GNU Linux-libre 5.4.274-gnu1
[releases.git] / arch / ia64 / kernel / smpboot.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP boot-related support
4  *
5  * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
6  *      David Mosberger-Tang <davidm@hpl.hp.com>
7  * Copyright (C) 2001, 2004-2005 Intel Corp
8  *      Rohit Seth <rohit.seth@intel.com>
9  *      Suresh Siddha <suresh.b.siddha@intel.com>
10  *      Gordon Jin <gordon.jin@intel.com>
11  *      Ashok Raj  <ashok.raj@intel.com>
12  *
13  * 01/05/16 Rohit Seth <rohit.seth@intel.com>   Moved SMP booting functions from smp.c to here.
14  * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
15  * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
16  *                                              smp_boot_cpus()/smp_commence() is replaced by
17  *                                              smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
18  * 04/06/21 Ashok Raj           <ashok.raj@intel.com> Added CPU Hotplug Support
19  * 04/12/26 Jin Gordon <gordon.jin@intel.com>
20  * 04/12/26 Rohit Seth <rohit.seth@intel.com>
21  *                                              Add multi-threading and multi-core detection
22  * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
23  *                                              Setup cpu_sibling_map and cpu_core_map
24  */
25
26 #include <linux/module.h>
27 #include <linux/acpi.h>
28 #include <linux/memblock.h>
29 #include <linux/cpu.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/irq.h>
34 #include <linux/kernel.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/mm.h>
37 #include <linux/notifier.h>
38 #include <linux/smp.h>
39 #include <linux/spinlock.h>
40 #include <linux/efi.h>
41 #include <linux/percpu.h>
42 #include <linux/bitops.h>
43
44 #include <linux/atomic.h>
45 #include <asm/cache.h>
46 #include <asm/current.h>
47 #include <asm/delay.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/mca.h>
51 #include <asm/page.h>
52 #include <asm/pgalloc.h>
53 #include <asm/pgtable.h>
54 #include <asm/processor.h>
55 #include <asm/ptrace.h>
56 #include <asm/sal.h>
57 #include <asm/tlbflush.h>
58 #include <asm/unistd.h>
59
60 #define SMP_DEBUG 0
61
62 #if SMP_DEBUG
63 #define Dprintk(x...)  printk(x)
64 #else
65 #define Dprintk(x...)
66 #endif
67
68 #ifdef CONFIG_HOTPLUG_CPU
69 #ifdef CONFIG_PERMIT_BSP_REMOVE
70 #define bsp_remove_ok   1
71 #else
72 #define bsp_remove_ok   0
73 #endif
74
75 /*
76  * Global array allocated for NR_CPUS at boot time
77  */
78 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
79
80 /*
81  * start_ap in head.S uses this to store current booting cpu
82  * info.
83  */
84 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
85
86 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
87
88 #else
89 #define set_brendez_area(x)
90 #endif
91
92
93 /*
94  * ITC synchronization related stuff:
95  */
96 #define MASTER  (0)
97 #define SLAVE   (SMP_CACHE_BYTES/8)
98
99 #define NUM_ROUNDS      64      /* magic value */
100 #define NUM_ITERS       5       /* likewise */
101
102 static DEFINE_SPINLOCK(itc_sync_lock);
103 static volatile unsigned long go[SLAVE + 1];
104
105 #define DEBUG_ITC_SYNC  0
106
107 extern void start_ap (void);
108 extern unsigned long ia64_iobase;
109
110 struct task_struct *task_for_booting_cpu;
111
112 /*
113  * State for each CPU
114  */
115 DEFINE_PER_CPU(int, cpu_state);
116
117 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
118 EXPORT_SYMBOL(cpu_core_map);
119 DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
120 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
121
122 int smp_num_siblings = 1;
123
124 /* which logical CPU number maps to which CPU (physical APIC ID) */
125 volatile int ia64_cpu_to_sapicid[NR_CPUS];
126 EXPORT_SYMBOL(ia64_cpu_to_sapicid);
127
128 static cpumask_t cpu_callin_map;
129
130 struct smp_boot_data smp_boot_data __initdata;
131
132 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
133
134 char __initdata no_int_routing;
135
136 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
137
138 #ifdef CONFIG_FORCE_CPEI_RETARGET
139 #define CPEI_OVERRIDE_DEFAULT   (1)
140 #else
141 #define CPEI_OVERRIDE_DEFAULT   (0)
142 #endif
143
144 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
145
146 static int __init
147 cmdl_force_cpei(char *str)
148 {
149         int value=0;
150
151         get_option (&str, &value);
152         force_cpei_retarget = value;
153
154         return 1;
155 }
156
157 __setup("force_cpei=", cmdl_force_cpei);
158
159 static int __init
160 nointroute (char *str)
161 {
162         no_int_routing = 1;
163         printk ("no_int_routing on\n");
164         return 1;
165 }
166
167 __setup("nointroute", nointroute);
168
169 static void fix_b0_for_bsp(void)
170 {
171 #ifdef CONFIG_HOTPLUG_CPU
172         int cpuid;
173         static int fix_bsp_b0 = 1;
174
175         cpuid = smp_processor_id();
176
177         /*
178          * Cache the b0 value on the first AP that comes up
179          */
180         if (!(fix_bsp_b0 && cpuid))
181                 return;
182
183         sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
184         printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
185
186         fix_bsp_b0 = 0;
187 #endif
188 }
189
190 void
191 sync_master (void *arg)
192 {
193         unsigned long flags, i;
194
195         go[MASTER] = 0;
196
197         local_irq_save(flags);
198         {
199                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
200                         while (!go[MASTER])
201                                 cpu_relax();
202                         go[MASTER] = 0;
203                         go[SLAVE] = ia64_get_itc();
204                 }
205         }
206         local_irq_restore(flags);
207 }
208
209 /*
210  * Return the number of cycles by which our itc differs from the itc on the master
211  * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
212  * negative that it is behind.
213  */
214 static inline long
215 get_delta (long *rt, long *master)
216 {
217         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
218         unsigned long tcenter, t0, t1, tm;
219         long i;
220
221         for (i = 0; i < NUM_ITERS; ++i) {
222                 t0 = ia64_get_itc();
223                 go[MASTER] = 1;
224                 while (!(tm = go[SLAVE]))
225                         cpu_relax();
226                 go[SLAVE] = 0;
227                 t1 = ia64_get_itc();
228
229                 if (t1 - t0 < best_t1 - best_t0)
230                         best_t0 = t0, best_t1 = t1, best_tm = tm;
231         }
232
233         *rt = best_t1 - best_t0;
234         *master = best_tm - best_t0;
235
236         /* average best_t0 and best_t1 without overflow: */
237         tcenter = (best_t0/2 + best_t1/2);
238         if (best_t0 % 2 + best_t1 % 2 == 2)
239                 ++tcenter;
240         return tcenter - best_tm;
241 }
242
243 /*
244  * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
245  * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
246  * unaccounted-for errors (such as getting a machine check in the middle of a calibration
247  * step).  The basic idea is for the slave to ask the master what itc value it has and to
248  * read its own itc before and after the master responds.  Each iteration gives us three
249  * timestamps:
250  *
251  *      slave           master
252  *
253  *      t0 ---\
254  *             ---\
255  *                 --->
256  *                      tm
257  *                 /---
258  *             /---
259  *      t1 <---
260  *
261  *
262  * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
263  * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
264  * between the slave and the master is symmetric.  Even if the interconnect were
265  * asymmetric, we would still know that the synchronization error is smaller than the
266  * roundtrip latency (t0 - t1).
267  *
268  * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
269  * within one or two cycles.  However, we can only *guarantee* that the synchronization is
270  * accurate to within a round-trip time, which is typically in the range of several
271  * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
272  * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
273  * than half a micro second or so.
274  */
275 void
276 ia64_sync_itc (unsigned int master)
277 {
278         long i, delta, adj, adjust_latency = 0, done = 0;
279         unsigned long flags, rt, master_time_stamp, bound;
280 #if DEBUG_ITC_SYNC
281         struct {
282                 long rt;        /* roundtrip time */
283                 long master;    /* master's timestamp */
284                 long diff;      /* difference between midpoint and master's timestamp */
285                 long lat;       /* estimate of itc adjustment latency */
286         } t[NUM_ROUNDS];
287 #endif
288
289         /*
290          * Make sure local timer ticks are disabled while we sync.  If
291          * they were enabled, we'd have to worry about nasty issues
292          * like setting the ITC ahead of (or a long time before) the
293          * next scheduled tick.
294          */
295         BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
296
297         go[MASTER] = 1;
298
299         if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
300                 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
301                 return;
302         }
303
304         while (go[MASTER])
305                 cpu_relax();    /* wait for master to be ready */
306
307         spin_lock_irqsave(&itc_sync_lock, flags);
308         {
309                 for (i = 0; i < NUM_ROUNDS; ++i) {
310                         delta = get_delta(&rt, &master_time_stamp);
311                         if (delta == 0) {
312                                 done = 1;       /* let's lock on to this... */
313                                 bound = rt;
314                         }
315
316                         if (!done) {
317                                 if (i > 0) {
318                                         adjust_latency += -delta;
319                                         adj = -delta + adjust_latency/4;
320                                 } else
321                                         adj = -delta;
322
323                                 ia64_set_itc(ia64_get_itc() + adj);
324                         }
325 #if DEBUG_ITC_SYNC
326                         t[i].rt = rt;
327                         t[i].master = master_time_stamp;
328                         t[i].diff = delta;
329                         t[i].lat = adjust_latency/4;
330 #endif
331                 }
332         }
333         spin_unlock_irqrestore(&itc_sync_lock, flags);
334
335 #if DEBUG_ITC_SYNC
336         for (i = 0; i < NUM_ROUNDS; ++i)
337                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
338                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
339 #endif
340
341         printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
342                "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
343 }
344
345 /*
346  * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
347  */
348 static inline void smp_setup_percpu_timer(void)
349 {
350 }
351
352 static void
353 smp_callin (void)
354 {
355         int cpuid, phys_id, itc_master;
356         struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
357         extern void ia64_init_itm(void);
358         extern volatile int time_keeper_id;
359
360 #ifdef CONFIG_PERFMON
361         extern void pfm_init_percpu(void);
362 #endif
363
364         cpuid = smp_processor_id();
365         phys_id = hard_smp_processor_id();
366         itc_master = time_keeper_id;
367
368         if (cpu_online(cpuid)) {
369                 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
370                        phys_id, cpuid);
371                 BUG();
372         }
373
374         fix_b0_for_bsp();
375
376         /*
377          * numa_node_id() works after this.
378          */
379         set_numa_node(cpu_to_node_map[cpuid]);
380         set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
381
382         spin_lock(&vector_lock);
383         /* Setup the per cpu irq handling data structures */
384         __setup_vector_irq(cpuid);
385         notify_cpu_starting(cpuid);
386         set_cpu_online(cpuid, true);
387         per_cpu(cpu_state, cpuid) = CPU_ONLINE;
388         spin_unlock(&vector_lock);
389
390         smp_setup_percpu_timer();
391
392         ia64_mca_cmc_vector_setup();    /* Setup vector on AP */
393
394 #ifdef CONFIG_PERFMON
395         pfm_init_percpu();
396 #endif
397
398         local_irq_enable();
399
400         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
401                 /*
402                  * Synchronize the ITC with the BP.  Need to do this after irqs are
403                  * enabled because ia64_sync_itc() calls smp_call_function_single(), which
404                  * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
405                  * local_bh_enable(), which bugs out if irqs are not enabled...
406                  */
407                 Dprintk("Going to syncup ITC with ITC Master.\n");
408                 ia64_sync_itc(itc_master);
409         }
410
411         /*
412          * Get our bogomips.
413          */
414         ia64_init_itm();
415
416         /*
417          * Delay calibration can be skipped if new processor is identical to the
418          * previous processor.
419          */
420         last_cpuinfo = cpu_data(cpuid - 1);
421         this_cpuinfo = local_cpu_data;
422         if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
423             last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
424             last_cpuinfo->features != this_cpuinfo->features ||
425             last_cpuinfo->revision != this_cpuinfo->revision ||
426             last_cpuinfo->family != this_cpuinfo->family ||
427             last_cpuinfo->archrev != this_cpuinfo->archrev ||
428             last_cpuinfo->model != this_cpuinfo->model)
429                 calibrate_delay();
430         local_cpu_data->loops_per_jiffy = loops_per_jiffy;
431
432         /*
433          * Allow the master to continue.
434          */
435         cpumask_set_cpu(cpuid, &cpu_callin_map);
436         Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
437 }
438
439
440 /*
441  * Activate a secondary processor.  head.S calls this.
442  */
443 int
444 start_secondary (void *unused)
445 {
446         /* Early console may use I/O ports */
447         ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
448 #ifndef CONFIG_PRINTK_TIME
449         Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
450 #endif
451         efi_map_pal_code();
452         cpu_init();
453         preempt_disable();
454         smp_callin();
455
456         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
457         return 0;
458 }
459
460 static int
461 do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
462 {
463         int timeout;
464
465         task_for_booting_cpu = idle;
466         Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
467
468         set_brendez_area(cpu);
469         ia64_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
470
471         /*
472          * Wait 10s total for the AP to start
473          */
474         Dprintk("Waiting on callin_map ...");
475         for (timeout = 0; timeout < 100000; timeout++) {
476                 if (cpumask_test_cpu(cpu, &cpu_callin_map))
477                         break;  /* It has booted */
478                 barrier(); /* Make sure we re-read cpu_callin_map */
479                 udelay(100);
480         }
481         Dprintk("\n");
482
483         if (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
484                 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
485                 ia64_cpu_to_sapicid[cpu] = -1;
486                 set_cpu_online(cpu, false);  /* was set in smp_callin() */
487                 return -EINVAL;
488         }
489         return 0;
490 }
491
492 static int __init
493 decay (char *str)
494 {
495         int ticks;
496         get_option (&str, &ticks);
497         return 1;
498 }
499
500 __setup("decay=", decay);
501
502 /*
503  * Initialize the logical CPU number to SAPICID mapping
504  */
505 void __init
506 smp_build_cpu_map (void)
507 {
508         int sapicid, cpu, i;
509         int boot_cpu_id = hard_smp_processor_id();
510
511         for (cpu = 0; cpu < NR_CPUS; cpu++) {
512                 ia64_cpu_to_sapicid[cpu] = -1;
513         }
514
515         ia64_cpu_to_sapicid[0] = boot_cpu_id;
516         init_cpu_present(cpumask_of(0));
517         set_cpu_possible(0, true);
518         for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
519                 sapicid = smp_boot_data.cpu_phys_id[i];
520                 if (sapicid == boot_cpu_id)
521                         continue;
522                 set_cpu_present(cpu, true);
523                 set_cpu_possible(cpu, true);
524                 ia64_cpu_to_sapicid[cpu] = sapicid;
525                 cpu++;
526         }
527 }
528
529 /*
530  * Cycle through the APs sending Wakeup IPIs to boot each.
531  */
532 void __init
533 smp_prepare_cpus (unsigned int max_cpus)
534 {
535         int boot_cpu_id = hard_smp_processor_id();
536
537         /*
538          * Initialize the per-CPU profiling counter/multiplier
539          */
540
541         smp_setup_percpu_timer();
542
543         cpumask_set_cpu(0, &cpu_callin_map);
544
545         local_cpu_data->loops_per_jiffy = loops_per_jiffy;
546         ia64_cpu_to_sapicid[0] = boot_cpu_id;
547
548         printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
549
550         current_thread_info()->cpu = 0;
551
552         /*
553          * If SMP should be disabled, then really disable it!
554          */
555         if (!max_cpus) {
556                 printk(KERN_INFO "SMP mode deactivated.\n");
557                 init_cpu_online(cpumask_of(0));
558                 init_cpu_present(cpumask_of(0));
559                 init_cpu_possible(cpumask_of(0));
560                 return;
561         }
562 }
563
564 void smp_prepare_boot_cpu(void)
565 {
566         set_cpu_online(smp_processor_id(), true);
567         cpumask_set_cpu(smp_processor_id(), &cpu_callin_map);
568         set_numa_node(cpu_to_node_map[smp_processor_id()]);
569         per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
570 }
571
572 #ifdef CONFIG_HOTPLUG_CPU
573 static inline void
574 clear_cpu_sibling_map(int cpu)
575 {
576         int i;
577
578         for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
579                 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
580         for_each_cpu(i, &cpu_core_map[cpu])
581                 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
582
583         per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
584 }
585
586 static void
587 remove_siblinginfo(int cpu)
588 {
589         int last = 0;
590
591         if (cpu_data(cpu)->threads_per_core == 1 &&
592             cpu_data(cpu)->cores_per_socket == 1) {
593                 cpumask_clear_cpu(cpu, &cpu_core_map[cpu]);
594                 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
595                 return;
596         }
597
598         last = (cpumask_weight(&cpu_core_map[cpu]) == 1 ? 1 : 0);
599
600         /* remove it from all sibling map's */
601         clear_cpu_sibling_map(cpu);
602 }
603
604 extern void fixup_irqs(void);
605
606 int migrate_platform_irqs(unsigned int cpu)
607 {
608         int new_cpei_cpu;
609         struct irq_data *data = NULL;
610         const struct cpumask *mask;
611         int             retval = 0;
612
613         /*
614          * dont permit CPEI target to removed.
615          */
616         if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
617                 printk ("CPU (%d) is CPEI Target\n", cpu);
618                 if (can_cpei_retarget()) {
619                         /*
620                          * Now re-target the CPEI to a different processor
621                          */
622                         new_cpei_cpu = cpumask_any(cpu_online_mask);
623                         mask = cpumask_of(new_cpei_cpu);
624                         set_cpei_target_cpu(new_cpei_cpu);
625                         data = irq_get_irq_data(ia64_cpe_irq);
626                         /*
627                          * Switch for now, immediately, we need to do fake intr
628                          * as other interrupts, but need to study CPEI behaviour with
629                          * polling before making changes.
630                          */
631                         if (data && data->chip) {
632                                 data->chip->irq_disable(data);
633                                 data->chip->irq_set_affinity(data, mask, false);
634                                 data->chip->irq_enable(data);
635                                 printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
636                         }
637                 }
638                 if (!data) {
639                         printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
640                         retval = -EBUSY;
641                 }
642         }
643         return retval;
644 }
645
646 /* must be called with cpucontrol mutex held */
647 int __cpu_disable(void)
648 {
649         int cpu = smp_processor_id();
650
651         /*
652          * dont permit boot processor for now
653          */
654         if (cpu == 0 && !bsp_remove_ok) {
655                 printk ("Your platform does not support removal of BSP\n");
656                 return (-EBUSY);
657         }
658
659         set_cpu_online(cpu, false);
660
661         if (migrate_platform_irqs(cpu)) {
662                 set_cpu_online(cpu, true);
663                 return -EBUSY;
664         }
665
666         remove_siblinginfo(cpu);
667         fixup_irqs();
668         local_flush_tlb_all();
669         cpumask_clear_cpu(cpu, &cpu_callin_map);
670         return 0;
671 }
672
673 void __cpu_die(unsigned int cpu)
674 {
675         unsigned int i;
676
677         for (i = 0; i < 100; i++) {
678                 /* They ack this in play_dead by setting CPU_DEAD */
679                 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
680                 {
681                         printk ("CPU %d is now offline\n", cpu);
682                         return;
683                 }
684                 msleep(100);
685         }
686         printk(KERN_ERR "CPU %u didn't die...\n", cpu);
687 }
688 #endif /* CONFIG_HOTPLUG_CPU */
689
690 void
691 smp_cpus_done (unsigned int dummy)
692 {
693         int cpu;
694         unsigned long bogosum = 0;
695
696         /*
697          * Allow the user to impress friends.
698          */
699
700         for_each_online_cpu(cpu) {
701                 bogosum += cpu_data(cpu)->loops_per_jiffy;
702         }
703
704         printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
705                (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
706 }
707
708 static inline void set_cpu_sibling_map(int cpu)
709 {
710         int i;
711
712         for_each_online_cpu(i) {
713                 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
714                         cpumask_set_cpu(i, &cpu_core_map[cpu]);
715                         cpumask_set_cpu(cpu, &cpu_core_map[i]);
716                         if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
717                                 cpumask_set_cpu(i,
718                                                 &per_cpu(cpu_sibling_map, cpu));
719                                 cpumask_set_cpu(cpu,
720                                                 &per_cpu(cpu_sibling_map, i));
721                         }
722                 }
723         }
724 }
725
726 int
727 __cpu_up(unsigned int cpu, struct task_struct *tidle)
728 {
729         int ret;
730         int sapicid;
731
732         sapicid = ia64_cpu_to_sapicid[cpu];
733         if (sapicid == -1)
734                 return -EINVAL;
735
736         /*
737          * Already booted cpu? not valid anymore since we dont
738          * do idle loop tightspin anymore.
739          */
740         if (cpumask_test_cpu(cpu, &cpu_callin_map))
741                 return -EINVAL;
742
743         per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
744         /* Processor goes to start_secondary(), sets online flag */
745         ret = do_boot_cpu(sapicid, cpu, tidle);
746         if (ret < 0)
747                 return ret;
748
749         if (cpu_data(cpu)->threads_per_core == 1 &&
750             cpu_data(cpu)->cores_per_socket == 1) {
751                 cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
752                 cpumask_set_cpu(cpu, &cpu_core_map[cpu]);
753                 return 0;
754         }
755
756         set_cpu_sibling_map(cpu);
757
758         return 0;
759 }
760
761 /*
762  * Assume that CPUs have been discovered by some platform-dependent interface.  For
763  * SoftSDV/Lion, that would be ACPI.
764  *
765  * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
766  */
767 void __init
768 init_smp_config(void)
769 {
770         struct fptr {
771                 unsigned long fp;
772                 unsigned long gp;
773         } *ap_startup;
774         long sal_ret;
775
776         /* Tell SAL where to drop the APs.  */
777         ap_startup = (struct fptr *) start_ap;
778         sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
779                                        ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
780         if (sal_ret < 0)
781                 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
782                        ia64_sal_strerror(sal_ret));
783 }
784
785 /*
786  * identify_siblings(cpu) gets called from identify_cpu. This populates the 
787  * information related to logical execution units in per_cpu_data structure.
788  */
789 void identify_siblings(struct cpuinfo_ia64 *c)
790 {
791         long status;
792         u16 pltid;
793         pal_logical_to_physical_t info;
794
795         status = ia64_pal_logical_to_phys(-1, &info);
796         if (status != PAL_STATUS_SUCCESS) {
797                 if (status != PAL_STATUS_UNIMPLEMENTED) {
798                         printk(KERN_ERR
799                                 "ia64_pal_logical_to_phys failed with %ld\n",
800                                 status);
801                         return;
802                 }
803
804                 info.overview_ppid = 0;
805                 info.overview_cpp  = 1;
806                 info.overview_tpc  = 1;
807         }
808
809         status = ia64_sal_physical_id_info(&pltid);
810         if (status != PAL_STATUS_SUCCESS) {
811                 if (status != PAL_STATUS_UNIMPLEMENTED)
812                         printk(KERN_ERR
813                                 "ia64_sal_pltid failed with %ld\n",
814                                 status);
815                 return;
816         }
817
818         c->socket_id =  (pltid << 8) | info.overview_ppid;
819
820         if (info.overview_cpp == 1 && info.overview_tpc == 1)
821                 return;
822
823         c->cores_per_socket = info.overview_cpp;
824         c->threads_per_core = info.overview_tpc;
825         c->num_log = info.overview_num_log;
826
827         c->core_id = info.log1_cid;
828         c->thread_id = info.log1_tid;
829 }
830
831 /*
832  * returns non zero, if multi-threading is enabled
833  * on at least one physical package. Due to hotplug cpu
834  * and (maxcpus=), all threads may not necessarily be enabled
835  * even though the processor supports multi-threading.
836  */
837 int is_multithreading_enabled(void)
838 {
839         int i, j;
840
841         for_each_present_cpu(i) {
842                 for_each_present_cpu(j) {
843                         if (j == i)
844                                 continue;
845                         if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
846                                 if (cpu_data(j)->core_id == cpu_data(i)->core_id)
847                                         return 1;
848                         }
849                 }
850         }
851         return 0;
852 }
853 EXPORT_SYMBOL_GPL(is_multithreading_enabled);