GNU Linux-libre 4.4.297-gnu1
[releases.git] / arch / mips / cavium-octeon / octeon-platform.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2011 Cavium Networks
7  * Copyright (C) 2008 Wind River Systems
8  */
9
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/i2c.h>
14 #include <linux/usb.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/slab.h>
19 #include <linux/platform_device.h>
20 #include <linux/of_platform.h>
21 #include <linux/of_fdt.h>
22 #include <linux/libfdt.h>
23 #include <linux/usb/ehci_pdriver.h>
24 #include <linux/usb/ohci_pdriver.h>
25
26 #include <asm/octeon/octeon.h>
27 #include <asm/octeon/cvmx-rnm-defs.h>
28 #include <asm/octeon/cvmx-helper.h>
29 #include <asm/octeon/cvmx-helper-board.h>
30 #include <asm/octeon/cvmx-uctlx-defs.h>
31
32 /* Octeon Random Number Generator.  */
33 static int __init octeon_rng_device_init(void)
34 {
35         struct platform_device *pd;
36         int ret = 0;
37
38         struct resource rng_resources[] = {
39                 {
40                         .flags  = IORESOURCE_MEM,
41                         .start  = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
42                         .end    = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
43                 }, {
44                         .flags  = IORESOURCE_MEM,
45                         .start  = cvmx_build_io_address(8, 0),
46                         .end    = cvmx_build_io_address(8, 0) + 0x7
47                 }
48         };
49
50         pd = platform_device_alloc("octeon_rng", -1);
51         if (!pd) {
52                 ret = -ENOMEM;
53                 goto out;
54         }
55
56         ret = platform_device_add_resources(pd, rng_resources,
57                                             ARRAY_SIZE(rng_resources));
58         if (ret)
59                 goto fail;
60
61         ret = platform_device_add(pd);
62         if (ret)
63                 goto fail;
64
65         return ret;
66 fail:
67         platform_device_put(pd);
68
69 out:
70         return ret;
71 }
72 device_initcall(octeon_rng_device_init);
73
74 #ifdef CONFIG_USB
75
76 static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
77
78 static int octeon2_usb_clock_start_cnt;
79
80 static void octeon2_usb_clocks_start(struct device *dev)
81 {
82         u64 div;
83         union cvmx_uctlx_if_ena if_ena;
84         union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
85         union cvmx_uctlx_uphy_ctl_status uphy_ctl_status;
86         union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
87         int i;
88         unsigned long io_clk_64_to_ns;
89         u32 clock_rate = 12000000;
90         bool is_crystal_clock = false;
91
92
93         mutex_lock(&octeon2_usb_clocks_mutex);
94
95         octeon2_usb_clock_start_cnt++;
96         if (octeon2_usb_clock_start_cnt != 1)
97                 goto exit;
98
99         io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
100
101         if (dev->of_node) {
102                 struct device_node *uctl_node;
103                 const char *clock_type;
104
105                 uctl_node = of_get_parent(dev->of_node);
106                 if (!uctl_node) {
107                         dev_err(dev, "No UCTL device node\n");
108                         goto exit;
109                 }
110                 i = of_property_read_u32(uctl_node,
111                                          "refclk-frequency", &clock_rate);
112                 if (i) {
113                         dev_err(dev, "No UCTL \"refclk-frequency\"\n");
114                         goto exit;
115                 }
116                 i = of_property_read_string(uctl_node,
117                                             "refclk-type", &clock_type);
118
119                 if (!i && strcmp("crystal", clock_type) == 0)
120                         is_crystal_clock = true;
121         }
122
123         /*
124          * Step 1: Wait for voltages stable.  That surely happened
125          * before starting the kernel.
126          *
127          * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
128          */
129         if_ena.u64 = 0;
130         if_ena.s.en = 1;
131         cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
132
133         /* Step 3: Configure the reference clock, PHY, and HCLK */
134         clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
135
136         /*
137          * If the UCTL looks like it has already been started, skip
138          * the initialization, otherwise bus errors are obtained.
139          */
140         if (clk_rst_ctl.s.hrst)
141                 goto end_clock;
142         /* 3a */
143         clk_rst_ctl.s.p_por = 1;
144         clk_rst_ctl.s.hrst = 0;
145         clk_rst_ctl.s.p_prst = 0;
146         clk_rst_ctl.s.h_clkdiv_rst = 0;
147         clk_rst_ctl.s.o_clkdiv_rst = 0;
148         clk_rst_ctl.s.h_clkdiv_en = 0;
149         clk_rst_ctl.s.o_clkdiv_en = 0;
150         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
151
152         /* 3b */
153         clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
154         switch (clock_rate) {
155         default:
156                 pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
157                         clock_rate);
158                 /* Fall through */
159         case 12000000:
160                 clk_rst_ctl.s.p_refclk_div = 0;
161                 break;
162         case 24000000:
163                 clk_rst_ctl.s.p_refclk_div = 1;
164                 break;
165         case 48000000:
166                 clk_rst_ctl.s.p_refclk_div = 2;
167                 break;
168         }
169         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
170
171         /* 3c */
172         div = octeon_get_io_clock_rate() / 130000000ull;
173
174         switch (div) {
175         case 0:
176                 div = 1;
177                 break;
178         case 1:
179         case 2:
180         case 3:
181         case 4:
182                 break;
183         case 5:
184                 div = 4;
185                 break;
186         case 6:
187         case 7:
188                 div = 6;
189                 break;
190         case 8:
191         case 9:
192         case 10:
193         case 11:
194                 div = 8;
195                 break;
196         default:
197                 div = 12;
198                 break;
199         }
200         clk_rst_ctl.s.h_div = div;
201         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
202         /* Read it back, */
203         clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
204         clk_rst_ctl.s.h_clkdiv_en = 1;
205         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
206         /* 3d */
207         clk_rst_ctl.s.h_clkdiv_rst = 1;
208         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
209
210         /* 3e: delay 64 io clocks */
211         ndelay(io_clk_64_to_ns);
212
213         /*
214          * Step 4: Program the power-on reset field in the UCTL
215          * clock-reset-control register.
216          */
217         clk_rst_ctl.s.p_por = 0;
218         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
219
220         /* Step 5:    Wait 1 ms for the PHY clock to start. */
221         mdelay(1);
222
223         /*
224          * Step 6: Program the reset input from automatic test
225          * equipment field in the UPHY CSR
226          */
227         uphy_ctl_status.u64 = cvmx_read_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0));
228         uphy_ctl_status.s.ate_reset = 1;
229         cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
230
231         /* Step 7: Wait for at least 10ns. */
232         ndelay(10);
233
234         /* Step 8: Clear the ATE_RESET field in the UPHY CSR. */
235         uphy_ctl_status.s.ate_reset = 0;
236         cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
237
238         /*
239          * Step 9: Wait for at least 20ns for UPHY to output PHY clock
240          * signals and OHCI_CLK48
241          */
242         ndelay(20);
243
244         /* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
245         /* 10a */
246         clk_rst_ctl.s.o_clkdiv_rst = 1;
247         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
248
249         /* 10b */
250         clk_rst_ctl.s.o_clkdiv_en = 1;
251         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
252
253         /* 10c */
254         ndelay(io_clk_64_to_ns);
255
256         /*
257          * Step 11: Program the PHY reset field:
258          * UCTL0_CLK_RST_CTL[P_PRST] = 1
259          */
260         clk_rst_ctl.s.p_prst = 1;
261         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
262
263         /* Step 12: Wait 1 uS. */
264         udelay(1);
265
266         /* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
267         clk_rst_ctl.s.hrst = 1;
268         cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
269
270 end_clock:
271         /* Now we can set some other registers.  */
272
273         for (i = 0; i <= 1; i++) {
274                 port_ctl_status.u64 =
275                         cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
276                 /* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
277                 port_ctl_status.s.txvreftune = 15;
278                 port_ctl_status.s.txrisetune = 1;
279                 port_ctl_status.s.txpreemphasistune = 1;
280                 cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
281                                port_ctl_status.u64);
282         }
283
284         /* Set uSOF cycle period to 60,000 bits. */
285         cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
286 exit:
287         mutex_unlock(&octeon2_usb_clocks_mutex);
288 }
289
290 static void octeon2_usb_clocks_stop(void)
291 {
292         mutex_lock(&octeon2_usb_clocks_mutex);
293         octeon2_usb_clock_start_cnt--;
294         mutex_unlock(&octeon2_usb_clocks_mutex);
295 }
296
297 static int octeon_ehci_power_on(struct platform_device *pdev)
298 {
299         octeon2_usb_clocks_start(&pdev->dev);
300         return 0;
301 }
302
303 static void octeon_ehci_power_off(struct platform_device *pdev)
304 {
305         octeon2_usb_clocks_stop();
306 }
307
308 static struct usb_ehci_pdata octeon_ehci_pdata = {
309         /* Octeon EHCI matches CPU endianness. */
310 #ifdef __BIG_ENDIAN
311         .big_endian_mmio        = 1,
312 #endif
313         .dma_mask_64    = 1,
314         .power_on       = octeon_ehci_power_on,
315         .power_off      = octeon_ehci_power_off,
316 };
317
318 static void __init octeon_ehci_hw_start(struct device *dev)
319 {
320         union cvmx_uctlx_ehci_ctl ehci_ctl;
321
322         octeon2_usb_clocks_start(dev);
323
324         ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
325         /* Use 64-bit addressing. */
326         ehci_ctl.s.ehci_64b_addr_en = 1;
327         ehci_ctl.s.l2c_addr_msb = 0;
328 #ifdef __BIG_ENDIAN
329         ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
330         ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
331 #else
332         ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
333         ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
334         ehci_ctl.s.inv_reg_a2 = 1;
335 #endif
336         cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
337
338         octeon2_usb_clocks_stop();
339 }
340
341 static int __init octeon_ehci_device_init(void)
342 {
343         struct platform_device *pd;
344         struct device_node *ehci_node;
345         int ret = 0;
346
347         ehci_node = of_find_node_by_name(NULL, "ehci");
348         if (!ehci_node)
349                 return 0;
350
351         pd = of_find_device_by_node(ehci_node);
352         of_node_put(ehci_node);
353         if (!pd)
354                 return 0;
355
356         pd->dev.platform_data = &octeon_ehci_pdata;
357         octeon_ehci_hw_start(&pd->dev);
358
359         return ret;
360 }
361 device_initcall(octeon_ehci_device_init);
362
363 static int octeon_ohci_power_on(struct platform_device *pdev)
364 {
365         octeon2_usb_clocks_start(&pdev->dev);
366         return 0;
367 }
368
369 static void octeon_ohci_power_off(struct platform_device *pdev)
370 {
371         octeon2_usb_clocks_stop();
372 }
373
374 static struct usb_ohci_pdata octeon_ohci_pdata = {
375         /* Octeon OHCI matches CPU endianness. */
376 #ifdef __BIG_ENDIAN
377         .big_endian_mmio        = 1,
378 #endif
379         .power_on       = octeon_ohci_power_on,
380         .power_off      = octeon_ohci_power_off,
381 };
382
383 static void __init octeon_ohci_hw_start(struct device *dev)
384 {
385         union cvmx_uctlx_ohci_ctl ohci_ctl;
386
387         octeon2_usb_clocks_start(dev);
388
389         ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
390         ohci_ctl.s.l2c_addr_msb = 0;
391 #ifdef __BIG_ENDIAN
392         ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
393         ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
394 #else
395         ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
396         ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
397         ohci_ctl.s.inv_reg_a2 = 1;
398 #endif
399         cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
400
401         octeon2_usb_clocks_stop();
402 }
403
404 static int __init octeon_ohci_device_init(void)
405 {
406         struct platform_device *pd;
407         struct device_node *ohci_node;
408         int ret = 0;
409
410         ohci_node = of_find_node_by_name(NULL, "ohci");
411         if (!ohci_node)
412                 return 0;
413
414         pd = of_find_device_by_node(ohci_node);
415         of_node_put(ohci_node);
416         if (!pd)
417                 return 0;
418
419         pd->dev.platform_data = &octeon_ohci_pdata;
420         octeon_ohci_hw_start(&pd->dev);
421
422         return ret;
423 }
424 device_initcall(octeon_ohci_device_init);
425
426 #endif /* CONFIG_USB */
427
428
429 static struct of_device_id __initdata octeon_ids[] = {
430         { .compatible = "simple-bus", },
431         { .compatible = "cavium,octeon-6335-uctl", },
432         { .compatible = "cavium,octeon-5750-usbn", },
433         { .compatible = "cavium,octeon-3860-bootbus", },
434         { .compatible = "cavium,mdio-mux", },
435         { .compatible = "gpio-leds", },
436         {},
437 };
438
439 static bool __init octeon_has_88e1145(void)
440 {
441         return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
442                !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
443                !OCTEON_IS_MODEL(OCTEON_CN56XX);
444 }
445
446 static void __init octeon_fdt_set_phy(int eth, int phy_addr)
447 {
448         const __be32 *phy_handle;
449         const __be32 *alt_phy_handle;
450         const __be32 *reg;
451         u32 phandle;
452         int phy;
453         int alt_phy;
454         const char *p;
455         int current_len;
456         char new_name[20];
457
458         phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
459         if (!phy_handle)
460                 return;
461
462         phandle = be32_to_cpup(phy_handle);
463         phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
464
465         alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
466         if (alt_phy_handle) {
467                 u32 alt_phandle = be32_to_cpup(alt_phy_handle);
468                 alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
469         } else {
470                 alt_phy = -1;
471         }
472
473         if (phy_addr < 0 || phy < 0) {
474                 /* Delete the PHY things */
475                 fdt_nop_property(initial_boot_params, eth, "phy-handle");
476                 /* This one may fail */
477                 fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
478                 if (phy >= 0)
479                         fdt_nop_node(initial_boot_params, phy);
480                 if (alt_phy >= 0)
481                         fdt_nop_node(initial_boot_params, alt_phy);
482                 return;
483         }
484
485         if (phy_addr >= 256 && alt_phy > 0) {
486                 const struct fdt_property *phy_prop;
487                 struct fdt_property *alt_prop;
488                 fdt32_t phy_handle_name;
489
490                 /* Use the alt phy node instead.*/
491                 phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
492                 phy_handle_name = phy_prop->nameoff;
493                 fdt_nop_node(initial_boot_params, phy);
494                 fdt_nop_property(initial_boot_params, eth, "phy-handle");
495                 alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
496                 alt_prop->nameoff = phy_handle_name;
497                 phy = alt_phy;
498         }
499
500         phy_addr &= 0xff;
501
502         if (octeon_has_88e1145()) {
503                 fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
504                 memset(new_name, 0, sizeof(new_name));
505                 strcpy(new_name, "marvell,88e1145");
506                 p = fdt_getprop(initial_boot_params, phy, "compatible",
507                                 &current_len);
508                 if (p && current_len >= strlen(new_name))
509                         fdt_setprop_inplace(initial_boot_params, phy,
510                                         "compatible", new_name, current_len);
511         }
512
513         reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
514         if (phy_addr == be32_to_cpup(reg))
515                 return;
516
517         fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
518
519         snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
520
521         p = fdt_get_name(initial_boot_params, phy, &current_len);
522         if (p && current_len == strlen(new_name))
523                 fdt_set_name(initial_boot_params, phy, new_name);
524         else
525                 pr_err("Error: could not rename ethernet phy: <%s>", p);
526 }
527
528 static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
529 {
530         u8 new_mac[6];
531         u64 mac = *pmac;
532         int r;
533
534         new_mac[0] = (mac >> 40) & 0xff;
535         new_mac[1] = (mac >> 32) & 0xff;
536         new_mac[2] = (mac >> 24) & 0xff;
537         new_mac[3] = (mac >> 16) & 0xff;
538         new_mac[4] = (mac >> 8) & 0xff;
539         new_mac[5] = mac & 0xff;
540
541         r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
542                                 new_mac, sizeof(new_mac));
543
544         if (r) {
545                 pr_err("Setting \"local-mac-address\" failed %d", r);
546                 return;
547         }
548         *pmac = mac + 1;
549 }
550
551 static void __init octeon_fdt_rm_ethernet(int node)
552 {
553         const __be32 *phy_handle;
554
555         phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
556         if (phy_handle) {
557                 u32 ph = be32_to_cpup(phy_handle);
558                 int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
559                 if (p >= 0)
560                         fdt_nop_node(initial_boot_params, p);
561         }
562         fdt_nop_node(initial_boot_params, node);
563 }
564
565 static void __init octeon_fdt_pip_port(int iface, int i, int p, int max, u64 *pmac)
566 {
567         char name_buffer[20];
568         int eth;
569         int phy_addr;
570         int ipd_port;
571
572         snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
573         eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
574         if (eth < 0)
575                 return;
576         if (p > max) {
577                 pr_debug("Deleting port %x:%x\n", i, p);
578                 octeon_fdt_rm_ethernet(eth);
579                 return;
580         }
581         if (OCTEON_IS_MODEL(OCTEON_CN68XX))
582                 ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
583         else
584                 ipd_port = 16 * i + p;
585
586         phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
587         octeon_fdt_set_phy(eth, phy_addr);
588         octeon_fdt_set_mac_addr(eth, pmac);
589 }
590
591 static void __init octeon_fdt_pip_iface(int pip, int idx, u64 *pmac)
592 {
593         char name_buffer[20];
594         int iface;
595         int p;
596         int count = 0;
597
598         snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
599         iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
600         if (iface < 0)
601                 return;
602
603         if (cvmx_helper_interface_enumerate(idx) == 0)
604                 count = cvmx_helper_ports_on_interface(idx);
605
606         for (p = 0; p < 16; p++)
607                 octeon_fdt_pip_port(iface, idx, p, count - 1, pmac);
608 }
609
610 int __init octeon_prune_device_tree(void)
611 {
612         int i, max_port, uart_mask;
613         const char *pip_path;
614         const char *alias_prop;
615         char name_buffer[20];
616         int aliases;
617         u64 mac_addr_base;
618
619         if (fdt_check_header(initial_boot_params))
620                 panic("Corrupt Device Tree.");
621
622         aliases = fdt_path_offset(initial_boot_params, "/aliases");
623         if (aliases < 0) {
624                 pr_err("Error: No /aliases node in device tree.");
625                 return -EINVAL;
626         }
627
628
629         mac_addr_base =
630                 ((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
631                 ((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
632                 ((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
633                 ((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
634                 ((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
635                 (octeon_bootinfo->mac_addr_base[5] & 0xffull);
636
637         if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
638                 max_port = 2;
639         else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
640                 max_port = 1;
641         else
642                 max_port = 0;
643
644         if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
645                 max_port = 0;
646
647         for (i = 0; i < 2; i++) {
648                 int mgmt;
649                 snprintf(name_buffer, sizeof(name_buffer),
650                          "mix%d", i);
651                 alias_prop = fdt_getprop(initial_boot_params, aliases,
652                                         name_buffer, NULL);
653                 if (alias_prop) {
654                         mgmt = fdt_path_offset(initial_boot_params, alias_prop);
655                         if (mgmt < 0)
656                                 continue;
657                         if (i >= max_port) {
658                                 pr_debug("Deleting mix%d\n", i);
659                                 octeon_fdt_rm_ethernet(mgmt);
660                                 fdt_nop_property(initial_boot_params, aliases,
661                                                  name_buffer);
662                         } else {
663                                 int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
664                                 octeon_fdt_set_phy(mgmt, phy_addr);
665                                 octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
666                         }
667                 }
668         }
669
670         pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
671         if (pip_path) {
672                 int pip = fdt_path_offset(initial_boot_params, pip_path);
673                 if (pip  >= 0)
674                         for (i = 0; i <= 4; i++)
675                                 octeon_fdt_pip_iface(pip, i, &mac_addr_base);
676         }
677
678         /* I2C */
679         if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
680             OCTEON_IS_MODEL(OCTEON_CN63XX) ||
681             OCTEON_IS_MODEL(OCTEON_CN68XX) ||
682             OCTEON_IS_MODEL(OCTEON_CN56XX))
683                 max_port = 2;
684         else
685                 max_port = 1;
686
687         for (i = 0; i < 2; i++) {
688                 int i2c;
689                 snprintf(name_buffer, sizeof(name_buffer),
690                          "twsi%d", i);
691                 alias_prop = fdt_getprop(initial_boot_params, aliases,
692                                         name_buffer, NULL);
693
694                 if (alias_prop) {
695                         i2c = fdt_path_offset(initial_boot_params, alias_prop);
696                         if (i2c < 0)
697                                 continue;
698                         if (i >= max_port) {
699                                 pr_debug("Deleting twsi%d\n", i);
700                                 fdt_nop_node(initial_boot_params, i2c);
701                                 fdt_nop_property(initial_boot_params, aliases,
702                                                  name_buffer);
703                         }
704                 }
705         }
706
707         /* SMI/MDIO */
708         if (OCTEON_IS_MODEL(OCTEON_CN68XX))
709                 max_port = 4;
710         else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
711                  OCTEON_IS_MODEL(OCTEON_CN63XX) ||
712                  OCTEON_IS_MODEL(OCTEON_CN56XX))
713                 max_port = 2;
714         else
715                 max_port = 1;
716
717         for (i = 0; i < 2; i++) {
718                 int i2c;
719                 snprintf(name_buffer, sizeof(name_buffer),
720                          "smi%d", i);
721                 alias_prop = fdt_getprop(initial_boot_params, aliases,
722                                         name_buffer, NULL);
723
724                 if (alias_prop) {
725                         i2c = fdt_path_offset(initial_boot_params, alias_prop);
726                         if (i2c < 0)
727                                 continue;
728                         if (i >= max_port) {
729                                 pr_debug("Deleting smi%d\n", i);
730                                 fdt_nop_node(initial_boot_params, i2c);
731                                 fdt_nop_property(initial_boot_params, aliases,
732                                                  name_buffer);
733                         }
734                 }
735         }
736
737         /* Serial */
738         uart_mask = 3;
739
740         /* Right now CN52XX is the only chip with a third uart */
741         if (OCTEON_IS_MODEL(OCTEON_CN52XX))
742                 uart_mask |= 4; /* uart2 */
743
744         for (i = 0; i < 3; i++) {
745                 int uart;
746                 snprintf(name_buffer, sizeof(name_buffer),
747                          "uart%d", i);
748                 alias_prop = fdt_getprop(initial_boot_params, aliases,
749                                         name_buffer, NULL);
750
751                 if (alias_prop) {
752                         uart = fdt_path_offset(initial_boot_params, alias_prop);
753                         if (uart_mask & (1 << i)) {
754                                 __be32 f;
755
756                                 f = cpu_to_be32(octeon_get_io_clock_rate());
757                                 fdt_setprop_inplace(initial_boot_params,
758                                                     uart, "clock-frequency",
759                                                     &f, sizeof(f));
760                                 continue;
761                         }
762                         pr_debug("Deleting uart%d\n", i);
763                         fdt_nop_node(initial_boot_params, uart);
764                         fdt_nop_property(initial_boot_params, aliases,
765                                          name_buffer);
766                 }
767         }
768
769         /* Compact Flash */
770         alias_prop = fdt_getprop(initial_boot_params, aliases,
771                                  "cf0", NULL);
772         if (alias_prop) {
773                 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
774                 unsigned long base_ptr, region_base, region_size;
775                 unsigned long region1_base = 0;
776                 unsigned long region1_size = 0;
777                 int cs, bootbus;
778                 bool is_16bit = false;
779                 bool is_true_ide = false;
780                 __be32 new_reg[6];
781                 __be32 *ranges;
782                 int len;
783
784                 int cf = fdt_path_offset(initial_boot_params, alias_prop);
785                 base_ptr = 0;
786                 if (octeon_bootinfo->major_version == 1
787                         && octeon_bootinfo->minor_version >= 1) {
788                         if (octeon_bootinfo->compact_flash_common_base_addr)
789                                 base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
790                 } else {
791                         base_ptr = 0x1d000800;
792                 }
793
794                 if (!base_ptr)
795                         goto no_cf;
796
797                 /* Find CS0 region. */
798                 for (cs = 0; cs < 8; cs++) {
799                         mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
800                         region_base = mio_boot_reg_cfg.s.base << 16;
801                         region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
802                         if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
803                                 && base_ptr < region_base + region_size) {
804                                 is_16bit = mio_boot_reg_cfg.s.width;
805                                 break;
806                         }
807                 }
808                 if (cs >= 7) {
809                         /* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
810                         goto no_cf;
811                 }
812
813                 if (!(base_ptr & 0xfffful)) {
814                         /*
815                          * Boot loader signals availability of DMA (true_ide
816                          * mode) by setting low order bits of base_ptr to
817                          * zero.
818                          */
819
820                         /* Asume that CS1 immediately follows. */
821                         mio_boot_reg_cfg.u64 =
822                                 cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
823                         region1_base = mio_boot_reg_cfg.s.base << 16;
824                         region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
825                         if (!mio_boot_reg_cfg.s.en)
826                                 goto no_cf;
827                         is_true_ide = true;
828
829                 } else {
830                         fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
831                         fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
832                         if (!is_16bit) {
833                                 __be32 width = cpu_to_be32(8);
834                                 fdt_setprop_inplace(initial_boot_params, cf,
835                                                 "cavium,bus-width", &width, sizeof(width));
836                         }
837                 }
838                 new_reg[0] = cpu_to_be32(cs);
839                 new_reg[1] = cpu_to_be32(0);
840                 new_reg[2] = cpu_to_be32(0x10000);
841                 new_reg[3] = cpu_to_be32(cs + 1);
842                 new_reg[4] = cpu_to_be32(0);
843                 new_reg[5] = cpu_to_be32(0x10000);
844                 fdt_setprop_inplace(initial_boot_params, cf,
845                                     "reg",  new_reg, sizeof(new_reg));
846
847                 bootbus = fdt_parent_offset(initial_boot_params, cf);
848                 if (bootbus < 0)
849                         goto no_cf;
850                 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
851                 if (!ranges || len < (5 * 8 * sizeof(__be32)))
852                         goto no_cf;
853
854                 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
855                 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
856                 ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
857                 if (is_true_ide) {
858                         cs++;
859                         ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
860                         ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
861                         ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
862                 }
863                 goto end_cf;
864 no_cf:
865                 fdt_nop_node(initial_boot_params, cf);
866
867 end_cf:
868                 ;
869         }
870
871         /* 8 char LED */
872         alias_prop = fdt_getprop(initial_boot_params, aliases,
873                                  "led0", NULL);
874         if (alias_prop) {
875                 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
876                 unsigned long base_ptr, region_base, region_size;
877                 int cs, bootbus;
878                 __be32 new_reg[6];
879                 __be32 *ranges;
880                 int len;
881                 int led = fdt_path_offset(initial_boot_params, alias_prop);
882
883                 base_ptr = octeon_bootinfo->led_display_base_addr;
884                 if (base_ptr == 0)
885                         goto no_led;
886                 /* Find CS0 region. */
887                 for (cs = 0; cs < 8; cs++) {
888                         mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
889                         region_base = mio_boot_reg_cfg.s.base << 16;
890                         region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
891                         if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
892                                 && base_ptr < region_base + region_size)
893                                 break;
894                 }
895
896                 if (cs > 7)
897                         goto no_led;
898
899                 new_reg[0] = cpu_to_be32(cs);
900                 new_reg[1] = cpu_to_be32(0x20);
901                 new_reg[2] = cpu_to_be32(0x20);
902                 new_reg[3] = cpu_to_be32(cs);
903                 new_reg[4] = cpu_to_be32(0);
904                 new_reg[5] = cpu_to_be32(0x20);
905                 fdt_setprop_inplace(initial_boot_params, led,
906                                     "reg",  new_reg, sizeof(new_reg));
907
908                 bootbus = fdt_parent_offset(initial_boot_params, led);
909                 if (bootbus < 0)
910                         goto no_led;
911                 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
912                 if (!ranges || len < (5 * 8 * sizeof(__be32)))
913                         goto no_led;
914
915                 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
916                 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
917                 ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
918                 goto end_led;
919
920 no_led:
921                 fdt_nop_node(initial_boot_params, led);
922 end_led:
923                 ;
924         }
925
926         /* OHCI/UHCI USB */
927         alias_prop = fdt_getprop(initial_boot_params, aliases,
928                                  "uctl", NULL);
929         if (alias_prop) {
930                 int uctl = fdt_path_offset(initial_boot_params, alias_prop);
931
932                 if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
933                                   octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
934                         pr_debug("Deleting uctl\n");
935                         fdt_nop_node(initial_boot_params, uctl);
936                         fdt_nop_property(initial_boot_params, aliases, "uctl");
937                 } else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
938                            octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
939                         /* Missing "refclk-type" defaults to crystal. */
940                         fdt_nop_property(initial_boot_params, uctl, "refclk-type");
941                 }
942         }
943
944         /* DWC2 USB */
945         alias_prop = fdt_getprop(initial_boot_params, aliases,
946                                  "usbn", NULL);
947         if (alias_prop) {
948                 int usbn = fdt_path_offset(initial_boot_params, alias_prop);
949
950                 if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
951                                   !octeon_has_feature(OCTEON_FEATURE_USB))) {
952                         pr_debug("Deleting usbn\n");
953                         fdt_nop_node(initial_boot_params, usbn);
954                         fdt_nop_property(initial_boot_params, aliases, "usbn");
955                 } else  {
956                         __be32 new_f[1];
957                         enum cvmx_helper_board_usb_clock_types c;
958                         c = __cvmx_helper_board_usb_get_clock_type();
959                         switch (c) {
960                         case USB_CLOCK_TYPE_REF_48:
961                                 new_f[0] = cpu_to_be32(48000000);
962                                 fdt_setprop_inplace(initial_boot_params, usbn,
963                                                     "refclk-frequency",  new_f, sizeof(new_f));
964                                 /* Fall through ...*/
965                         case USB_CLOCK_TYPE_REF_12:
966                                 /* Missing "refclk-type" defaults to external. */
967                                 fdt_nop_property(initial_boot_params, usbn, "refclk-type");
968                                 break;
969                         default:
970                                 break;
971                         }
972                 }
973         }
974
975         if (octeon_bootinfo->board_type != CVMX_BOARD_TYPE_CUST_DSR1000N) {
976                 int dsr1000n_leds = fdt_path_offset(initial_boot_params,
977                                                     "/dsr1000n-leds");
978                 if (dsr1000n_leds >= 0)
979                         fdt_nop_node(initial_boot_params, dsr1000n_leds);
980         }
981
982         return 0;
983 }
984
985 static int __init octeon_publish_devices(void)
986 {
987         return of_platform_bus_probe(NULL, octeon_ids, NULL);
988 }
989 device_initcall(octeon_publish_devices);
990
991 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
992 MODULE_LICENSE("GPL");
993 MODULE_DESCRIPTION("Platform driver for Octeon SOC");