GNU Linux-libre 4.14.265-gnu1
[releases.git] / arch / ia64 / mm / init.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Initialize MMU support.
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *      David Mosberger-Tang <davidm@hpl.hp.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10
11 #include <linux/bootmem.h>
12 #include <linux/efi.h>
13 #include <linux/elf.h>
14 #include <linux/memblock.h>
15 #include <linux/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/mmzone.h>
18 #include <linux/module.h>
19 #include <linux/personality.h>
20 #include <linux/reboot.h>
21 #include <linux/slab.h>
22 #include <linux/swap.h>
23 #include <linux/proc_fs.h>
24 #include <linux/bitops.h>
25 #include <linux/kexec.h>
26
27 #include <asm/dma.h>
28 #include <asm/io.h>
29 #include <asm/machvec.h>
30 #include <asm/numa.h>
31 #include <asm/patch.h>
32 #include <asm/pgalloc.h>
33 #include <asm/sal.h>
34 #include <asm/sections.h>
35 #include <asm/tlb.h>
36 #include <linux/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/mca.h>
39
40 extern void ia64_tlb_init (void);
41
42 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
43
44 #ifdef CONFIG_VIRTUAL_MEM_MAP
45 unsigned long VMALLOC_END = VMALLOC_END_INIT;
46 EXPORT_SYMBOL(VMALLOC_END);
47 struct page *vmem_map;
48 EXPORT_SYMBOL(vmem_map);
49 #endif
50
51 struct page *zero_page_memmap_ptr;      /* map entry for zero page */
52 EXPORT_SYMBOL(zero_page_memmap_ptr);
53
54 void
55 __ia64_sync_icache_dcache (pte_t pte)
56 {
57         unsigned long addr;
58         struct page *page;
59
60         page = pte_page(pte);
61         addr = (unsigned long) page_address(page);
62
63         if (test_bit(PG_arch_1, &page->flags))
64                 return;                         /* i-cache is already coherent with d-cache */
65
66         flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
67         set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
68 }
69
70 /*
71  * Since DMA is i-cache coherent, any (complete) pages that were written via
72  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
73  * flush them when they get mapped into an executable vm-area.
74  */
75 void
76 dma_mark_clean(void *addr, size_t size)
77 {
78         unsigned long pg_addr, end;
79
80         pg_addr = PAGE_ALIGN((unsigned long) addr);
81         end = (unsigned long) addr + size;
82         while (pg_addr + PAGE_SIZE <= end) {
83                 struct page *page = virt_to_page(pg_addr);
84                 set_bit(PG_arch_1, &page->flags);
85                 pg_addr += PAGE_SIZE;
86         }
87 }
88
89 inline void
90 ia64_set_rbs_bot (void)
91 {
92         unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
93
94         if (stack_size > MAX_USER_STACK_SIZE)
95                 stack_size = MAX_USER_STACK_SIZE;
96         current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
97 }
98
99 /*
100  * This performs some platform-dependent address space initialization.
101  * On IA-64, we want to setup the VM area for the register backing
102  * store (which grows upwards) and install the gateway page which is
103  * used for signal trampolines, etc.
104  */
105 void
106 ia64_init_addr_space (void)
107 {
108         struct vm_area_struct *vma;
109
110         ia64_set_rbs_bot();
111
112         /*
113          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
114          * the problem.  When the process attempts to write to the register backing store
115          * for the first time, it will get a SEGFAULT in this case.
116          */
117         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
118         if (vma) {
119                 INIT_LIST_HEAD(&vma->anon_vma_chain);
120                 vma->vm_mm = current->mm;
121                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
122                 vma->vm_end = vma->vm_start + PAGE_SIZE;
123                 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
124                 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
125                 down_write(&current->mm->mmap_sem);
126                 if (insert_vm_struct(current->mm, vma)) {
127                         up_write(&current->mm->mmap_sem);
128                         kmem_cache_free(vm_area_cachep, vma);
129                         return;
130                 }
131                 up_write(&current->mm->mmap_sem);
132         }
133
134         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
135         if (!(current->personality & MMAP_PAGE_ZERO)) {
136                 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
137                 if (vma) {
138                         INIT_LIST_HEAD(&vma->anon_vma_chain);
139                         vma->vm_mm = current->mm;
140                         vma->vm_end = PAGE_SIZE;
141                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
142                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
143                                         VM_DONTEXPAND | VM_DONTDUMP;
144                         down_write(&current->mm->mmap_sem);
145                         if (insert_vm_struct(current->mm, vma)) {
146                                 up_write(&current->mm->mmap_sem);
147                                 kmem_cache_free(vm_area_cachep, vma);
148                                 return;
149                         }
150                         up_write(&current->mm->mmap_sem);
151                 }
152         }
153 }
154
155 void
156 free_initmem (void)
157 {
158         free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
159                            -1, "unused kernel");
160 }
161
162 void __init
163 free_initrd_mem (unsigned long start, unsigned long end)
164 {
165         /*
166          * EFI uses 4KB pages while the kernel can use 4KB or bigger.
167          * Thus EFI and the kernel may have different page sizes. It is
168          * therefore possible to have the initrd share the same page as
169          * the end of the kernel (given current setup).
170          *
171          * To avoid freeing/using the wrong page (kernel sized) we:
172          *      - align up the beginning of initrd
173          *      - align down the end of initrd
174          *
175          *  |             |
176          *  |=============| a000
177          *  |             |
178          *  |             |
179          *  |             | 9000
180          *  |/////////////|
181          *  |/////////////|
182          *  |=============| 8000
183          *  |///INITRD////|
184          *  |/////////////|
185          *  |/////////////| 7000
186          *  |             |
187          *  |KKKKKKKKKKKKK|
188          *  |=============| 6000
189          *  |KKKKKKKKKKKKK|
190          *  |KKKKKKKKKKKKK|
191          *  K=kernel using 8KB pages
192          *
193          * In this example, we must free page 8000 ONLY. So we must align up
194          * initrd_start and keep initrd_end as is.
195          */
196         start = PAGE_ALIGN(start);
197         end = end & PAGE_MASK;
198
199         if (start < end)
200                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
201
202         for (; start < end; start += PAGE_SIZE) {
203                 if (!virt_addr_valid(start))
204                         continue;
205                 free_reserved_page(virt_to_page(start));
206         }
207 }
208
209 /*
210  * This installs a clean page in the kernel's page table.
211  */
212 static struct page * __init
213 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
214 {
215         pgd_t *pgd;
216         pud_t *pud;
217         pmd_t *pmd;
218         pte_t *pte;
219
220         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
221
222         {
223                 pud = pud_alloc(&init_mm, pgd, address);
224                 if (!pud)
225                         goto out;
226                 pmd = pmd_alloc(&init_mm, pud, address);
227                 if (!pmd)
228                         goto out;
229                 pte = pte_alloc_kernel(pmd, address);
230                 if (!pte)
231                         goto out;
232                 if (!pte_none(*pte))
233                         goto out;
234                 set_pte(pte, mk_pte(page, pgprot));
235         }
236   out:
237         /* no need for flush_tlb */
238         return page;
239 }
240
241 static void __init
242 setup_gate (void)
243 {
244         struct page *page;
245
246         /*
247          * Map the gate page twice: once read-only to export the ELF
248          * headers etc. and once execute-only page to enable
249          * privilege-promotion via "epc":
250          */
251         page = virt_to_page(ia64_imva(__start_gate_section));
252         put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
253 #ifdef HAVE_BUGGY_SEGREL
254         page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
255         put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
256 #else
257         put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
258         /* Fill in the holes (if any) with read-only zero pages: */
259         {
260                 unsigned long addr;
261
262                 for (addr = GATE_ADDR + PAGE_SIZE;
263                      addr < GATE_ADDR + PERCPU_PAGE_SIZE;
264                      addr += PAGE_SIZE)
265                 {
266                         put_kernel_page(ZERO_PAGE(0), addr,
267                                         PAGE_READONLY);
268                         put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
269                                         PAGE_READONLY);
270                 }
271         }
272 #endif
273         ia64_patch_gate();
274 }
275
276 static struct vm_area_struct gate_vma;
277
278 static int __init gate_vma_init(void)
279 {
280         gate_vma.vm_mm = NULL;
281         gate_vma.vm_start = FIXADDR_USER_START;
282         gate_vma.vm_end = FIXADDR_USER_END;
283         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
284         gate_vma.vm_page_prot = __P101;
285
286         return 0;
287 }
288 __initcall(gate_vma_init);
289
290 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
291 {
292         return &gate_vma;
293 }
294
295 int in_gate_area_no_mm(unsigned long addr)
296 {
297         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
298                 return 1;
299         return 0;
300 }
301
302 int in_gate_area(struct mm_struct *mm, unsigned long addr)
303 {
304         return in_gate_area_no_mm(addr);
305 }
306
307 void ia64_mmu_init(void *my_cpu_data)
308 {
309         unsigned long pta, impl_va_bits;
310         extern void tlb_init(void);
311
312 #ifdef CONFIG_DISABLE_VHPT
313 #       define VHPT_ENABLE_BIT  0
314 #else
315 #       define VHPT_ENABLE_BIT  1
316 #endif
317
318         /*
319          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
320          * address space.  The IA-64 architecture guarantees that at least 50 bits of
321          * virtual address space are implemented but if we pick a large enough page size
322          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
323          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
324          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
325          * problem in practice.  Alternatively, we could truncate the top of the mapped
326          * address space to not permit mappings that would overlap with the VMLPT.
327          * --davidm 00/12/06
328          */
329 #       define pte_bits                 3
330 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
331         /*
332          * The virtual page table has to cover the entire implemented address space within
333          * a region even though not all of this space may be mappable.  The reason for
334          * this is that the Access bit and Dirty bit fault handlers perform
335          * non-speculative accesses to the virtual page table, so the address range of the
336          * virtual page table itself needs to be covered by virtual page table.
337          */
338 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
339 #       define POW2(n)                  (1ULL << (n))
340
341         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
342
343         if (impl_va_bits < 51 || impl_va_bits > 61)
344                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
345         /*
346          * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
347          * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
348          * the test makes sure that our mapped space doesn't overlap the
349          * unimplemented hole in the middle of the region.
350          */
351         if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
352             (mapped_space_bits > impl_va_bits - 1))
353                 panic("Cannot build a big enough virtual-linear page table"
354                       " to cover mapped address space.\n"
355                       " Try using a smaller page size.\n");
356
357
358         /* place the VMLPT at the end of each page-table mapped region: */
359         pta = POW2(61) - POW2(vmlpt_bits);
360
361         /*
362          * Set the (virtually mapped linear) page table address.  Bit
363          * 8 selects between the short and long format, bits 2-7 the
364          * size of the table, and bit 0 whether the VHPT walker is
365          * enabled.
366          */
367         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
368
369         ia64_tlb_init();
370
371 #ifdef  CONFIG_HUGETLB_PAGE
372         ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
373         ia64_srlz_d();
374 #endif
375 }
376
377 #ifdef CONFIG_VIRTUAL_MEM_MAP
378 int vmemmap_find_next_valid_pfn(int node, int i)
379 {
380         unsigned long end_address, hole_next_pfn;
381         unsigned long stop_address;
382         pg_data_t *pgdat = NODE_DATA(node);
383
384         end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
385         end_address = PAGE_ALIGN(end_address);
386         stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
387
388         do {
389                 pgd_t *pgd;
390                 pud_t *pud;
391                 pmd_t *pmd;
392                 pte_t *pte;
393
394                 pgd = pgd_offset_k(end_address);
395                 if (pgd_none(*pgd)) {
396                         end_address += PGDIR_SIZE;
397                         continue;
398                 }
399
400                 pud = pud_offset(pgd, end_address);
401                 if (pud_none(*pud)) {
402                         end_address += PUD_SIZE;
403                         continue;
404                 }
405
406                 pmd = pmd_offset(pud, end_address);
407                 if (pmd_none(*pmd)) {
408                         end_address += PMD_SIZE;
409                         continue;
410                 }
411
412                 pte = pte_offset_kernel(pmd, end_address);
413 retry_pte:
414                 if (pte_none(*pte)) {
415                         end_address += PAGE_SIZE;
416                         pte++;
417                         if ((end_address < stop_address) &&
418                             (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
419                                 goto retry_pte;
420                         continue;
421                 }
422                 /* Found next valid vmem_map page */
423                 break;
424         } while (end_address < stop_address);
425
426         end_address = min(end_address, stop_address);
427         end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
428         hole_next_pfn = end_address / sizeof(struct page);
429         return hole_next_pfn - pgdat->node_start_pfn;
430 }
431
432 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
433 {
434         unsigned long address, start_page, end_page;
435         struct page *map_start, *map_end;
436         int node;
437         pgd_t *pgd;
438         pud_t *pud;
439         pmd_t *pmd;
440         pte_t *pte;
441
442         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
443         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
444
445         start_page = (unsigned long) map_start & PAGE_MASK;
446         end_page = PAGE_ALIGN((unsigned long) map_end);
447         node = paddr_to_nid(__pa(start));
448
449         for (address = start_page; address < end_page; address += PAGE_SIZE) {
450                 pgd = pgd_offset_k(address);
451                 if (pgd_none(*pgd))
452                         pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
453                 pud = pud_offset(pgd, address);
454
455                 if (pud_none(*pud))
456                         pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
457                 pmd = pmd_offset(pud, address);
458
459                 if (pmd_none(*pmd))
460                         pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
461                 pte = pte_offset_kernel(pmd, address);
462
463                 if (pte_none(*pte))
464                         set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
465                                              PAGE_KERNEL));
466         }
467         return 0;
468 }
469
470 struct memmap_init_callback_data {
471         struct page *start;
472         struct page *end;
473         int nid;
474         unsigned long zone;
475 };
476
477 static int __meminit
478 virtual_memmap_init(u64 start, u64 end, void *arg)
479 {
480         struct memmap_init_callback_data *args;
481         struct page *map_start, *map_end;
482
483         args = (struct memmap_init_callback_data *) arg;
484         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
485         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
486
487         if (map_start < args->start)
488                 map_start = args->start;
489         if (map_end > args->end)
490                 map_end = args->end;
491
492         /*
493          * We have to initialize "out of bounds" struct page elements that fit completely
494          * on the same pages that were allocated for the "in bounds" elements because they
495          * may be referenced later (and found to be "reserved").
496          */
497         map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
498         map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
499                     / sizeof(struct page));
500
501         if (map_start < map_end)
502                 memmap_init_zone((unsigned long)(map_end - map_start),
503                                  args->nid, args->zone, page_to_pfn(map_start),
504                                  MEMMAP_EARLY);
505         return 0;
506 }
507
508 void __meminit
509 memmap_init (unsigned long size, int nid, unsigned long zone,
510              unsigned long start_pfn)
511 {
512         if (!vmem_map)
513                 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
514         else {
515                 struct page *start;
516                 struct memmap_init_callback_data args;
517
518                 start = pfn_to_page(start_pfn);
519                 args.start = start;
520                 args.end = start + size;
521                 args.nid = nid;
522                 args.zone = zone;
523
524                 efi_memmap_walk(virtual_memmap_init, &args);
525         }
526 }
527
528 int
529 ia64_pfn_valid (unsigned long pfn)
530 {
531         char byte;
532         struct page *pg = pfn_to_page(pfn);
533
534         return     (__get_user(byte, (char __user *) pg) == 0)
535                 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
536                         || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
537 }
538 EXPORT_SYMBOL(ia64_pfn_valid);
539
540 int __init find_largest_hole(u64 start, u64 end, void *arg)
541 {
542         u64 *max_gap = arg;
543
544         static u64 last_end = PAGE_OFFSET;
545
546         /* NOTE: this algorithm assumes efi memmap table is ordered */
547
548         if (*max_gap < (start - last_end))
549                 *max_gap = start - last_end;
550         last_end = end;
551         return 0;
552 }
553
554 #endif /* CONFIG_VIRTUAL_MEM_MAP */
555
556 int __init register_active_ranges(u64 start, u64 len, int nid)
557 {
558         u64 end = start + len;
559
560 #ifdef CONFIG_KEXEC
561         if (start > crashk_res.start && start < crashk_res.end)
562                 start = crashk_res.end;
563         if (end > crashk_res.start && end < crashk_res.end)
564                 end = crashk_res.start;
565 #endif
566
567         if (start < end)
568                 memblock_add_node(__pa(start), end - start, nid);
569         return 0;
570 }
571
572 int
573 find_max_min_low_pfn (u64 start, u64 end, void *arg)
574 {
575         unsigned long pfn_start, pfn_end;
576 #ifdef CONFIG_FLATMEM
577         pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
578         pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
579 #else
580         pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
581         pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
582 #endif
583         min_low_pfn = min(min_low_pfn, pfn_start);
584         max_low_pfn = max(max_low_pfn, pfn_end);
585         return 0;
586 }
587
588 /*
589  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
590  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
591  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
592  * useful for performance testing, but conceivably could also come in handy for debugging
593  * purposes.
594  */
595
596 static int nolwsys __initdata;
597
598 static int __init
599 nolwsys_setup (char *s)
600 {
601         nolwsys = 1;
602         return 1;
603 }
604
605 __setup("nolwsys", nolwsys_setup);
606
607 void __init
608 mem_init (void)
609 {
610         int i;
611
612         BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
613         BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
614         BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
615
616 #ifdef CONFIG_PCI
617         /*
618          * This needs to be called _after_ the command line has been parsed but _before_
619          * any drivers that may need the PCI DMA interface are initialized or bootmem has
620          * been freed.
621          */
622         platform_dma_init();
623 #endif
624
625 #ifdef CONFIG_FLATMEM
626         BUG_ON(!mem_map);
627 #endif
628
629         set_max_mapnr(max_low_pfn);
630         high_memory = __va(max_low_pfn * PAGE_SIZE);
631         free_all_bootmem();
632         mem_init_print_info(NULL);
633
634         /*
635          * For fsyscall entrpoints with no light-weight handler, use the ordinary
636          * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
637          * code can tell them apart.
638          */
639         for (i = 0; i < NR_syscalls; ++i) {
640                 extern unsigned long fsyscall_table[NR_syscalls];
641                 extern unsigned long sys_call_table[NR_syscalls];
642
643                 if (!fsyscall_table[i] || nolwsys)
644                         fsyscall_table[i] = sys_call_table[i] | 1;
645         }
646         setup_gate();
647 }
648
649 #ifdef CONFIG_MEMORY_HOTPLUG
650 int arch_add_memory(int nid, u64 start, u64 size, bool want_memblock)
651 {
652         unsigned long start_pfn = start >> PAGE_SHIFT;
653         unsigned long nr_pages = size >> PAGE_SHIFT;
654         int ret;
655
656         ret = __add_pages(nid, start_pfn, nr_pages, want_memblock);
657         if (ret)
658                 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
659                        __func__,  ret);
660
661         return ret;
662 }
663
664 #ifdef CONFIG_MEMORY_HOTREMOVE
665 int arch_remove_memory(u64 start, u64 size)
666 {
667         unsigned long start_pfn = start >> PAGE_SHIFT;
668         unsigned long nr_pages = size >> PAGE_SHIFT;
669         struct zone *zone;
670         int ret;
671
672         zone = page_zone(pfn_to_page(start_pfn));
673         ret = __remove_pages(zone, start_pfn, nr_pages);
674         if (ret)
675                 pr_warn("%s: Problem encountered in __remove_pages() as"
676                         " ret=%d\n", __func__,  ret);
677
678         return ret;
679 }
680 #endif
681 #endif