GNU Linux-libre 5.10.217-gnu1
[releases.git] / arch / ia64 / kernel / mca.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * File:        mca.c
4  * Purpose:     Generic MCA handling layer
5  *
6  * Copyright (C) 2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *
9  * Copyright (C) 2002 Dell Inc.
10  * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
11  *
12  * Copyright (C) 2002 Intel
13  * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
14  *
15  * Copyright (C) 2001 Intel
16  * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
17  *
18  * Copyright (C) 2000 Intel
19  * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
20  *
21  * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
22  * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
23  *
24  * Copyright (C) 2006 FUJITSU LIMITED
25  * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
26  *
27  * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
28  *            Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
29  *            added min save state dump, added INIT handler.
30  *
31  * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
32  *            Added setup of CMCI and CPEI IRQs, logging of corrected platform
33  *            errors, completed code for logging of corrected & uncorrected
34  *            machine check errors, and updated for conformance with Nov. 2000
35  *            revision of the SAL 3.0 spec.
36  *
37  * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
38  *            Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
39  *            set SAL default return values, changed error record structure to
40  *            linked list, added init call to sal_get_state_info_size().
41  *
42  * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
43  *            GUID cleanups.
44  *
45  * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
46  *            Added INIT backtrace support.
47  *
48  * 2003-12-08 Keith Owens <kaos@sgi.com>
49  *            smp_call_function() must not be called from interrupt context
50  *            (can deadlock on tasklist_lock).
51  *            Use keventd to call smp_call_function().
52  *
53  * 2004-02-01 Keith Owens <kaos@sgi.com>
54  *            Avoid deadlock when using printk() for MCA and INIT records.
55  *            Delete all record printing code, moved to salinfo_decode in user
56  *            space.  Mark variables and functions static where possible.
57  *            Delete dead variables and functions.  Reorder to remove the need
58  *            for forward declarations and to consolidate related code.
59  *
60  * 2005-08-12 Keith Owens <kaos@sgi.com>
61  *            Convert MCA/INIT handlers to use per event stacks and SAL/OS
62  *            state.
63  *
64  * 2005-10-07 Keith Owens <kaos@sgi.com>
65  *            Add notify_die() hooks.
66  *
67  * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
68  *            Add printing support for MCA/INIT.
69  *
70  * 2007-04-27 Russ Anderson <rja@sgi.com>
71  *            Support multiple cpus going through OS_MCA in the same event.
72  */
73 #include <linux/jiffies.h>
74 #include <linux/types.h>
75 #include <linux/init.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/debug.h>
78 #include <linux/sched/task.h>
79 #include <linux/interrupt.h>
80 #include <linux/irq.h>
81 #include <linux/memblock.h>
82 #include <linux/acpi.h>
83 #include <linux/timer.h>
84 #include <linux/module.h>
85 #include <linux/kernel.h>
86 #include <linux/smp.h>
87 #include <linux/workqueue.h>
88 #include <linux/cpumask.h>
89 #include <linux/kdebug.h>
90 #include <linux/cpu.h>
91 #include <linux/gfp.h>
92
93 #include <asm/delay.h>
94 #include <asm/meminit.h>
95 #include <asm/page.h>
96 #include <asm/ptrace.h>
97 #include <asm/sal.h>
98 #include <asm/mca.h>
99 #include <asm/kexec.h>
100
101 #include <asm/irq.h>
102 #include <asm/hw_irq.h>
103 #include <asm/tlb.h>
104
105 #include "mca_drv.h"
106 #include "entry.h"
107 #include "irq.h"
108
109 #if defined(IA64_MCA_DEBUG_INFO)
110 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
111 #else
112 # define IA64_MCA_DEBUG(fmt...)
113 #endif
114
115 #define NOTIFY_INIT(event, regs, arg, spin)                             \
116 do {                                                                    \
117         if ((notify_die((event), "INIT", (regs), (arg), 0, 0)           \
118                         == NOTIFY_STOP) && ((spin) == 1))               \
119                 ia64_mca_spin(__func__);                                \
120 } while (0)
121
122 #define NOTIFY_MCA(event, regs, arg, spin)                              \
123 do {                                                                    \
124         if ((notify_die((event), "MCA", (regs), (arg), 0, 0)            \
125                         == NOTIFY_STOP) && ((spin) == 1))               \
126                 ia64_mca_spin(__func__);                                \
127 } while (0)
128
129 /* Used by mca_asm.S */
130 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
131 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
132 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
133 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
134 DEFINE_PER_CPU(u64, ia64_mca_tr_reload);   /* Flag for TR reload */
135
136 unsigned long __per_cpu_mca[NR_CPUS];
137
138 /* In mca_asm.S */
139 extern void                     ia64_os_init_dispatch_monarch (void);
140 extern void                     ia64_os_init_dispatch_slave (void);
141
142 static int monarch_cpu = -1;
143
144 static ia64_mc_info_t           ia64_mc_info;
145
146 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
147 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
148 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
149 #define CPE_HISTORY_LENGTH    5
150 #define CMC_HISTORY_LENGTH    5
151
152 static struct timer_list cpe_poll_timer;
153 static struct timer_list cmc_poll_timer;
154 /*
155  * This variable tells whether we are currently in polling mode.
156  * Start with this in the wrong state so we won't play w/ timers
157  * before the system is ready.
158  */
159 static int cmc_polling_enabled = 1;
160
161 /*
162  * Clearing this variable prevents CPE polling from getting activated
163  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
164  * but encounters problems retrieving CPE logs.  This should only be
165  * necessary for debugging.
166  */
167 static int cpe_poll_enabled = 1;
168
169 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
170
171 static int mca_init __initdata;
172
173 /*
174  * limited & delayed printing support for MCA/INIT handler
175  */
176
177 #define mprintk(fmt...) ia64_mca_printk(fmt)
178
179 #define MLOGBUF_SIZE (512+256*NR_CPUS)
180 #define MLOGBUF_MSGMAX 256
181 static char mlogbuf[MLOGBUF_SIZE];
182 static DEFINE_SPINLOCK(mlogbuf_wlock);  /* mca context only */
183 static DEFINE_SPINLOCK(mlogbuf_rlock);  /* normal context only */
184 static unsigned long mlogbuf_start;
185 static unsigned long mlogbuf_end;
186 static unsigned int mlogbuf_finished = 0;
187 static unsigned long mlogbuf_timestamp = 0;
188
189 static int loglevel_save = -1;
190 #define BREAK_LOGLEVEL(__console_loglevel)              \
191         oops_in_progress = 1;                           \
192         if (loglevel_save < 0)                          \
193                 loglevel_save = __console_loglevel;     \
194         __console_loglevel = 15;
195
196 #define RESTORE_LOGLEVEL(__console_loglevel)            \
197         if (loglevel_save >= 0) {                       \
198                 __console_loglevel = loglevel_save;     \
199                 loglevel_save = -1;                     \
200         }                                               \
201         mlogbuf_finished = 0;                           \
202         oops_in_progress = 0;
203
204 /*
205  * Push messages into buffer, print them later if not urgent.
206  */
207 void ia64_mca_printk(const char *fmt, ...)
208 {
209         va_list args;
210         int printed_len;
211         char temp_buf[MLOGBUF_MSGMAX];
212         char *p;
213
214         va_start(args, fmt);
215         printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
216         va_end(args);
217
218         /* Copy the output into mlogbuf */
219         if (oops_in_progress) {
220                 /* mlogbuf was abandoned, use printk directly instead. */
221                 printk("%s", temp_buf);
222         } else {
223                 spin_lock(&mlogbuf_wlock);
224                 for (p = temp_buf; *p; p++) {
225                         unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
226                         if (next != mlogbuf_start) {
227                                 mlogbuf[mlogbuf_end] = *p;
228                                 mlogbuf_end = next;
229                         } else {
230                                 /* buffer full */
231                                 break;
232                         }
233                 }
234                 mlogbuf[mlogbuf_end] = '\0';
235                 spin_unlock(&mlogbuf_wlock);
236         }
237 }
238 EXPORT_SYMBOL(ia64_mca_printk);
239
240 /*
241  * Print buffered messages.
242  *  NOTE: call this after returning normal context. (ex. from salinfod)
243  */
244 void ia64_mlogbuf_dump(void)
245 {
246         char temp_buf[MLOGBUF_MSGMAX];
247         char *p;
248         unsigned long index;
249         unsigned long flags;
250         unsigned int printed_len;
251
252         /* Get output from mlogbuf */
253         while (mlogbuf_start != mlogbuf_end) {
254                 temp_buf[0] = '\0';
255                 p = temp_buf;
256                 printed_len = 0;
257
258                 spin_lock_irqsave(&mlogbuf_rlock, flags);
259
260                 index = mlogbuf_start;
261                 while (index != mlogbuf_end) {
262                         *p = mlogbuf[index];
263                         index = (index + 1) % MLOGBUF_SIZE;
264                         if (!*p)
265                                 break;
266                         p++;
267                         if (++printed_len >= MLOGBUF_MSGMAX - 1)
268                                 break;
269                 }
270                 *p = '\0';
271                 if (temp_buf[0])
272                         printk("%s", temp_buf);
273                 mlogbuf_start = index;
274
275                 mlogbuf_timestamp = 0;
276                 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
277         }
278 }
279 EXPORT_SYMBOL(ia64_mlogbuf_dump);
280
281 /*
282  * Call this if system is going to down or if immediate flushing messages to
283  * console is required. (ex. recovery was failed, crash dump is going to be
284  * invoked, long-wait rendezvous etc.)
285  *  NOTE: this should be called from monarch.
286  */
287 static void ia64_mlogbuf_finish(int wait)
288 {
289         BREAK_LOGLEVEL(console_loglevel);
290
291         spin_lock_init(&mlogbuf_rlock);
292         ia64_mlogbuf_dump();
293         printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
294                 "MCA/INIT might be dodgy or fail.\n");
295
296         if (!wait)
297                 return;
298
299         /* wait for console */
300         printk("Delaying for 5 seconds...\n");
301         udelay(5*1000000);
302
303         mlogbuf_finished = 1;
304 }
305
306 /*
307  * Print buffered messages from INIT context.
308  */
309 static void ia64_mlogbuf_dump_from_init(void)
310 {
311         if (mlogbuf_finished)
312                 return;
313
314         if (mlogbuf_timestamp &&
315                         time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
316                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
317                         " and the system seems to be messed up.\n");
318                 ia64_mlogbuf_finish(0);
319                 return;
320         }
321
322         if (!spin_trylock(&mlogbuf_rlock)) {
323                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
324                         "Generated messages other than stack dump will be "
325                         "buffered to mlogbuf and will be printed later.\n");
326                 printk(KERN_ERR "INIT: If messages would not printed after "
327                         "this INIT, wait 30sec and assert INIT again.\n");
328                 if (!mlogbuf_timestamp)
329                         mlogbuf_timestamp = jiffies;
330                 return;
331         }
332         spin_unlock(&mlogbuf_rlock);
333         ia64_mlogbuf_dump();
334 }
335
336 static inline void
337 ia64_mca_spin(const char *func)
338 {
339         if (monarch_cpu == smp_processor_id())
340                 ia64_mlogbuf_finish(0);
341         mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
342         while (1)
343                 cpu_relax();
344 }
345 /*
346  * IA64_MCA log support
347  */
348 #define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
349 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
350
351 typedef struct ia64_state_log_s
352 {
353         spinlock_t      isl_lock;
354         int             isl_index;
355         unsigned long   isl_count;
356         ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
357 } ia64_state_log_t;
358
359 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
360
361 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
362 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
363 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
364 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
365 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
366 #define IA64_LOG_INDEX_INC(it) \
367     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
368     ia64_state_log[it].isl_count++;}
369 #define IA64_LOG_INDEX_DEC(it) \
370     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
371 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
372 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
373 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
374
375 static inline void ia64_log_allocate(int it, u64 size)
376 {
377         ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] =
378                 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
379         if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])
380                 panic("%s: Failed to allocate %llu bytes\n", __func__, size);
381
382         ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] =
383                 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
384         if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])
385                 panic("%s: Failed to allocate %llu bytes\n", __func__, size);
386 }
387
388 /*
389  * ia64_log_init
390  *      Reset the OS ia64 log buffer
391  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
392  * Outputs      :       None
393  */
394 static void __init
395 ia64_log_init(int sal_info_type)
396 {
397         u64     max_size = 0;
398
399         IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
400         IA64_LOG_LOCK_INIT(sal_info_type);
401
402         // SAL will tell us the maximum size of any error record of this type
403         max_size = ia64_sal_get_state_info_size(sal_info_type);
404         if (!max_size)
405                 /* alloc_bootmem() doesn't like zero-sized allocations! */
406                 return;
407
408         // set up OS data structures to hold error info
409         ia64_log_allocate(sal_info_type, max_size);
410 }
411
412 /*
413  * ia64_log_get
414  *
415  *      Get the current MCA log from SAL and copy it into the OS log buffer.
416  *
417  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
418  *              irq_safe    whether you can use printk at this point
419  *  Outputs :   size        (total record length)
420  *              *buffer     (ptr to error record)
421  *
422  */
423 static u64
424 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
425 {
426         sal_log_record_header_t     *log_buffer;
427         u64                         total_len = 0;
428         unsigned long               s;
429
430         IA64_LOG_LOCK(sal_info_type);
431
432         /* Get the process state information */
433         log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
434
435         total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
436
437         if (total_len) {
438                 IA64_LOG_INDEX_INC(sal_info_type);
439                 IA64_LOG_UNLOCK(sal_info_type);
440                 if (irq_safe) {
441                         IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
442                                        __func__, sal_info_type, total_len);
443                 }
444                 *buffer = (u8 *) log_buffer;
445                 return total_len;
446         } else {
447                 IA64_LOG_UNLOCK(sal_info_type);
448                 return 0;
449         }
450 }
451
452 /*
453  *  ia64_mca_log_sal_error_record
454  *
455  *  This function retrieves a specified error record type from SAL
456  *  and wakes up any processes waiting for error records.
457  *
458  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
459  *              FIXME: remove MCA and irq_safe.
460  */
461 static void
462 ia64_mca_log_sal_error_record(int sal_info_type)
463 {
464         u8 *buffer;
465         sal_log_record_header_t *rh;
466         u64 size;
467         int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
468 #ifdef IA64_MCA_DEBUG_INFO
469         static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
470 #endif
471
472         size = ia64_log_get(sal_info_type, &buffer, irq_safe);
473         if (!size)
474                 return;
475
476         salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
477
478         if (irq_safe)
479                 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
480                         smp_processor_id(),
481                         sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
482
483         /* Clear logs from corrected errors in case there's no user-level logger */
484         rh = (sal_log_record_header_t *)buffer;
485         if (rh->severity == sal_log_severity_corrected)
486                 ia64_sal_clear_state_info(sal_info_type);
487 }
488
489 /*
490  * search_mca_table
491  *  See if the MCA surfaced in an instruction range
492  *  that has been tagged as recoverable.
493  *
494  *  Inputs
495  *      first   First address range to check
496  *      last    Last address range to check
497  *      ip      Instruction pointer, address we are looking for
498  *
499  * Return value:
500  *      1 on Success (in the table)/ 0 on Failure (not in the  table)
501  */
502 int
503 search_mca_table (const struct mca_table_entry *first,
504                 const struct mca_table_entry *last,
505                 unsigned long ip)
506 {
507         const struct mca_table_entry *curr;
508         u64 curr_start, curr_end;
509
510         curr = first;
511         while (curr <= last) {
512                 curr_start = (u64) &curr->start_addr + curr->start_addr;
513                 curr_end = (u64) &curr->end_addr + curr->end_addr;
514
515                 if ((ip >= curr_start) && (ip <= curr_end)) {
516                         return 1;
517                 }
518                 curr++;
519         }
520         return 0;
521 }
522
523 /* Given an address, look for it in the mca tables. */
524 int mca_recover_range(unsigned long addr)
525 {
526         extern struct mca_table_entry __start___mca_table[];
527         extern struct mca_table_entry __stop___mca_table[];
528
529         return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
530 }
531 EXPORT_SYMBOL_GPL(mca_recover_range);
532
533 int cpe_vector = -1;
534 int ia64_cpe_irq = -1;
535
536 static irqreturn_t
537 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
538 {
539         static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
540         static int              index;
541         static DEFINE_SPINLOCK(cpe_history_lock);
542
543         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
544                        __func__, cpe_irq, smp_processor_id());
545
546         /* SAL spec states this should run w/ interrupts enabled */
547         local_irq_enable();
548
549         spin_lock(&cpe_history_lock);
550         if (!cpe_poll_enabled && cpe_vector >= 0) {
551
552                 int i, count = 1; /* we know 1 happened now */
553                 unsigned long now = jiffies;
554
555                 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
556                         if (now - cpe_history[i] <= HZ)
557                                 count++;
558                 }
559
560                 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
561                 if (count >= CPE_HISTORY_LENGTH) {
562
563                         cpe_poll_enabled = 1;
564                         spin_unlock(&cpe_history_lock);
565                         disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
566
567                         /*
568                          * Corrected errors will still be corrected, but
569                          * make sure there's a log somewhere that indicates
570                          * something is generating more than we can handle.
571                          */
572                         printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
573
574                         mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
575
576                         /* lock already released, get out now */
577                         goto out;
578                 } else {
579                         cpe_history[index++] = now;
580                         if (index == CPE_HISTORY_LENGTH)
581                                 index = 0;
582                 }
583         }
584         spin_unlock(&cpe_history_lock);
585 out:
586         /* Get the CPE error record and log it */
587         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
588
589         local_irq_disable();
590
591         return IRQ_HANDLED;
592 }
593
594 /*
595  * ia64_mca_register_cpev
596  *
597  *  Register the corrected platform error vector with SAL.
598  *
599  *  Inputs
600  *      cpev        Corrected Platform Error Vector number
601  *
602  *  Outputs
603  *      None
604  */
605 void
606 ia64_mca_register_cpev (int cpev)
607 {
608         /* Register the CPE interrupt vector with SAL */
609         struct ia64_sal_retval isrv;
610
611         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
612         if (isrv.status) {
613                 printk(KERN_ERR "Failed to register Corrected Platform "
614                        "Error interrupt vector with SAL (status %ld)\n", isrv.status);
615                 return;
616         }
617
618         IA64_MCA_DEBUG("%s: corrected platform error "
619                        "vector %#x registered\n", __func__, cpev);
620 }
621
622 /*
623  * ia64_mca_cmc_vector_setup
624  *
625  *  Setup the corrected machine check vector register in the processor.
626  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
627  *  This function is invoked on a per-processor basis.
628  *
629  * Inputs
630  *      None
631  *
632  * Outputs
633  *      None
634  */
635 void
636 ia64_mca_cmc_vector_setup (void)
637 {
638         cmcv_reg_t      cmcv;
639
640         cmcv.cmcv_regval        = 0;
641         cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
642         cmcv.cmcv_vector        = IA64_CMC_VECTOR;
643         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
644
645         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
646                        __func__, smp_processor_id(), IA64_CMC_VECTOR);
647
648         IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
649                        __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
650 }
651
652 /*
653  * ia64_mca_cmc_vector_disable
654  *
655  *  Mask the corrected machine check vector register in the processor.
656  *  This function is invoked on a per-processor basis.
657  *
658  * Inputs
659  *      dummy(unused)
660  *
661  * Outputs
662  *      None
663  */
664 static void
665 ia64_mca_cmc_vector_disable (void *dummy)
666 {
667         cmcv_reg_t      cmcv;
668
669         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
670
671         cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
672         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
673
674         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
675                        __func__, smp_processor_id(), cmcv.cmcv_vector);
676 }
677
678 /*
679  * ia64_mca_cmc_vector_enable
680  *
681  *  Unmask the corrected machine check vector register in the processor.
682  *  This function is invoked on a per-processor basis.
683  *
684  * Inputs
685  *      dummy(unused)
686  *
687  * Outputs
688  *      None
689  */
690 static void
691 ia64_mca_cmc_vector_enable (void *dummy)
692 {
693         cmcv_reg_t      cmcv;
694
695         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
696
697         cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
698         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
699
700         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
701                        __func__, smp_processor_id(), cmcv.cmcv_vector);
702 }
703
704 /*
705  * ia64_mca_cmc_vector_disable_keventd
706  *
707  * Called via keventd (smp_call_function() is not safe in interrupt context) to
708  * disable the cmc interrupt vector.
709  */
710 static void
711 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
712 {
713         on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
714 }
715
716 /*
717  * ia64_mca_cmc_vector_enable_keventd
718  *
719  * Called via keventd (smp_call_function() is not safe in interrupt context) to
720  * enable the cmc interrupt vector.
721  */
722 static void
723 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
724 {
725         on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
726 }
727
728 /*
729  * ia64_mca_wakeup
730  *
731  *      Send an inter-cpu interrupt to wake-up a particular cpu.
732  *
733  *  Inputs  :   cpuid
734  *  Outputs :   None
735  */
736 static void
737 ia64_mca_wakeup(int cpu)
738 {
739         ia64_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
740 }
741
742 /*
743  * ia64_mca_wakeup_all
744  *
745  *      Wakeup all the slave cpus which have rendez'ed previously.
746  *
747  *  Inputs  :   None
748  *  Outputs :   None
749  */
750 static void
751 ia64_mca_wakeup_all(void)
752 {
753         int cpu;
754
755         /* Clear the Rendez checkin flag for all cpus */
756         for_each_online_cpu(cpu) {
757                 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
758                         ia64_mca_wakeup(cpu);
759         }
760
761 }
762
763 /*
764  * ia64_mca_rendez_interrupt_handler
765  *
766  *      This is handler used to put slave processors into spinloop
767  *      while the monarch processor does the mca handling and later
768  *      wake each slave up once the monarch is done.  The state
769  *      IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
770  *      in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
771  *      the cpu has come out of OS rendezvous.
772  *
773  *  Inputs  :   None
774  *  Outputs :   None
775  */
776 static irqreturn_t
777 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
778 {
779         unsigned long flags;
780         int cpu = smp_processor_id();
781         struct ia64_mca_notify_die nd =
782                 { .sos = NULL, .monarch_cpu = &monarch_cpu };
783
784         /* Mask all interrupts */
785         local_irq_save(flags);
786
787         NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
788
789         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
790         /* Register with the SAL monarch that the slave has
791          * reached SAL
792          */
793         ia64_sal_mc_rendez();
794
795         NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
796
797         /* Wait for the monarch cpu to exit. */
798         while (monarch_cpu != -1)
799                cpu_relax();     /* spin until monarch leaves */
800
801         NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
802
803         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
804         /* Enable all interrupts */
805         local_irq_restore(flags);
806         return IRQ_HANDLED;
807 }
808
809 /*
810  * ia64_mca_wakeup_int_handler
811  *
812  *      The interrupt handler for processing the inter-cpu interrupt to the
813  *      slave cpu which was spinning in the rendez loop.
814  *      Since this spinning is done by turning off the interrupts and
815  *      polling on the wakeup-interrupt bit in the IRR, there is
816  *      nothing useful to be done in the handler.
817  *
818  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
819  *      arg             (Interrupt handler specific argument)
820  *  Outputs :   None
821  *
822  */
823 static irqreturn_t
824 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
825 {
826         return IRQ_HANDLED;
827 }
828
829 /* Function pointer for extra MCA recovery */
830 int (*ia64_mca_ucmc_extension)
831         (void*,struct ia64_sal_os_state*)
832         = NULL;
833
834 int
835 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
836 {
837         if (ia64_mca_ucmc_extension)
838                 return 1;
839
840         ia64_mca_ucmc_extension = fn;
841         return 0;
842 }
843
844 void
845 ia64_unreg_MCA_extension(void)
846 {
847         if (ia64_mca_ucmc_extension)
848                 ia64_mca_ucmc_extension = NULL;
849 }
850
851 EXPORT_SYMBOL(ia64_reg_MCA_extension);
852 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
853
854
855 static inline void
856 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
857 {
858         u64 fslot, tslot, nat;
859         *tr = *fr;
860         fslot = ((unsigned long)fr >> 3) & 63;
861         tslot = ((unsigned long)tr >> 3) & 63;
862         *tnat &= ~(1UL << tslot);
863         nat = (fnat >> fslot) & 1;
864         *tnat |= (nat << tslot);
865 }
866
867 /* Change the comm field on the MCA/INT task to include the pid that
868  * was interrupted, it makes for easier debugging.  If that pid was 0
869  * (swapper or nested MCA/INIT) then use the start of the previous comm
870  * field suffixed with its cpu.
871  */
872
873 static void
874 ia64_mca_modify_comm(const struct task_struct *previous_current)
875 {
876         char *p, comm[sizeof(current->comm)];
877         if (previous_current->pid)
878                 snprintf(comm, sizeof(comm), "%s %d",
879                         current->comm, previous_current->pid);
880         else {
881                 int l;
882                 if ((p = strchr(previous_current->comm, ' ')))
883                         l = p - previous_current->comm;
884                 else
885                         l = strlen(previous_current->comm);
886                 snprintf(comm, sizeof(comm), "%s %*s %d",
887                         current->comm, l, previous_current->comm,
888                         task_thread_info(previous_current)->cpu);
889         }
890         memcpy(current->comm, comm, sizeof(current->comm));
891 }
892
893 static void
894 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
895                 unsigned long *nat)
896 {
897         const pal_min_state_area_t *ms = sos->pal_min_state;
898         const u64 *bank;
899
900         /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
901          * pmsa_{xip,xpsr,xfs}
902          */
903         if (ia64_psr(regs)->ic) {
904                 regs->cr_iip = ms->pmsa_iip;
905                 regs->cr_ipsr = ms->pmsa_ipsr;
906                 regs->cr_ifs = ms->pmsa_ifs;
907         } else {
908                 regs->cr_iip = ms->pmsa_xip;
909                 regs->cr_ipsr = ms->pmsa_xpsr;
910                 regs->cr_ifs = ms->pmsa_xfs;
911
912                 sos->iip = ms->pmsa_iip;
913                 sos->ipsr = ms->pmsa_ipsr;
914                 sos->ifs = ms->pmsa_ifs;
915         }
916         regs->pr = ms->pmsa_pr;
917         regs->b0 = ms->pmsa_br0;
918         regs->ar_rsc = ms->pmsa_rsc;
919         copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
920         copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
921         copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
922         copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
923         copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
924         copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
925         copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
926         copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
927         copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
928         copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
929         copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
930         if (ia64_psr(regs)->bn)
931                 bank = ms->pmsa_bank1_gr;
932         else
933                 bank = ms->pmsa_bank0_gr;
934         copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
935         copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
936         copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
937         copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
938         copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
939         copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
940         copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
941         copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
942         copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
943         copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
944         copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
945         copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
946         copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
947         copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
948         copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
949         copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
950 }
951
952 /* On entry to this routine, we are running on the per cpu stack, see
953  * mca_asm.h.  The original stack has not been touched by this event.  Some of
954  * the original stack's registers will be in the RBS on this stack.  This stack
955  * also contains a partial pt_regs and switch_stack, the rest of the data is in
956  * PAL minstate.
957  *
958  * The first thing to do is modify the original stack to look like a blocked
959  * task so we can run backtrace on the original task.  Also mark the per cpu
960  * stack as current to ensure that we use the correct task state, it also means
961  * that we can do backtrace on the MCA/INIT handler code itself.
962  */
963
964 static struct task_struct *
965 ia64_mca_modify_original_stack(struct pt_regs *regs,
966                 const struct switch_stack *sw,
967                 struct ia64_sal_os_state *sos,
968                 const char *type)
969 {
970         char *p;
971         ia64_va va;
972         extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
973         const pal_min_state_area_t *ms = sos->pal_min_state;
974         struct task_struct *previous_current;
975         struct pt_regs *old_regs;
976         struct switch_stack *old_sw;
977         unsigned size = sizeof(struct pt_regs) +
978                         sizeof(struct switch_stack) + 16;
979         unsigned long *old_bspstore, *old_bsp;
980         unsigned long *new_bspstore, *new_bsp;
981         unsigned long old_unat, old_rnat, new_rnat, nat;
982         u64 slots, loadrs = regs->loadrs;
983         u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
984         u64 ar_bspstore = regs->ar_bspstore;
985         u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
986         const char *msg;
987         int cpu = smp_processor_id();
988
989         previous_current = curr_task(cpu);
990         ia64_set_curr_task(cpu, current);
991         if ((p = strchr(current->comm, ' ')))
992                 *p = '\0';
993
994         /* Best effort attempt to cope with MCA/INIT delivered while in
995          * physical mode.
996          */
997         regs->cr_ipsr = ms->pmsa_ipsr;
998         if (ia64_psr(regs)->dt == 0) {
999                 va.l = r12;
1000                 if (va.f.reg == 0) {
1001                         va.f.reg = 7;
1002                         r12 = va.l;
1003                 }
1004                 va.l = r13;
1005                 if (va.f.reg == 0) {
1006                         va.f.reg = 7;
1007                         r13 = va.l;
1008                 }
1009         }
1010         if (ia64_psr(regs)->rt == 0) {
1011                 va.l = ar_bspstore;
1012                 if (va.f.reg == 0) {
1013                         va.f.reg = 7;
1014                         ar_bspstore = va.l;
1015                 }
1016                 va.l = ar_bsp;
1017                 if (va.f.reg == 0) {
1018                         va.f.reg = 7;
1019                         ar_bsp = va.l;
1020                 }
1021         }
1022
1023         /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1024          * have been copied to the old stack, the old stack may fail the
1025          * validation tests below.  So ia64_old_stack() must restore the dirty
1026          * registers from the new stack.  The old and new bspstore probably
1027          * have different alignments, so loadrs calculated on the old bsp
1028          * cannot be used to restore from the new bsp.  Calculate a suitable
1029          * loadrs for the new stack and save it in the new pt_regs, where
1030          * ia64_old_stack() can get it.
1031          */
1032         old_bspstore = (unsigned long *)ar_bspstore;
1033         old_bsp = (unsigned long *)ar_bsp;
1034         slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1035         new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1036         new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1037         regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1038
1039         /* Verify the previous stack state before we change it */
1040         if (user_mode(regs)) {
1041                 msg = "occurred in user space";
1042                 /* previous_current is guaranteed to be valid when the task was
1043                  * in user space, so ...
1044                  */
1045                 ia64_mca_modify_comm(previous_current);
1046                 goto no_mod;
1047         }
1048
1049         if (r13 != sos->prev_IA64_KR_CURRENT) {
1050                 msg = "inconsistent previous current and r13";
1051                 goto no_mod;
1052         }
1053
1054         if (!mca_recover_range(ms->pmsa_iip)) {
1055                 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1056                         msg = "inconsistent r12 and r13";
1057                         goto no_mod;
1058                 }
1059                 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1060                         msg = "inconsistent ar.bspstore and r13";
1061                         goto no_mod;
1062                 }
1063                 va.p = old_bspstore;
1064                 if (va.f.reg < 5) {
1065                         msg = "old_bspstore is in the wrong region";
1066                         goto no_mod;
1067                 }
1068                 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1069                         msg = "inconsistent ar.bsp and r13";
1070                         goto no_mod;
1071                 }
1072                 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1073                 if (ar_bspstore + size > r12) {
1074                         msg = "no room for blocked state";
1075                         goto no_mod;
1076                 }
1077         }
1078
1079         ia64_mca_modify_comm(previous_current);
1080
1081         /* Make the original task look blocked.  First stack a struct pt_regs,
1082          * describing the state at the time of interrupt.  mca_asm.S built a
1083          * partial pt_regs, copy it and fill in the blanks using minstate.
1084          */
1085         p = (char *)r12 - sizeof(*regs);
1086         old_regs = (struct pt_regs *)p;
1087         memcpy(old_regs, regs, sizeof(*regs));
1088         old_regs->loadrs = loadrs;
1089         old_unat = old_regs->ar_unat;
1090         finish_pt_regs(old_regs, sos, &old_unat);
1091
1092         /* Next stack a struct switch_stack.  mca_asm.S built a partial
1093          * switch_stack, copy it and fill in the blanks using pt_regs and
1094          * minstate.
1095          *
1096          * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1097          * ar.pfs is set to 0.
1098          *
1099          * unwind.c::unw_unwind() does special processing for interrupt frames.
1100          * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1101          * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1102          * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1103          * switch_stack on the original stack so it will unwind correctly when
1104          * unwind.c reads pt_regs.
1105          *
1106          * thread.ksp is updated to point to the synthesized switch_stack.
1107          */
1108         p -= sizeof(struct switch_stack);
1109         old_sw = (struct switch_stack *)p;
1110         memcpy(old_sw, sw, sizeof(*sw));
1111         old_sw->caller_unat = old_unat;
1112         old_sw->ar_fpsr = old_regs->ar_fpsr;
1113         copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1114         copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1115         copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1116         copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1117         old_sw->b0 = (u64)ia64_leave_kernel;
1118         old_sw->b1 = ms->pmsa_br1;
1119         old_sw->ar_pfs = 0;
1120         old_sw->ar_unat = old_unat;
1121         old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1122         previous_current->thread.ksp = (u64)p - 16;
1123
1124         /* Finally copy the original stack's registers back to its RBS.
1125          * Registers from ar.bspstore through ar.bsp at the time of the event
1126          * are in the current RBS, copy them back to the original stack.  The
1127          * copy must be done register by register because the original bspstore
1128          * and the current one have different alignments, so the saved RNAT
1129          * data occurs at different places.
1130          *
1131          * mca_asm does cover, so the old_bsp already includes all registers at
1132          * the time of MCA/INIT.  It also does flushrs, so all registers before
1133          * this function have been written to backing store on the MCA/INIT
1134          * stack.
1135          */
1136         new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1137         old_rnat = regs->ar_rnat;
1138         while (slots--) {
1139                 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1140                         new_rnat = ia64_get_rnat(new_bspstore++);
1141                 }
1142                 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1143                         *old_bspstore++ = old_rnat;
1144                         old_rnat = 0;
1145                 }
1146                 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1147                 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1148                 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1149                 *old_bspstore++ = *new_bspstore++;
1150         }
1151         old_sw->ar_bspstore = (unsigned long)old_bspstore;
1152         old_sw->ar_rnat = old_rnat;
1153
1154         sos->prev_task = previous_current;
1155         return previous_current;
1156
1157 no_mod:
1158         mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1159                         smp_processor_id(), type, msg);
1160         old_unat = regs->ar_unat;
1161         finish_pt_regs(regs, sos, &old_unat);
1162         return previous_current;
1163 }
1164
1165 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1166  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1167  * not entered rendezvous yet then wait a bit.  The assumption is that any
1168  * slave that has not rendezvoused after a reasonable time is never going to do
1169  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1170  * interrupt, as well as cpus that receive the INIT slave event.
1171  */
1172
1173 static void
1174 ia64_wait_for_slaves(int monarch, const char *type)
1175 {
1176         int c, i , wait;
1177
1178         /*
1179          * wait 5 seconds total for slaves (arbitrary)
1180          */
1181         for (i = 0; i < 5000; i++) {
1182                 wait = 0;
1183                 for_each_online_cpu(c) {
1184                         if (c == monarch)
1185                                 continue;
1186                         if (ia64_mc_info.imi_rendez_checkin[c]
1187                                         == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1188                                 udelay(1000);           /* short wait */
1189                                 wait = 1;
1190                                 break;
1191                         }
1192                 }
1193                 if (!wait)
1194                         goto all_in;
1195         }
1196
1197         /*
1198          * Maybe slave(s) dead. Print buffered messages immediately.
1199          */
1200         ia64_mlogbuf_finish(0);
1201         mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1202         for_each_online_cpu(c) {
1203                 if (c == monarch)
1204                         continue;
1205                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1206                         mprintk(" %d", c);
1207         }
1208         mprintk("\n");
1209         return;
1210
1211 all_in:
1212         mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1213         return;
1214 }
1215
1216 /*  mca_insert_tr
1217  *
1218  *  Switch rid when TR reload and needed!
1219  *  iord: 1: itr, 2: itr;
1220  *
1221 */
1222 static void mca_insert_tr(u64 iord)
1223 {
1224
1225         int i;
1226         u64 old_rr;
1227         struct ia64_tr_entry *p;
1228         unsigned long psr;
1229         int cpu = smp_processor_id();
1230
1231         if (!ia64_idtrs[cpu])
1232                 return;
1233
1234         psr = ia64_clear_ic();
1235         for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1236                 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1237                 if (p->pte & 0x1) {
1238                         old_rr = ia64_get_rr(p->ifa);
1239                         if (old_rr != p->rr) {
1240                                 ia64_set_rr(p->ifa, p->rr);
1241                                 ia64_srlz_d();
1242                         }
1243                         ia64_ptr(iord, p->ifa, p->itir >> 2);
1244                         ia64_srlz_i();
1245                         if (iord & 0x1) {
1246                                 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1247                                 ia64_srlz_i();
1248                         }
1249                         if (iord & 0x2) {
1250                                 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1251                                 ia64_srlz_i();
1252                         }
1253                         if (old_rr != p->rr) {
1254                                 ia64_set_rr(p->ifa, old_rr);
1255                                 ia64_srlz_d();
1256                         }
1257                 }
1258         }
1259         ia64_set_psr(psr);
1260 }
1261
1262 /*
1263  * ia64_mca_handler
1264  *
1265  *      This is uncorrectable machine check handler called from OS_MCA
1266  *      dispatch code which is in turn called from SAL_CHECK().
1267  *      This is the place where the core of OS MCA handling is done.
1268  *      Right now the logs are extracted and displayed in a well-defined
1269  *      format. This handler code is supposed to be run only on the
1270  *      monarch processor. Once the monarch is done with MCA handling
1271  *      further MCA logging is enabled by clearing logs.
1272  *      Monarch also has the duty of sending wakeup-IPIs to pull the
1273  *      slave processors out of rendezvous spinloop.
1274  *
1275  *      If multiple processors call into OS_MCA, the first will become
1276  *      the monarch.  Subsequent cpus will be recorded in the mca_cpu
1277  *      bitmask.  After the first monarch has processed its MCA, it
1278  *      will wake up the next cpu in the mca_cpu bitmask and then go
1279  *      into the rendezvous loop.  When all processors have serviced
1280  *      their MCA, the last monarch frees up the rest of the processors.
1281  */
1282 void
1283 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1284                  struct ia64_sal_os_state *sos)
1285 {
1286         int recover, cpu = smp_processor_id();
1287         struct task_struct *previous_current;
1288         struct ia64_mca_notify_die nd =
1289                 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1290         static atomic_t mca_count;
1291         static cpumask_t mca_cpu;
1292
1293         if (atomic_add_return(1, &mca_count) == 1) {
1294                 monarch_cpu = cpu;
1295                 sos->monarch = 1;
1296         } else {
1297                 cpumask_set_cpu(cpu, &mca_cpu);
1298                 sos->monarch = 0;
1299         }
1300         mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1301                 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1302
1303         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1304
1305         NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1306
1307         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1308         if (sos->monarch) {
1309                 ia64_wait_for_slaves(cpu, "MCA");
1310
1311                 /* Wakeup all the processors which are spinning in the
1312                  * rendezvous loop.  They will leave SAL, then spin in the OS
1313                  * with interrupts disabled until this monarch cpu leaves the
1314                  * MCA handler.  That gets control back to the OS so we can
1315                  * backtrace the other cpus, backtrace when spinning in SAL
1316                  * does not work.
1317                  */
1318                 ia64_mca_wakeup_all();
1319         } else {
1320                 while (cpumask_test_cpu(cpu, &mca_cpu))
1321                         cpu_relax();    /* spin until monarch wakes us */
1322         }
1323
1324         NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1325
1326         /* Get the MCA error record and log it */
1327         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1328
1329         /* MCA error recovery */
1330         recover = (ia64_mca_ucmc_extension
1331                 && ia64_mca_ucmc_extension(
1332                         IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1333                         sos));
1334
1335         if (recover) {
1336                 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1337                 rh->severity = sal_log_severity_corrected;
1338                 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1339                 sos->os_status = IA64_MCA_CORRECTED;
1340         } else {
1341                 /* Dump buffered message to console */
1342                 ia64_mlogbuf_finish(1);
1343         }
1344
1345         if (__this_cpu_read(ia64_mca_tr_reload)) {
1346                 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1347                 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1348         }
1349
1350         NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1351
1352         if (atomic_dec_return(&mca_count) > 0) {
1353                 int i;
1354
1355                 /* wake up the next monarch cpu,
1356                  * and put this cpu in the rendez loop.
1357                  */
1358                 for_each_online_cpu(i) {
1359                         if (cpumask_test_cpu(i, &mca_cpu)) {
1360                                 monarch_cpu = i;
1361                                 cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */
1362                                 while (monarch_cpu != -1)
1363                                         cpu_relax();    /* spin until last cpu leaves */
1364                                 ia64_set_curr_task(cpu, previous_current);
1365                                 ia64_mc_info.imi_rendez_checkin[cpu]
1366                                                 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1367                                 return;
1368                         }
1369                 }
1370         }
1371         ia64_set_curr_task(cpu, previous_current);
1372         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1373         monarch_cpu = -1;       /* This frees the slaves and previous monarchs */
1374 }
1375
1376 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1377 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1378
1379 /*
1380  * ia64_mca_cmc_int_handler
1381  *
1382  *  This is corrected machine check interrupt handler.
1383  *      Right now the logs are extracted and displayed in a well-defined
1384  *      format.
1385  *
1386  * Inputs
1387  *      interrupt number
1388  *      client data arg ptr
1389  *
1390  * Outputs
1391  *      None
1392  */
1393 static irqreturn_t
1394 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1395 {
1396         static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1397         static int              index;
1398         static DEFINE_SPINLOCK(cmc_history_lock);
1399
1400         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1401                        __func__, cmc_irq, smp_processor_id());
1402
1403         /* SAL spec states this should run w/ interrupts enabled */
1404         local_irq_enable();
1405
1406         spin_lock(&cmc_history_lock);
1407         if (!cmc_polling_enabled) {
1408                 int i, count = 1; /* we know 1 happened now */
1409                 unsigned long now = jiffies;
1410
1411                 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1412                         if (now - cmc_history[i] <= HZ)
1413                                 count++;
1414                 }
1415
1416                 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1417                 if (count >= CMC_HISTORY_LENGTH) {
1418
1419                         cmc_polling_enabled = 1;
1420                         spin_unlock(&cmc_history_lock);
1421                         /* If we're being hit with CMC interrupts, we won't
1422                          * ever execute the schedule_work() below.  Need to
1423                          * disable CMC interrupts on this processor now.
1424                          */
1425                         ia64_mca_cmc_vector_disable(NULL);
1426                         schedule_work(&cmc_disable_work);
1427
1428                         /*
1429                          * Corrected errors will still be corrected, but
1430                          * make sure there's a log somewhere that indicates
1431                          * something is generating more than we can handle.
1432                          */
1433                         printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1434
1435                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1436
1437                         /* lock already released, get out now */
1438                         goto out;
1439                 } else {
1440                         cmc_history[index++] = now;
1441                         if (index == CMC_HISTORY_LENGTH)
1442                                 index = 0;
1443                 }
1444         }
1445         spin_unlock(&cmc_history_lock);
1446 out:
1447         /* Get the CMC error record and log it */
1448         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1449
1450         local_irq_disable();
1451
1452         return IRQ_HANDLED;
1453 }
1454
1455 /*
1456  *  ia64_mca_cmc_int_caller
1457  *
1458  *      Triggered by sw interrupt from CMC polling routine.  Calls
1459  *      real interrupt handler and either triggers a sw interrupt
1460  *      on the next cpu or does cleanup at the end.
1461  *
1462  * Inputs
1463  *      interrupt number
1464  *      client data arg ptr
1465  * Outputs
1466  *      handled
1467  */
1468 static irqreturn_t
1469 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1470 {
1471         static int start_count = -1;
1472         unsigned int cpuid;
1473
1474         cpuid = smp_processor_id();
1475
1476         /* If first cpu, update count */
1477         if (start_count == -1)
1478                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1479
1480         ia64_mca_cmc_int_handler(cmc_irq, arg);
1481
1482         cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1483
1484         if (cpuid < nr_cpu_ids) {
1485                 ia64_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1486         } else {
1487                 /* If no log record, switch out of polling mode */
1488                 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1489
1490                         printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1491                         schedule_work(&cmc_enable_work);
1492                         cmc_polling_enabled = 0;
1493
1494                 } else {
1495
1496                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1497                 }
1498
1499                 start_count = -1;
1500         }
1501
1502         return IRQ_HANDLED;
1503 }
1504
1505 /*
1506  *  ia64_mca_cmc_poll
1507  *
1508  *      Poll for Corrected Machine Checks (CMCs)
1509  *
1510  * Inputs   :   dummy(unused)
1511  * Outputs  :   None
1512  *
1513  */
1514 static void
1515 ia64_mca_cmc_poll (struct timer_list *unused)
1516 {
1517         /* Trigger a CMC interrupt cascade  */
1518         ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1519                                                         IA64_IPI_DM_INT, 0);
1520 }
1521
1522 /*
1523  *  ia64_mca_cpe_int_caller
1524  *
1525  *      Triggered by sw interrupt from CPE polling routine.  Calls
1526  *      real interrupt handler and either triggers a sw interrupt
1527  *      on the next cpu or does cleanup at the end.
1528  *
1529  * Inputs
1530  *      interrupt number
1531  *      client data arg ptr
1532  * Outputs
1533  *      handled
1534  */
1535 static irqreturn_t
1536 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1537 {
1538         static int start_count = -1;
1539         static int poll_time = MIN_CPE_POLL_INTERVAL;
1540         unsigned int cpuid;
1541
1542         cpuid = smp_processor_id();
1543
1544         /* If first cpu, update count */
1545         if (start_count == -1)
1546                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1547
1548         ia64_mca_cpe_int_handler(cpe_irq, arg);
1549
1550         cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1551
1552         if (cpuid < NR_CPUS) {
1553                 ia64_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1554         } else {
1555                 /*
1556                  * If a log was recorded, increase our polling frequency,
1557                  * otherwise, backoff or return to interrupt mode.
1558                  */
1559                 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1560                         poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1561                 } else if (cpe_vector < 0) {
1562                         poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1563                 } else {
1564                         poll_time = MIN_CPE_POLL_INTERVAL;
1565
1566                         printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1567                         enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1568                         cpe_poll_enabled = 0;
1569                 }
1570
1571                 if (cpe_poll_enabled)
1572                         mod_timer(&cpe_poll_timer, jiffies + poll_time);
1573                 start_count = -1;
1574         }
1575
1576         return IRQ_HANDLED;
1577 }
1578
1579 /*
1580  *  ia64_mca_cpe_poll
1581  *
1582  *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1583  *      on first cpu, from there it will trickle through all the cpus.
1584  *
1585  * Inputs   :   dummy(unused)
1586  * Outputs  :   None
1587  *
1588  */
1589 static void
1590 ia64_mca_cpe_poll (struct timer_list *unused)
1591 {
1592         /* Trigger a CPE interrupt cascade  */
1593         ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1594                                                         IA64_IPI_DM_INT, 0);
1595 }
1596
1597 static int
1598 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1599 {
1600         int c;
1601         struct task_struct *g, *t;
1602         if (val != DIE_INIT_MONARCH_PROCESS)
1603                 return NOTIFY_DONE;
1604 #ifdef CONFIG_KEXEC
1605         if (atomic_read(&kdump_in_progress))
1606                 return NOTIFY_DONE;
1607 #endif
1608
1609         /*
1610          * FIXME: mlogbuf will brim over with INIT stack dumps.
1611          * To enable show_stack from INIT, we use oops_in_progress which should
1612          * be used in real oops. This would cause something wrong after INIT.
1613          */
1614         BREAK_LOGLEVEL(console_loglevel);
1615         ia64_mlogbuf_dump_from_init();
1616
1617         printk(KERN_ERR "Processes interrupted by INIT -");
1618         for_each_online_cpu(c) {
1619                 struct ia64_sal_os_state *s;
1620                 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1621                 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1622                 g = s->prev_task;
1623                 if (g) {
1624                         if (g->pid)
1625                                 printk(" %d", g->pid);
1626                         else
1627                                 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1628                 }
1629         }
1630         printk("\n\n");
1631         if (read_trylock(&tasklist_lock)) {
1632                 do_each_thread (g, t) {
1633                         printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1634                         show_stack(t, NULL, KERN_DEFAULT);
1635                 } while_each_thread (g, t);
1636                 read_unlock(&tasklist_lock);
1637         }
1638         /* FIXME: This will not restore zapped printk locks. */
1639         RESTORE_LOGLEVEL(console_loglevel);
1640         return NOTIFY_DONE;
1641 }
1642
1643 /*
1644  * C portion of the OS INIT handler
1645  *
1646  * Called from ia64_os_init_dispatch
1647  *
1648  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1649  * this event.  This code is used for both monarch and slave INIT events, see
1650  * sos->monarch.
1651  *
1652  * All INIT events switch to the INIT stack and change the previous process to
1653  * blocked status.  If one of the INIT events is the monarch then we are
1654  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1655  * the processes.  The slave INIT events all spin until the monarch cpu
1656  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1657  * process is the monarch.
1658  */
1659
1660 void
1661 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1662                   struct ia64_sal_os_state *sos)
1663 {
1664         static atomic_t slaves;
1665         static atomic_t monarchs;
1666         struct task_struct *previous_current;
1667         int cpu = smp_processor_id();
1668         struct ia64_mca_notify_die nd =
1669                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1670
1671         NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1672
1673         mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1674                 sos->proc_state_param, cpu, sos->monarch);
1675         salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1676
1677         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1678         sos->os_status = IA64_INIT_RESUME;
1679
1680         /* FIXME: Workaround for broken proms that drive all INIT events as
1681          * slaves.  The last slave that enters is promoted to be a monarch.
1682          * Remove this code in September 2006, that gives platforms a year to
1683          * fix their proms and get their customers updated.
1684          */
1685         if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1686                 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1687                         __func__, cpu);
1688                 atomic_dec(&slaves);
1689                 sos->monarch = 1;
1690         }
1691
1692         /* FIXME: Workaround for broken proms that drive all INIT events as
1693          * monarchs.  Second and subsequent monarchs are demoted to slaves.
1694          * Remove this code in September 2006, that gives platforms a year to
1695          * fix their proms and get their customers updated.
1696          */
1697         if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1698                 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1699                                __func__, cpu);
1700                 atomic_dec(&monarchs);
1701                 sos->monarch = 0;
1702         }
1703
1704         if (!sos->monarch) {
1705                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1706
1707 #ifdef CONFIG_KEXEC
1708                 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1709                         udelay(1000);
1710 #else
1711                 while (monarch_cpu == -1)
1712                         cpu_relax();    /* spin until monarch enters */
1713 #endif
1714
1715                 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1716                 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1717
1718 #ifdef CONFIG_KEXEC
1719                 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1720                         udelay(1000);
1721 #else
1722                 while (monarch_cpu != -1)
1723                         cpu_relax();    /* spin until monarch leaves */
1724 #endif
1725
1726                 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1727
1728                 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1729                 ia64_set_curr_task(cpu, previous_current);
1730                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1731                 atomic_dec(&slaves);
1732                 return;
1733         }
1734
1735         monarch_cpu = cpu;
1736         NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1737
1738         /*
1739          * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1740          * generated via the BMC's command-line interface, but since the console is on the
1741          * same serial line, the user will need some time to switch out of the BMC before
1742          * the dump begins.
1743          */
1744         mprintk("Delaying for 5 seconds...\n");
1745         udelay(5*1000000);
1746         ia64_wait_for_slaves(cpu, "INIT");
1747         /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1748          * to default_monarch_init_process() above and just print all the
1749          * tasks.
1750          */
1751         NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1752         NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1753
1754         mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1755         atomic_dec(&monarchs);
1756         ia64_set_curr_task(cpu, previous_current);
1757         monarch_cpu = -1;
1758         return;
1759 }
1760
1761 static int __init
1762 ia64_mca_disable_cpe_polling(char *str)
1763 {
1764         cpe_poll_enabled = 0;
1765         return 1;
1766 }
1767
1768 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1769
1770 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1771  * these stacks can never sleep, they cannot return from the kernel to user
1772  * space, they do not appear in a normal ps listing.  So there is no need to
1773  * format most of the fields.
1774  */
1775
1776 static void
1777 format_mca_init_stack(void *mca_data, unsigned long offset,
1778                 const char *type, int cpu)
1779 {
1780         struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1781         struct thread_info *ti;
1782         memset(p, 0, KERNEL_STACK_SIZE);
1783         ti = task_thread_info(p);
1784         ti->flags = _TIF_MCA_INIT;
1785         ti->preempt_count = 1;
1786         ti->task = p;
1787         ti->cpu = cpu;
1788         p->stack = ti;
1789         p->state = TASK_UNINTERRUPTIBLE;
1790         cpumask_set_cpu(cpu, &p->cpus_mask);
1791         INIT_LIST_HEAD(&p->tasks);
1792         p->parent = p->real_parent = p->group_leader = p;
1793         INIT_LIST_HEAD(&p->children);
1794         INIT_LIST_HEAD(&p->sibling);
1795         strncpy(p->comm, type, sizeof(p->comm)-1);
1796 }
1797
1798 /* Caller prevents this from being called after init */
1799 static void * __ref mca_bootmem(void)
1800 {
1801         return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE);
1802 }
1803
1804 /* Do per-CPU MCA-related initialization.  */
1805 void
1806 ia64_mca_cpu_init(void *cpu_data)
1807 {
1808         void *pal_vaddr;
1809         void *data;
1810         long sz = sizeof(struct ia64_mca_cpu);
1811         int cpu = smp_processor_id();
1812         static int first_time = 1;
1813
1814         /*
1815          * Structure will already be allocated if cpu has been online,
1816          * then offlined.
1817          */
1818         if (__per_cpu_mca[cpu]) {
1819                 data = __va(__per_cpu_mca[cpu]);
1820         } else {
1821                 if (first_time) {
1822                         data = mca_bootmem();
1823                         first_time = 0;
1824                 } else
1825                         data = (void *)__get_free_pages(GFP_ATOMIC,
1826                                                         get_order(sz));
1827                 if (!data)
1828                         panic("Could not allocate MCA memory for cpu %d\n",
1829                                         cpu);
1830         }
1831         format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1832                 "MCA", cpu);
1833         format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1834                 "INIT", cpu);
1835         __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1836
1837         /*
1838          * Stash away a copy of the PTE needed to map the per-CPU page.
1839          * We may need it during MCA recovery.
1840          */
1841         __this_cpu_write(ia64_mca_per_cpu_pte,
1842                 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1843
1844         /*
1845          * Also, stash away a copy of the PAL address and the PTE
1846          * needed to map it.
1847          */
1848         pal_vaddr = efi_get_pal_addr();
1849         if (!pal_vaddr)
1850                 return;
1851         __this_cpu_write(ia64_mca_pal_base,
1852                 GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1853         __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1854                                                               PAGE_KERNEL)));
1855 }
1856
1857 static int ia64_mca_cpu_online(unsigned int cpu)
1858 {
1859         unsigned long flags;
1860
1861         local_irq_save(flags);
1862         if (!cmc_polling_enabled)
1863                 ia64_mca_cmc_vector_enable(NULL);
1864         local_irq_restore(flags);
1865         return 0;
1866 }
1867
1868 /*
1869  * ia64_mca_init
1870  *
1871  *  Do all the system level mca specific initialization.
1872  *
1873  *      1. Register spinloop and wakeup request interrupt vectors
1874  *
1875  *      2. Register OS_MCA handler entry point
1876  *
1877  *      3. Register OS_INIT handler entry point
1878  *
1879  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1880  *
1881  *  Note that this initialization is done very early before some kernel
1882  *  services are available.
1883  *
1884  *  Inputs  :   None
1885  *
1886  *  Outputs :   None
1887  */
1888 void __init
1889 ia64_mca_init(void)
1890 {
1891         ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1892         ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1893         ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1894         int i;
1895         long rc;
1896         struct ia64_sal_retval isrv;
1897         unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1898         static struct notifier_block default_init_monarch_nb = {
1899                 .notifier_call = default_monarch_init_process,
1900                 .priority = 0/* we need to notified last */
1901         };
1902
1903         IA64_MCA_DEBUG("%s: begin\n", __func__);
1904
1905         /* Clear the Rendez checkin flag for all cpus */
1906         for(i = 0 ; i < NR_CPUS; i++)
1907                 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1908
1909         /*
1910          * Register the rendezvous spinloop and wakeup mechanism with SAL
1911          */
1912
1913         /* Register the rendezvous interrupt vector with SAL */
1914         while (1) {
1915                 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1916                                               SAL_MC_PARAM_MECHANISM_INT,
1917                                               IA64_MCA_RENDEZ_VECTOR,
1918                                               timeout,
1919                                               SAL_MC_PARAM_RZ_ALWAYS);
1920                 rc = isrv.status;
1921                 if (rc == 0)
1922                         break;
1923                 if (rc == -2) {
1924                         printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1925                                 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1926                         timeout = isrv.v0;
1927                         NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1928                         continue;
1929                 }
1930                 printk(KERN_ERR "Failed to register rendezvous interrupt "
1931                        "with SAL (status %ld)\n", rc);
1932                 return;
1933         }
1934
1935         /* Register the wakeup interrupt vector with SAL */
1936         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1937                                       SAL_MC_PARAM_MECHANISM_INT,
1938                                       IA64_MCA_WAKEUP_VECTOR,
1939                                       0, 0);
1940         rc = isrv.status;
1941         if (rc) {
1942                 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1943                        "(status %ld)\n", rc);
1944                 return;
1945         }
1946
1947         IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1948
1949         ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1950         /*
1951          * XXX - disable SAL checksum by setting size to 0; should be
1952          *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1953          */
1954         ia64_mc_info.imi_mca_handler_size       = 0;
1955
1956         /* Register the os mca handler with SAL */
1957         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1958                                        ia64_mc_info.imi_mca_handler,
1959                                        ia64_tpa(mca_hldlr_ptr->gp),
1960                                        ia64_mc_info.imi_mca_handler_size,
1961                                        0, 0, 0)))
1962         {
1963                 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1964                        "(status %ld)\n", rc);
1965                 return;
1966         }
1967
1968         IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1969                        ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1970
1971         /*
1972          * XXX - disable SAL checksum by setting size to 0, should be
1973          * size of the actual init handler in mca_asm.S.
1974          */
1975         ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
1976         ia64_mc_info.imi_monarch_init_handler_size      = 0;
1977         ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
1978         ia64_mc_info.imi_slave_init_handler_size        = 0;
1979
1980         IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
1981                        ia64_mc_info.imi_monarch_init_handler);
1982
1983         /* Register the os init handler with SAL */
1984         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1985                                        ia64_mc_info.imi_monarch_init_handler,
1986                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1987                                        ia64_mc_info.imi_monarch_init_handler_size,
1988                                        ia64_mc_info.imi_slave_init_handler,
1989                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1990                                        ia64_mc_info.imi_slave_init_handler_size)))
1991         {
1992                 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1993                        "(status %ld)\n", rc);
1994                 return;
1995         }
1996         if (register_die_notifier(&default_init_monarch_nb)) {
1997                 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1998                 return;
1999         }
2000
2001         IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2002
2003         /* Initialize the areas set aside by the OS to buffer the
2004          * platform/processor error states for MCA/INIT/CMC
2005          * handling.
2006          */
2007         ia64_log_init(SAL_INFO_TYPE_MCA);
2008         ia64_log_init(SAL_INFO_TYPE_INIT);
2009         ia64_log_init(SAL_INFO_TYPE_CMC);
2010         ia64_log_init(SAL_INFO_TYPE_CPE);
2011
2012         mca_init = 1;
2013         printk(KERN_INFO "MCA related initialization done\n");
2014 }
2015
2016
2017 /*
2018  * These pieces cannot be done in ia64_mca_init() because it is called before
2019  * early_irq_init() which would wipe out our percpu irq registrations. But we
2020  * cannot leave them until ia64_mca_late_init() because by then all the other
2021  * processors have been brought online and have set their own CMC vectors to
2022  * point at a non-existant action. Called from arch_early_irq_init().
2023  */
2024 void __init ia64_mca_irq_init(void)
2025 {
2026         /*
2027          *  Configure the CMCI/P vector and handler. Interrupts for CMC are
2028          *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2029          */
2030         register_percpu_irq(IA64_CMC_VECTOR, ia64_mca_cmc_int_handler, 0,
2031                             "cmc_hndlr");
2032         register_percpu_irq(IA64_CMCP_VECTOR, ia64_mca_cmc_int_caller, 0,
2033                             "cmc_poll");
2034         ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
2035
2036         /* Setup the MCA rendezvous interrupt vector */
2037         register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, ia64_mca_rendez_int_handler,
2038                             0, "mca_rdzv");
2039
2040         /* Setup the MCA wakeup interrupt vector */
2041         register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, ia64_mca_wakeup_int_handler,
2042                             0, "mca_wkup");
2043
2044         /* Setup the CPEI/P handler */
2045         register_percpu_irq(IA64_CPEP_VECTOR, ia64_mca_cpe_int_caller, 0,
2046                             "cpe_poll");
2047 }
2048
2049 /*
2050  * ia64_mca_late_init
2051  *
2052  *      Opportunity to setup things that require initialization later
2053  *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
2054  *      platform doesn't support an interrupt driven mechanism.
2055  *
2056  *  Inputs  :   None
2057  *  Outputs :   Status
2058  */
2059 static int __init
2060 ia64_mca_late_init(void)
2061 {
2062         if (!mca_init)
2063                 return 0;
2064
2065         /* Setup the CMCI/P vector and handler */
2066         timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0);
2067
2068         /* Unmask/enable the vector */
2069         cmc_polling_enabled = 0;
2070         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online",
2071                           ia64_mca_cpu_online, NULL);
2072         IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2073
2074         /* Setup the CPEI/P vector and handler */
2075         cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2076         timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0);
2077
2078         {
2079                 unsigned int irq;
2080
2081                 if (cpe_vector >= 0) {
2082                         /* If platform supports CPEI, enable the irq. */
2083                         irq = local_vector_to_irq(cpe_vector);
2084                         if (irq > 0) {
2085                                 cpe_poll_enabled = 0;
2086                                 irq_set_status_flags(irq, IRQ_PER_CPU);
2087                                 if (request_irq(irq, ia64_mca_cpe_int_handler,
2088                                                 0, "cpe_hndlr", NULL))
2089                                         pr_err("Failed to register cpe_hndlr interrupt\n");
2090                                 ia64_cpe_irq = irq;
2091                                 ia64_mca_register_cpev(cpe_vector);
2092                                 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2093                                         __func__);
2094                                 return 0;
2095                         }
2096                         printk(KERN_ERR "%s: Failed to find irq for CPE "
2097                                         "interrupt handler, vector %d\n",
2098                                         __func__, cpe_vector);
2099                 }
2100                 /* If platform doesn't support CPEI, get the timer going. */
2101                 if (cpe_poll_enabled) {
2102                         ia64_mca_cpe_poll(0UL);
2103                         IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2104                 }
2105         }
2106
2107         return 0;
2108 }
2109
2110 device_initcall(ia64_mca_late_init);