFIG_USB */
402
403 /* Octeon Random Number Generator.  */
404 static int __init octeon_rng_device_init(void)
405 {
406         struct platform_device *pd;
407         int ret = 0;
408
409         struct resource rng_resources[] = {
410                 {
411                         .flags  = IORESOURCE_MEM,
412                         .start  = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
413                         .end    = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
414                 }, {
415                         .flags  = IORESOURCE_MEM,
416                         .start  = cvmx_build_io_address(8, 0),
417                         .end    = cvmx_build_io_address(8, 0) + 0x7
418                 }
419         };
420
421         pd = platform_device_alloc("octeon_rng", -1);
422         if (!pd) {
423                 ret = -ENOMEM;
424                 goto out;
425         }
426
427         ret = platform_device_add_resources(pd, rng_resources,
428                                             ARRAY_SIZE(rng_resources));
429         if (ret)
430                 goto fail;
431
432         ret = platform_device_add(pd);
433         if (ret)
434                 goto fail;
435
436         return ret;
437 fail:
438         platform_device_put(pd);
439
440 out:
441         return ret;
442 }
443 device_initcall(octeon_rng_device_init);
444
445 static const struct of_device_id octeon_ids[] __initconst = {
446         { .compatible = "simple-bus", },
447         { .compatible = "cavium,octeon-6335-uctl", },
448         { .compatible = "cavium,octeon-5750-usbn", },
449         { .compatible = "cavium,octeon-3860-bootbus", },
450         { .compatible = "cavium,mdio-mux", },
451         { .compatible = "gpio-leds", },
452         { .compatible = "cavium,octeon-7130-usb-uctl", },
453         {},
454 };
455
456 static bool __init octeon_has_88e1145(void)
457 {
458         return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
459                !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
460                !OCTEON_IS_MODEL(OCTEON_CN56XX);
461 }
462
463 static bool __init octeon_has_fixed_link(int ipd_port)
464 {
465         switch (cvmx_sysinfo_get()->board_type) {
466         case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
467         case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
468         case CVMX_BOARD_TYPE_CN3020_EVB_HS5:
469         case CVMX_BOARD_TYPE_CUST_NB5:
470         case CVMX_BOARD_TYPE_EBH3100:
471                 /* Port 1 on these boards is always gigabit. */
472                 return ipd_port == 1;
473         case CVMX_BOARD_TYPE_BBGW_REF:
474                 /* Ports 0 and 1 connect to the switch. */
475                 return ipd_port == 0 || ipd_port == 1;
476         }
477         return false;
478 }
479
480 static void __init octeon_fdt_set_phy(int eth, int phy_addr)
481 {
482         const __be32 *phy_handle;
483         const __be32 *alt_phy_handle;
484         const __be32 *reg;
485         u32 phandle;
486         int phy;
487         int alt_phy;
488         const char *p;
489         int current_len;
490         char new_name[20];
491
492         phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
493         if (!phy_handle)
494                 return;
495
496         phandle = be32_to_cpup(phy_handle);
497         phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
498
499         alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
500         if (alt_phy_handle) {
501                 u32 alt_phandle = be32_to_cpup(alt_phy_handle);
502
503                 alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
504         } else {
505                 alt_phy = -1;
506         }
507
508         if (phy_addr < 0 || phy < 0) {
509                 /* Delete the PHY things */
510                 fdt_nop_property(initial_boot_params, eth, "phy-handle");
511                 /* This one may fail */
512                 fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
513                 if (phy >= 0)
514                         fdt_nop_node(initial_boot_params, phy);
515                 if (alt_phy >= 0)
516                         fdt_nop_node(initial_boot_params, alt_phy);
517                 return;
518         }
519
520         if (phy_addr >= 256 && alt_phy > 0) {
521                 const struct fdt_property *phy_prop;
522                 struct fdt_property *alt_prop;
523                 fdt32_t phy_handle_name;
524
525                 /* Use the alt phy node instead.*/
526                 phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
527                 phy_handle_name = phy_prop->nameoff;
528                 fdt_nop_node(initial_boot_params, phy);
529                 fdt_nop_property(initial_boot_params, eth, "phy-handle");
530                 alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
531                 alt_prop->nameoff = phy_handle_name;
532                 phy = alt_phy;
533         }
534
535         phy_addr &= 0xff;
536
537         if (octeon_has_88e1145()) {
538                 fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
539                 memset(new_name, 0, sizeof(new_name));
540                 strcpy(new_name, "marvell,88e1145");
541                 p = fdt_getprop(initial_boot_params, phy, "compatible",
542                                 &current_len);
543                 if (p && current_len >= strlen(new_name))
544                         fdt_setprop_inplace(initial_boot_params, phy,
545                                         "compatible", new_name, current_len);
546         }
547
548         reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
549         if (phy_addr == be32_to_cpup(reg))
550                 return;
551
552         fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
553
554         snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
555
556         p = fdt_get_name(initial_boot_params, phy, &current_len);
557         if (p && current_len == strlen(new_name))
558                 fdt_set_name(initial_boot_params, phy, new_name);
559         else
560                 pr_err("Error: could not rename ethernet phy: <%s>", p);
561 }
562
563 static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
564 {
565         const u8 *old_mac;
566         int old_len;
567         u8 new_mac[6];
568         u64 mac = *pmac;
569         int r;
570
571         old_mac = fdt_getprop(initial_boot_params, n, "local-mac-address",
572                               &old_len);
573         if (!old_mac || old_len != 6 || is_valid_ether_addr(old_mac))
574                 return;
575
576         new_mac[0] = (mac >> 40) & 0xff;
577         new_mac[1] = (mac >> 32) & 0xff;
578         new_mac[2] = (mac >> 24) & 0xff;
579         new_mac[3] = (mac >> 16) & 0xff;
580         new_mac[4] = (mac >> 8) & 0xff;
581         new_mac[5] = mac & 0xff;
582
583         r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
584                                 new_mac, sizeof(new_mac));
585
586         if (r) {
587                 pr_err("Setting \"local-mac-address\" failed %d", r);
588                 return;
589         }
590         *pmac = mac + 1;
591 }
592
593 static void __init octeon_fdt_rm_ethernet(int node)
594 {
595         const __be32 *phy_handle;
596
597         phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
598         if (phy_handle) {
599                 u32 ph = be32_to_cpup(phy_handle);
600                 int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
601
602                 if (p >= 0)
603                         fdt_nop_node(initial_boot_params, p);
604         }
605         fdt_nop_node(initial_boot_params, node);
606 }
607
608 static void __init _octeon_rx_tx_delay(int eth, int rx_delay, int tx_delay)
609 {
610         fdt_setprop_inplace_cell(initial_boot_params, eth, "rx-delay",
611                                  rx_delay);
612         fdt_setprop_inplace_cell(initial_boot_params, eth, "tx-delay",
613                                  tx_delay);
614 }
615
616 static void __init octeon_rx_tx_delay(int eth, int iface, int port)
617 {
618         switch (cvmx_sysinfo_get()->board_type) {
619         case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
620                 if (iface == 0) {
621                         if (port == 0) {
622                                 /*
623                                  * Boards with gigabit WAN ports need a
624                                  * different setting that is compatible with
625                                  * 100 Mbit settings
626                                  */
627                                 _octeon_rx_tx_delay(eth, 0xc, 0x0c);
628                                 return;
629                         } else if (port == 1) {
630                                 /* Different config for switch port. */
631                                 _octeon_rx_tx_delay(eth, 0x0, 0x0);
632                                 return;
633                         }
634                 }
635                 break;
636         case CVMX_BOARD_TYPE_UBNT_E100:
637                 if (iface == 0 && port <= 2) {
638                         _octeon_rx_tx_delay(eth, 0x0, 0x10);
639                         return;
640                 }
641                 break;
642         }
643         fdt_nop_property(initial_boot_params, eth, "rx-delay");
644         fdt_nop_property(initial_boot_params, eth, "tx-delay");
645 }
646
647 static void __init octeon_fdt_pip_port(int iface, int i, int p, int max)
648 {
649         char name_buffer[20];
650         int eth;
651         int phy_addr;
652         int ipd_port;
653         int fixed_link;
654
655         snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
656         eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
657         if (eth < 0)
658                 return;
659         if (p > max) {
660                 pr_debug("Deleting port %x:%x\n", i, p);
661                 octeon_fdt_rm_ethernet(eth);
662                 return;
663         }
664         if (OCTEON_IS_MODEL(OCTEON_CN68XX))
665                 ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
666         else
667                 ipd_port = 16 * i + p;
668
669         phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
670         octeon_fdt_set_phy(eth, phy_addr);
671
672         fixed_link = fdt_subnode_offset(initial_boot_params, eth, "fixed-link");
673         if (fixed_link < 0)
674                 WARN_ON(octeon_has_fixed_link(ipd_port));
675         else if (!octeon_has_fixed_link(ipd_port))
676                 fdt_nop_node(initial_boot_params, fixed_link);
677         octeon_rx_tx_delay(eth, i, p);
678 }
679
680 static void __init octeon_fdt_pip_iface(int pip, int idx)
681 {
682         char name_buffer[20];
683         int iface;
684         int p;
685         int count = 0;
686
687         snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
688         iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
689         if (iface < 0)
690                 return;
691
692         if (cvmx_helper_interface_enumerate(idx) == 0)
693                 count = cvmx_helper_ports_on_interface(idx);
694
695         for (p = 0; p < 16; p++)
696                 octeon_fdt_pip_port(iface, idx, p, count - 1);
697 }
698
699 void __init octeon_fill_mac_addresses(void)
700 {
701         const char *alias_prop;
702         char name_buffer[20];
703         u64 mac_addr_base;
704         int aliases;
705         int pip;
706         int i;
707
708         aliases = fdt_path_offset(initial_boot_params, "/aliases");
709         if (aliases < 0)
710                 return;
711
712         mac_addr_base =
713                 ((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
714                 ((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
715                 ((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
716                 ((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
717                 ((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
718                  (octeon_bootinfo->mac_addr_base[5] & 0xffull);
719
720         for (i = 0; i < 2; i++) {
721                 int mgmt;
722
723                 snprintf(name_buffer, sizeof(name_buffer), "mix%d", i);
724                 alias_prop = fdt_getprop(initial_boot_params, aliases,
725                                          name_buffer, NULL);
726                 if (!alias_prop)
727                         continue;
728                 mgmt = fdt_path_offset(initial_boot_params, alias_prop);
729                 if (mgmt < 0)
730                         continue;
731                 octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
732         }
733
734         alias_prop = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
735         if (!alias_prop)
736                 return;
737
738         pip = fdt_path_offset(initial_boot_params, alias_prop);
739         if (pip < 0)
740                 return;
741
742         for (i = 0; i <= 4; i++) {
743                 int iface;
744                 int p;
745
746                 snprintf(name_buffer, sizeof(name_buffer), "interface@%d", i);
747                 iface = fdt_subnode_offset(initial_boot_params, pip,
748                                            name_buffer);
749                 if (iface < 0)
750                         continue;
751                 for (p = 0; p < 16; p++) {
752                         int eth;
753
754                         snprintf(name_buffer, sizeof(name_buffer),
755                                  "ethernet@%x", p);
756                         eth = fdt_subnode_offset(initial_boot_params, iface,
757                                                  name_buffer);
758                         if (eth < 0)
759                                 continue;
760                         octeon_fdt_set_mac_addr(eth, &mac_addr_base);
761                 }
762         }
763 }
764
765 int __init octeon_prune_device_tree(void)
766 {
767         int i, max_port, uart_mask;
768         const char *pip_path;
769         const char *alias_prop;
770         char name_buffer[20];
771         int aliases;
772
773         if (fdt_check_header(initial_boot_params))
774                 panic("Corrupt Device Tree.");
775
776         WARN(octeon_bootinfo->board_type == CVMX_BOARD_TYPE_CUST_DSR1000N,
777              "Built-in DTB booting is deprecated on %s. Please switch to use appended DTB.",
778              cvmx_board_type_to_string(octeon_bootinfo->board_type));
779
780         aliases = fdt_path_offset(initial_boot_params, "/aliases");
781         if (aliases < 0) {
782                 pr_err("Error: No /aliases node in device tree.");
783                 return -EINVAL;
784         }
785
786         if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
787                 max_port = 2;
788         else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
789                 max_port = 1;
790         else
791                 max_port = 0;
792
793         if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
794                 max_port = 0;
795
796         for (i = 0; i < 2; i++) {
797                 int mgmt;
798
799                 snprintf(name_buffer, sizeof(name_buffer),
800                          "mix%d", i);
801                 alias_prop = fdt_getprop(initial_boot_params, aliases,
802                                         name_buffer, NULL);
803                 if (alias_prop) {
804                         mgmt = fdt_path_offset(initial_boot_params, alias_prop);
805                         if (mgmt < 0)
806                                 continue;
807                         if (i >= max_port) {
808                                 pr_debug("Deleting mix%d\n", i);
809                                 octeon_fdt_rm_ethernet(mgmt);
810                                 fdt_nop_property(initial_boot_params, aliases,
811                                                  name_buffer);
812                         } else {
813                                 int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
814
815                                 octeon_fdt_set_phy(mgmt, phy_addr);
816                         }
817                 }
818         }
819
820         pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
821         if (pip_path) {
822                 int pip = fdt_path_offset(initial_boot_params, pip_path);
823
824                 if (pip  >= 0)
825                         for (i = 0; i <= 4; i++)
826                                 octeon_fdt_pip_iface(pip, i);
827         }
828
829         /* I2C */
830         if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
831             OCTEON_IS_MODEL(OCTEON_CN63XX) ||
832             OCTEON_IS_MODEL(OCTEON_CN68XX) ||
833             OCTEON_IS_MODEL(OCTEON_CN56XX))
834                 max_port = 2;
835         else
836                 max_port = 1;
837
838         for (i = 0; i < 2; i++) {
839                 int i2c;
840
841                 snprintf(name_buffer, sizeof(name_buffer),
842                          "twsi%d", i);
843                 alias_prop = fdt_getprop(initial_boot_params, aliases,
844                                         name_buffer, NULL);
845
846                 if (alias_prop) {
847                         i2c = fdt_path_offset(initial_boot_params, alias_prop);
848                         if (i2c < 0)
849                                 continue;
850                         if (i >= max_port) {
851                                 pr_debug("Deleting twsi%d\n", i);
852                                 fdt_nop_node(initial_boot_params, i2c);
853                                 fdt_nop_property(initial_boot_params, aliases,
854                                                  name_buffer);
855                         }
856                 }
857         }
858
859         /* SMI/MDIO */
860         if (OCTEON_IS_MODEL(OCTEON_CN68XX))
861                 max_port = 4;
862         else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
863                  OCTEON_IS_MODEL(OCTEON_CN63XX) ||
864                  OCTEON_IS_MODEL(OCTEON_CN56XX))
865                 max_port = 2;
866         else
867                 max_port = 1;
868
869         for (i = 0; i < 2; i++) {
870                 int i2c;
871
872                 snprintf(name_buffer, sizeof(name_buffer),
873                          "smi%d", i);
874                 alias_prop = fdt_getprop(initial_boot_params, aliases,
875                                         name_buffer, NULL);
876                 if (alias_prop) {
877                         i2c = fdt_path_offset(initial_boot_params, alias_prop);
878                         if (i2c < 0)
879                                 continue;
880                         if (i >= max_port) {
881                                 pr_debug("Deleting smi%d\n", i);
882                                 fdt_nop_node(initial_boot_params, i2c);
883                                 fdt_nop_property(initial_boot_params, aliases,
884                                                  name_buffer);
885                         }
886                 }
887         }
888
889         /* Serial */
890         uart_mask = 3;
891
892         /* Right now CN52XX is the only chip with a third uart */
893         if (OCTEON_IS_MODEL(OCTEON_CN52XX))
894                 uart_mask |= 4; /* uart2 */
895
896         for (i = 0; i < 3; i++) {
897                 int uart;
898
899                 snprintf(name_buffer, sizeof(name_buffer),
900                          "uart%d", i);
901                 alias_prop = fdt_getprop(initial_boot_params, aliases,
902                                         name_buffer, NULL);
903
904                 if (alias_prop) {
905                         uart = fdt_path_offset(initial_boot_params, alias_prop);
906                         if (uart_mask & (1 << i)) {
907                                 __be32 f;
908
909                                 f = cpu_to_be32(octeon_get_io_clock_rate());
910                                 fdt_setprop_inplace(initial_boot_params,
911                                                     uart, "clock-frequency",
912                                                     &f, sizeof(f));
913                                 continue;
914                         }
915                         pr_debug("Deleting uart%d\n", i);
916                         fdt_nop_node(initial_boot_params, uart);
917                         fdt_nop_property(initial_boot_params, aliases,
918                                          name_buffer);
919                 }
920         }
921
922         /* Compact Flash */
923         alias_prop = fdt_getprop(initial_boot_params, aliases,
924                                  "cf0", NULL);
925         if (alias_prop) {
926                 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
927                 unsigned long base_ptr, region_base, region_size;
928                 unsigned long region1_base = 0;
929                 unsigned long region1_size = 0;
930                 int cs, bootbus;
931                 bool is_16bit = false;
932                 bool is_true_ide = false;
933                 __be32 new_reg[6];
934                 __be32 *ranges;
935                 int len;
936
937                 int cf = fdt_path_offset(initial_boot_params, alias_prop);
938
939                 base_ptr = 0;
940                 if (octeon_bootinfo->major_version == 1
941                         && octeon_bootinfo->minor_version >= 1) {
942                         if (octeon_bootinfo->compact_flash_common_base_addr)
943                                 base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
944                 } else {
945                         base_ptr = 0x1d000800;
946                 }
947
948                 if (!base_ptr)
949                         goto no_cf;
950
951                 /* Find CS0 region. */
952                 for (cs = 0; cs < 8; cs++) {
953                         mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
954                         region_base = mio_boot_reg_cfg.s.base << 16;
955                         region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
956                         if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
957                                 && base_ptr < region_base + region_size) {
958                                 is_16bit = mio_boot_reg_cfg.s.width;
959                                 break;
960                         }
961                 }
962                 if (cs >= 7) {
963                         /* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
964                         goto no_cf;
965                 }
966
967                 if (!(base_ptr & 0xfffful)) {
968                         /*
969                          * Boot loader signals availability of DMA (true_ide
970                          * mode) by setting low order bits of base_ptr to
971                          * zero.
972                          */
973
974                         /* Asume that CS1 immediately follows. */
975                         mio_boot_reg_cfg.u64 =
976                                 cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
977                         region1_base = mio_boot_reg_cfg.s.base << 16;
978                         region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
979                         if (!mio_boot_reg_cfg.s.en)
980                                 goto no_cf;
981                         is_true_ide = true;
982
983                 } else {
984                         fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
985                         fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
986                         if (!is_16bit) {
987                                 __be32 width = cpu_to_be32(8);
988
989                                 fdt_setprop_inplace(initial_boot_params, cf,
990                                                 "cavium,bus-width", &width, sizeof(width));
991                         }
992                 }
993                 new_reg[0] = cpu_to_be32(cs);
994                 new_reg[1] = cpu_to_be32(0);
995                 new_reg[2] = cpu_to_be32(0x10000);
996                 new_reg[3] = cpu_to_be32(cs + 1);
997                 new_reg[4] = cpu_to_be32(0);
998                 new_reg[5] = cpu_to_be32(0x10000);
999                 fdt_setprop_inplace(initial_boot_params, cf,
1000                                     "reg",  new_reg, sizeof(new_reg));
1001
1002                 bootbus = fdt_parent_offset(initial_boot_params, cf);
1003                 if (bootbus < 0)
1004                         goto no_cf;
1005                 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
1006                 if (!ranges || len < (5 * 8 * sizeof(__be32)))
1007                         goto no_cf;
1008
1009                 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
1010                 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
1011                 ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
1012                 if (is_true_ide) {
1013                         cs++;
1014                         ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
1015                         ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
1016                         ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
1017                 }
1018                 goto end_cf;
1019 no_cf:
1020                 fdt_nop_node(initial_boot_params, cf);
1021
1022 end_cf:
1023                 ;
1024         }
1025
1026         /* 8 char LED */
1027         alias_prop = fdt_getprop(initial_boot_params, aliases,
1028                                  "led0", NULL);
1029         if (alias_prop) {
1030                 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
1031                 unsigned long base_ptr, region_base, region_size;
1032                 int cs, bootbus;
1033                 __be32 new_reg[6];
1034                 __be32 *ranges;
1035                 int len;
1036                 int led = fdt_path_offset(initial_boot_params, alias_prop);
1037
1038                 base_ptr = octeon_bootinfo->led_display_base_addr;
1039                 if (base_ptr == 0)
1040                         goto no_led;
1041                 /* Find CS0 region. */
1042                 for (cs = 0; cs < 8; cs++) {
1043                         mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
1044                         region_base = mio_boot_reg_cfg.s.base << 16;
1045                         region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
1046                         if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
1047                                 && base_ptr < region_base + region_size)
1048                                 break;
1049                 }
1050
1051                 if (cs > 7)
1052                         goto no_led;
1053
1054                 new_reg[0] = cpu_to_be32(cs);
1055                 new_reg[1] = cpu_to_be32(0x20);
1056                 new_reg[2] = cpu_to_be32(0x20);
1057                 new_reg[3] = cpu_to_be32(cs);
1058                 new_reg[4] = cpu_to_be32(0);
1059                 new_reg[5] = cpu_to_be32(0x20);
1060                 fdt_setprop_inplace(initial_boot_params, led,
1061                                     "reg",  new_reg, sizeof(new_reg));
1062
1063                 bootbus = fdt_parent_offset(initial_boot_params, led);
1064                 if (bootbus < 0)
1065                         goto no_led;
1066                 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
1067                 if (!ranges || len < (5 * 8 * sizeof(__be32)))
1068                         goto no_led;
1069
1070                 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
1071                 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
1072                 ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
1073                 goto end_led;
1074
1075 no_led:
1076                 fdt_nop_node(initial_boot_params, led);
1077 end_led:
1078                 ;
1079         }
1080
1081 #ifdef CONFIG_USB
1082         /* OHCI/UHCI USB */
1083         alias_prop = fdt_getprop(initial_boot_params, aliases,
1084                                  "uctl", NULL);
1085         if (alias_prop) {
1086                 int uctl = fdt_path_offset(initial_boot_params, alias_prop);
1087
1088                 if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
1089                                   octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
1090                         pr_debug("Deleting uctl\n");
1091                         fdt_nop_node(initial_boot_params, uctl);
1092                         fdt_nop_property(initial_boot_params, aliases, "uctl");
1093                 } else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
1094                            octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
1095                         /* Missing "refclk-type" defaults to crystal. */
1096                         fdt_nop_property(initial_boot_params, uctl, "refclk-type");
1097                 }
1098         }
1099
1100         /* DWC2 USB */
1101         alias_prop = fdt_getprop(initial_boot_params, aliases,
1102                                  "usbn", NULL);
1103         if (alias_prop) {
1104                 int usbn = fdt_path_offset(initial_boot_params, alias_prop);
1105
1106                 if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
1107                                   !octeon_has_feature(OCTEON_FEATURE_USB))) {
1108                         pr_debug("Deleting usbn\n");
1109                         fdt_nop_node(initial_boot_params, usbn);
1110                         fdt_nop_property(initial_boot_params, aliases, "usbn");
1111                 } else  {
1112                         __be32 new_f[1];
1113                         enum cvmx_helper_board_usb_clock_types c;
1114
1115                         c = __cvmx_helper_board_usb_get_clock_type();
1116                         switch (c) {
1117                         case USB_CLOCK_TYPE_REF_48:
1118                                 new_f[0] = cpu_to_be32(48000000);
1119                                 fdt_setprop_inplace(initial_boot_params, usbn,
1120                                                     "refclk-frequency",  new_f, sizeof(new_f));
1121                                 fallthrough;
1122                         case USB_CLOCK_TYPE_REF_12:
1123                                 /* Missing "refclk-type" defaults to external. */
1124                                 fdt_nop_property(initial_boot_params, usbn, "refclk-type");
1125                                 break;
1126                         default:
1127                                 break;
1128                         }
1129                 }
1130         }
1131 #endif
1132
1133         return 0;
1134 }
1135
1136 static int __init octeon_publish_devices(void)
1137 {
1138         return of_platform_populate(NULL, octeon_ids, NULL, NULL);
1139 }
1140 arch_initcall(octeon_publish_devices);