GNU Linux-libre 6.1.24-gnu
[releases.git] / arch / loongarch / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4  *
5  * Derived from MIPS:
6  * Copyright (C) 2000, 2001 Kanoj Sarcar
7  * Copyright (C) 2000, 2001 Ralf Baechle
8  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
9  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
10  */
11 #include <linux/cpu.h>
12 #include <linux/cpumask.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/smp.h>
17 #include <linux/threads.h>
18 #include <linux/export.h>
19 #include <linux/time.h>
20 #include <linux/tracepoint.h>
21 #include <linux/sched/hotplug.h>
22 #include <linux/sched/task_stack.h>
23
24 #include <asm/cpu.h>
25 #include <asm/idle.h>
26 #include <asm/loongson.h>
27 #include <asm/mmu_context.h>
28 #include <asm/numa.h>
29 #include <asm/processor.h>
30 #include <asm/setup.h>
31 #include <asm/time.h>
32
33 int __cpu_number_map[NR_CPUS];   /* Map physical to logical */
34 EXPORT_SYMBOL(__cpu_number_map);
35
36 int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
37 EXPORT_SYMBOL(__cpu_logical_map);
38
39 /* Number of threads (siblings) per CPU core */
40 int smp_num_siblings = 1;
41 EXPORT_SYMBOL(smp_num_siblings);
42
43 /* Representing the threads (siblings) of each logical CPU */
44 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
45 EXPORT_SYMBOL(cpu_sibling_map);
46
47 /* Representing the core map of multi-core chips of each logical CPU */
48 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
49 EXPORT_SYMBOL(cpu_core_map);
50
51 static DECLARE_COMPLETION(cpu_starting);
52 static DECLARE_COMPLETION(cpu_running);
53
54 /*
55  * A logcal cpu mask containing only one VPE per core to
56  * reduce the number of IPIs on large MT systems.
57  */
58 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
59 EXPORT_SYMBOL(cpu_foreign_map);
60
61 /* representing cpus for which sibling maps can be computed */
62 static cpumask_t cpu_sibling_setup_map;
63
64 /* representing cpus for which core maps can be computed */
65 static cpumask_t cpu_core_setup_map;
66
67 struct secondary_data cpuboot_data;
68 static DEFINE_PER_CPU(int, cpu_state);
69
70 enum ipi_msg_type {
71         IPI_RESCHEDULE,
72         IPI_CALL_FUNCTION,
73 };
74
75 static const char *ipi_types[NR_IPI] __tracepoint_string = {
76         [IPI_RESCHEDULE] = "Rescheduling interrupts",
77         [IPI_CALL_FUNCTION] = "Function call interrupts",
78 };
79
80 void show_ipi_list(struct seq_file *p, int prec)
81 {
82         unsigned int cpu, i;
83
84         for (i = 0; i < NR_IPI; i++) {
85                 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
86                 for_each_online_cpu(cpu)
87                         seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
88                 seq_printf(p, " LoongArch  %d  %s\n", i + 1, ipi_types[i]);
89         }
90 }
91
92 /* Send mailbox buffer via Mail_Send */
93 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
94 {
95         uint64_t val;
96
97         /* Send high 32 bits */
98         val = IOCSR_MBUF_SEND_BLOCKING;
99         val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
100         val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
101         val |= (data & IOCSR_MBUF_SEND_H32_MASK);
102         iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
103
104         /* Send low 32 bits */
105         val = IOCSR_MBUF_SEND_BLOCKING;
106         val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
107         val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
108         val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT);
109         iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
110 };
111
112 static u32 ipi_read_clear(int cpu)
113 {
114         u32 action;
115
116         /* Load the ipi register to figure out what we're supposed to do */
117         action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS);
118         /* Clear the ipi register to clear the interrupt */
119         iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR);
120         smp_mb();
121
122         return action;
123 }
124
125 static void ipi_write_action(int cpu, u32 action)
126 {
127         unsigned int irq = 0;
128
129         while ((irq = ffs(action))) {
130                 uint32_t val = IOCSR_IPI_SEND_BLOCKING;
131
132                 val |= (irq - 1);
133                 val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT);
134                 iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND);
135                 action &= ~BIT(irq - 1);
136         }
137 }
138
139 void loongson_send_ipi_single(int cpu, unsigned int action)
140 {
141         ipi_write_action(cpu_logical_map(cpu), (u32)action);
142 }
143
144 void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action)
145 {
146         unsigned int i;
147
148         for_each_cpu(i, mask)
149                 ipi_write_action(cpu_logical_map(i), (u32)action);
150 }
151
152 /*
153  * This function sends a 'reschedule' IPI to another CPU.
154  * it goes straight through and wastes no time serializing
155  * anything. Worst case is that we lose a reschedule ...
156  */
157 void smp_send_reschedule(int cpu)
158 {
159         loongson_send_ipi_single(cpu, SMP_RESCHEDULE);
160 }
161 EXPORT_SYMBOL_GPL(smp_send_reschedule);
162
163 irqreturn_t loongson_ipi_interrupt(int irq, void *dev)
164 {
165         unsigned int action;
166         unsigned int cpu = smp_processor_id();
167
168         action = ipi_read_clear(cpu_logical_map(cpu));
169
170         if (action & SMP_RESCHEDULE) {
171                 scheduler_ipi();
172                 per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++;
173         }
174
175         if (action & SMP_CALL_FUNCTION) {
176                 generic_smp_call_function_interrupt();
177                 per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++;
178         }
179
180         return IRQ_HANDLED;
181 }
182
183 void __init loongson_smp_setup(void)
184 {
185         cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package;
186         cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
187
188         iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
189         pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus);
190 }
191
192 void __init loongson_prepare_cpus(unsigned int max_cpus)
193 {
194         int i = 0;
195
196         for (i = 0; i < loongson_sysconf.nr_cpus; i++) {
197                 set_cpu_present(i, true);
198                 csr_mail_send(0, __cpu_logical_map[i], 0);
199         }
200
201         per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
202 }
203
204 /*
205  * Setup the PC, SP, and TP of a secondary processor and start it running!
206  */
207 void loongson_boot_secondary(int cpu, struct task_struct *idle)
208 {
209         unsigned long entry;
210
211         pr_info("Booting CPU#%d...\n", cpu);
212
213         entry = __pa_symbol((unsigned long)&smpboot_entry);
214         cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle);
215         cpuboot_data.thread_info = (unsigned long)task_thread_info(idle);
216
217         csr_mail_send(entry, cpu_logical_map(cpu), 0);
218
219         loongson_send_ipi_single(cpu, SMP_BOOT_CPU);
220 }
221
222 /*
223  * SMP init and finish on secondary CPUs
224  */
225 void loongson_init_secondary(void)
226 {
227         unsigned int cpu = smp_processor_id();
228         unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 |
229                              ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER;
230
231         change_csr_ecfg(ECFG0_IM, imask);
232
233         iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
234
235 #ifdef CONFIG_NUMA
236         numa_add_cpu(cpu);
237 #endif
238         per_cpu(cpu_state, cpu) = CPU_ONLINE;
239         cpu_data[cpu].core =
240                      cpu_logical_map(cpu) % loongson_sysconf.cores_per_package;
241         cpu_data[cpu].package =
242                      cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
243 }
244
245 void loongson_smp_finish(void)
246 {
247         local_irq_enable();
248         iocsr_write64(0, LOONGARCH_IOCSR_MBUF0);
249         pr_info("CPU#%d finished\n", smp_processor_id());
250 }
251
252 #ifdef CONFIG_HOTPLUG_CPU
253
254 int loongson_cpu_disable(void)
255 {
256         unsigned long flags;
257         unsigned int cpu = smp_processor_id();
258
259         if (io_master(cpu))
260                 return -EBUSY;
261
262 #ifdef CONFIG_NUMA
263         numa_remove_cpu(cpu);
264 #endif
265         set_cpu_online(cpu, false);
266         calculate_cpu_foreign_map();
267         local_irq_save(flags);
268         irq_migrate_all_off_this_cpu();
269         clear_csr_ecfg(ECFG0_IM);
270         local_irq_restore(flags);
271         local_flush_tlb_all();
272
273         return 0;
274 }
275
276 void loongson_cpu_die(unsigned int cpu)
277 {
278         while (per_cpu(cpu_state, cpu) != CPU_DEAD)
279                 cpu_relax();
280
281         mb();
282 }
283
284 void play_dead(void)
285 {
286         register uint64_t addr;
287         register void (*init_fn)(void);
288
289         idle_task_exit();
290         local_irq_enable();
291         set_csr_ecfg(ECFGF_IPI);
292         __this_cpu_write(cpu_state, CPU_DEAD);
293
294         __smp_mb();
295         do {
296                 __asm__ __volatile__("idle 0\n\t");
297                 addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0);
298         } while (addr == 0);
299
300         init_fn = (void *)TO_CACHE(addr);
301         iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR);
302
303         init_fn();
304         unreachable();
305 }
306
307 #endif
308
309 /*
310  * Power management
311  */
312 #ifdef CONFIG_PM
313
314 static int loongson_ipi_suspend(void)
315 {
316         return 0;
317 }
318
319 static void loongson_ipi_resume(void)
320 {
321         iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
322 }
323
324 static struct syscore_ops loongson_ipi_syscore_ops = {
325         .resume         = loongson_ipi_resume,
326         .suspend        = loongson_ipi_suspend,
327 };
328
329 /*
330  * Enable boot cpu ipi before enabling nonboot cpus
331  * during syscore_resume.
332  */
333 static int __init ipi_pm_init(void)
334 {
335         register_syscore_ops(&loongson_ipi_syscore_ops);
336         return 0;
337 }
338
339 core_initcall(ipi_pm_init);
340 #endif
341
342 static inline void set_cpu_sibling_map(int cpu)
343 {
344         int i;
345
346         cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
347
348         if (smp_num_siblings <= 1)
349                 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
350         else {
351                 for_each_cpu(i, &cpu_sibling_setup_map) {
352                         if (cpus_are_siblings(cpu, i)) {
353                                 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
354                                 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
355                         }
356                 }
357         }
358 }
359
360 static inline void set_cpu_core_map(int cpu)
361 {
362         int i;
363
364         cpumask_set_cpu(cpu, &cpu_core_setup_map);
365
366         for_each_cpu(i, &cpu_core_setup_map) {
367                 if (cpu_data[cpu].package == cpu_data[i].package) {
368                         cpumask_set_cpu(i, &cpu_core_map[cpu]);
369                         cpumask_set_cpu(cpu, &cpu_core_map[i]);
370                 }
371         }
372 }
373
374 /*
375  * Calculate a new cpu_foreign_map mask whenever a
376  * new cpu appears or disappears.
377  */
378 void calculate_cpu_foreign_map(void)
379 {
380         int i, k, core_present;
381         cpumask_t temp_foreign_map;
382
383         /* Re-calculate the mask */
384         cpumask_clear(&temp_foreign_map);
385         for_each_online_cpu(i) {
386                 core_present = 0;
387                 for_each_cpu(k, &temp_foreign_map)
388                         if (cpus_are_siblings(i, k))
389                                 core_present = 1;
390                 if (!core_present)
391                         cpumask_set_cpu(i, &temp_foreign_map);
392         }
393
394         for_each_online_cpu(i)
395                 cpumask_andnot(&cpu_foreign_map[i],
396                                &temp_foreign_map, &cpu_sibling_map[i]);
397 }
398
399 /* Preload SMP state for boot cpu */
400 void smp_prepare_boot_cpu(void)
401 {
402         unsigned int cpu, node, rr_node;
403
404         set_cpu_possible(0, true);
405         set_cpu_online(0, true);
406         set_my_cpu_offset(per_cpu_offset(0));
407
408         rr_node = first_node(node_online_map);
409         for_each_possible_cpu(cpu) {
410                 node = early_cpu_to_node(cpu);
411
412                 /*
413                  * The mapping between present cpus and nodes has been
414                  * built during MADT and SRAT parsing.
415                  *
416                  * If possible cpus = present cpus here, early_cpu_to_node
417                  * will return valid node.
418                  *
419                  * If possible cpus > present cpus here (e.g. some possible
420                  * cpus will be added by cpu-hotplug later), for possible but
421                  * not present cpus, early_cpu_to_node will return NUMA_NO_NODE,
422                  * and we just map them to online nodes in round-robin way.
423                  * Once hotplugged, new correct mapping will be built for them.
424                  */
425                 if (node != NUMA_NO_NODE)
426                         set_cpu_numa_node(cpu, node);
427                 else {
428                         set_cpu_numa_node(cpu, rr_node);
429                         rr_node = next_node_in(rr_node, node_online_map);
430                 }
431         }
432 }
433
434 /* called from main before smp_init() */
435 void __init smp_prepare_cpus(unsigned int max_cpus)
436 {
437         init_new_context(current, &init_mm);
438         current_thread_info()->cpu = 0;
439         loongson_prepare_cpus(max_cpus);
440         set_cpu_sibling_map(0);
441         set_cpu_core_map(0);
442         calculate_cpu_foreign_map();
443 #ifndef CONFIG_HOTPLUG_CPU
444         init_cpu_present(cpu_possible_mask);
445 #endif
446 }
447
448 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
449 {
450         loongson_boot_secondary(cpu, tidle);
451
452         /* Wait for CPU to start and be ready to sync counters */
453         if (!wait_for_completion_timeout(&cpu_starting,
454                                          msecs_to_jiffies(5000))) {
455                 pr_crit("CPU%u: failed to start\n", cpu);
456                 return -EIO;
457         }
458
459         /* Wait for CPU to finish startup & mark itself online before return */
460         wait_for_completion(&cpu_running);
461
462         return 0;
463 }
464
465 /*
466  * First C code run on the secondary CPUs after being started up by
467  * the master.
468  */
469 asmlinkage void start_secondary(void)
470 {
471         unsigned int cpu;
472
473         sync_counter();
474         cpu = smp_processor_id();
475         set_my_cpu_offset(per_cpu_offset(cpu));
476
477         cpu_probe();
478         constant_clockevent_init();
479         loongson_init_secondary();
480
481         set_cpu_sibling_map(cpu);
482         set_cpu_core_map(cpu);
483
484         notify_cpu_starting(cpu);
485
486         /* Notify boot CPU that we're starting */
487         complete(&cpu_starting);
488
489         /* The CPU is running, now mark it online */
490         set_cpu_online(cpu, true);
491
492         calculate_cpu_foreign_map();
493
494         /*
495          * Notify boot CPU that we're up & online and it can safely return
496          * from __cpu_up()
497          */
498         complete(&cpu_running);
499
500         /*
501          * irq will be enabled in loongson_smp_finish(), enabling it too
502          * early is dangerous.
503          */
504         WARN_ON_ONCE(!irqs_disabled());
505         loongson_smp_finish();
506
507         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
508 }
509
510 void __init smp_cpus_done(unsigned int max_cpus)
511 {
512 }
513
514 static void stop_this_cpu(void *dummy)
515 {
516         set_cpu_online(smp_processor_id(), false);
517         calculate_cpu_foreign_map();
518         local_irq_disable();
519         while (true);
520 }
521
522 void smp_send_stop(void)
523 {
524         smp_call_function(stop_this_cpu, NULL, 0);
525 }
526
527 int setup_profiling_timer(unsigned int multiplier)
528 {
529         return 0;
530 }
531
532 static void flush_tlb_all_ipi(void *info)
533 {
534         local_flush_tlb_all();
535 }
536
537 void flush_tlb_all(void)
538 {
539         on_each_cpu(flush_tlb_all_ipi, NULL, 1);
540 }
541
542 static void flush_tlb_mm_ipi(void *mm)
543 {
544         local_flush_tlb_mm((struct mm_struct *)mm);
545 }
546
547 void flush_tlb_mm(struct mm_struct *mm)
548 {
549         if (atomic_read(&mm->mm_users) == 0)
550                 return;         /* happens as a result of exit_mmap() */
551
552         preempt_disable();
553
554         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
555                 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1);
556         } else {
557                 unsigned int cpu;
558
559                 for_each_online_cpu(cpu) {
560                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
561                                 cpu_context(cpu, mm) = 0;
562                 }
563                 local_flush_tlb_mm(mm);
564         }
565
566         preempt_enable();
567 }
568
569 struct flush_tlb_data {
570         struct vm_area_struct *vma;
571         unsigned long addr1;
572         unsigned long addr2;
573 };
574
575 static void flush_tlb_range_ipi(void *info)
576 {
577         struct flush_tlb_data *fd = info;
578
579         local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
580 }
581
582 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
583 {
584         struct mm_struct *mm = vma->vm_mm;
585
586         preempt_disable();
587         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
588                 struct flush_tlb_data fd = {
589                         .vma = vma,
590                         .addr1 = start,
591                         .addr2 = end,
592                 };
593
594                 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1);
595         } else {
596                 unsigned int cpu;
597
598                 for_each_online_cpu(cpu) {
599                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
600                                 cpu_context(cpu, mm) = 0;
601                 }
602                 local_flush_tlb_range(vma, start, end);
603         }
604         preempt_enable();
605 }
606
607 static void flush_tlb_kernel_range_ipi(void *info)
608 {
609         struct flush_tlb_data *fd = info;
610
611         local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
612 }
613
614 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
615 {
616         struct flush_tlb_data fd = {
617                 .addr1 = start,
618                 .addr2 = end,
619         };
620
621         on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
622 }
623
624 static void flush_tlb_page_ipi(void *info)
625 {
626         struct flush_tlb_data *fd = info;
627
628         local_flush_tlb_page(fd->vma, fd->addr1);
629 }
630
631 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
632 {
633         preempt_disable();
634         if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
635                 struct flush_tlb_data fd = {
636                         .vma = vma,
637                         .addr1 = page,
638                 };
639
640                 on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1);
641         } else {
642                 unsigned int cpu;
643
644                 for_each_online_cpu(cpu) {
645                         if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
646                                 cpu_context(cpu, vma->vm_mm) = 0;
647                 }
648                 local_flush_tlb_page(vma, page);
649         }
650         preempt_enable();
651 }
652 EXPORT_SYMBOL(flush_tlb_page);
653
654 static void flush_tlb_one_ipi(void *info)
655 {
656         unsigned long vaddr = (unsigned long) info;
657
658         local_flush_tlb_one(vaddr);
659 }
660
661 void flush_tlb_one(unsigned long vaddr)
662 {
663         on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1);
664 }
665 EXPORT_SYMBOL(flush_tlb_one);