GNU Linux-libre 6.8.9-gnu
[releases.git] / arch / hexagon / mm / init.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory subsystem initialization for Hexagon
4  *
5  * Copyright (c) 2010-2013, The Linux Foundation. All rights reserved.
6  */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/memblock.h>
11 #include <asm/atomic.h>
12 #include <linux/highmem.h>
13 #include <asm/tlb.h>
14 #include <asm/sections.h>
15 #include <asm/setup.h>
16 #include <asm/vm_mmu.h>
17
18 /*
19  * Define a startpg just past the end of the kernel image and a lastpg
20  * that corresponds to the end of real or simulated platform memory.
21  */
22 #define bootmem_startpg (PFN_UP(((unsigned long) _end) - PAGE_OFFSET + PHYS_OFFSET))
23
24 unsigned long bootmem_lastpg;   /*  Should be set by platform code  */
25 unsigned long __phys_offset;    /*  physical kernel offset >> 12  */
26
27 /*  Set as variable to limit PMD copies  */
28 int max_kernel_seg = 0x303;
29
30 /*  indicate pfn's of high memory  */
31 unsigned long highstart_pfn, highend_pfn;
32
33 /* Default cache attribute for newly created page tables */
34 unsigned long _dflt_cache_att = CACHEDEF;
35
36 /*
37  * The current "generation" of kernel map, which should not roll
38  * over until Hell freezes over.  Actual bound in years needs to be
39  * calculated to confirm.
40  */
41 DEFINE_SPINLOCK(kmap_gen_lock);
42
43 /*  checkpatch says don't init this to 0.  */
44 unsigned long long kmap_generation;
45
46 /*
47  * mem_init - initializes memory
48  *
49  * Frees up bootmem
50  * Fixes up more stuff for HIGHMEM
51  * Calculates and displays memory available/used
52  */
53 void __init mem_init(void)
54 {
55         /*  No idea where this is actually declared.  Seems to evade LXR.  */
56         memblock_free_all();
57
58         /*
59          *  To-Do:  someone somewhere should wipe out the bootmem map
60          *  after we're done?
61          */
62
63         /*
64          * This can be moved to some more virtual-memory-specific
65          * initialization hook at some point.  Set the init_mm
66          * descriptors "context" value to point to the initial
67          * kernel segment table's physical address.
68          */
69         init_mm.context.ptbase = __pa(init_mm.pgd);
70 }
71
72 void sync_icache_dcache(pte_t pte)
73 {
74         unsigned long addr;
75         struct page *page;
76
77         page = pte_page(pte);
78         addr = (unsigned long) page_address(page);
79
80         __vmcache_idsync(addr, PAGE_SIZE);
81 }
82
83 /*
84  * In order to set up page allocator "nodes",
85  * somebody has to call free_area_init() for UMA.
86  *
87  * In this mode, we only have one pg_data_t
88  * structure: contig_mem_data.
89  */
90 static void __init paging_init(void)
91 {
92         unsigned long max_zone_pfn[MAX_NR_ZONES] = {0, };
93
94         /*
95          *  This is not particularly well documented anywhere, but
96          *  give ZONE_NORMAL all the memory, including the big holes
97          *  left by the kernel+bootmem_map which are already left as reserved
98          *  in the bootmem_map; free_area_init should see those bits and
99          *  adjust accordingly.
100          */
101
102         max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
103
104         free_area_init(max_zone_pfn);  /*  sets up the zonelists and mem_map  */
105
106         /*
107          * Start of high memory area.  Will probably need something more
108          * fancy if we...  get more fancy.
109          */
110         high_memory = (void *)((bootmem_lastpg + 1) << PAGE_SHIFT);
111 }
112
113 #ifndef DMA_RESERVE
114 #define DMA_RESERVE             (4)
115 #endif
116
117 #define DMA_CHUNKSIZE           (1<<22)
118 #define DMA_RESERVED_BYTES      (DMA_RESERVE * DMA_CHUNKSIZE)
119
120 /*
121  * Pick out the memory size.  We look for mem=size,
122  * where size is "size[KkMm]"
123  */
124 static int __init early_mem(char *p)
125 {
126         unsigned long size;
127         char *endp;
128
129         size = memparse(p, &endp);
130
131         bootmem_lastpg = PFN_DOWN(size);
132
133         return 0;
134 }
135 early_param("mem", early_mem);
136
137 size_t hexagon_coherent_pool_size = (size_t) (DMA_RESERVE << 22);
138
139 void __init setup_arch_memory(void)
140 {
141         /*  XXX Todo: this probably should be cleaned up  */
142         u32 *segtable = (u32 *) &swapper_pg_dir[0];
143         u32 *segtable_end;
144
145         /*
146          * Set up boot memory allocator
147          *
148          * The Gorman book also talks about these functions.
149          * This needs to change for highmem setups.
150          */
151
152         /*  Prior to this, bootmem_lastpg is actually mem size  */
153         bootmem_lastpg += ARCH_PFN_OFFSET;
154
155         /* Memory size needs to be a multiple of 16M */
156         bootmem_lastpg = PFN_DOWN((bootmem_lastpg << PAGE_SHIFT) &
157                 ~((BIG_KERNEL_PAGE_SIZE) - 1));
158
159         memblock_add(PHYS_OFFSET,
160                      (bootmem_lastpg - ARCH_PFN_OFFSET) << PAGE_SHIFT);
161
162         /* Reserve kernel text/data/bss */
163         memblock_reserve(PHYS_OFFSET,
164                          (bootmem_startpg - ARCH_PFN_OFFSET) << PAGE_SHIFT);
165         /*
166          * Reserve the top DMA_RESERVE bytes of RAM for DMA (uncached)
167          * memory allocation
168          */
169         max_low_pfn = bootmem_lastpg - PFN_DOWN(DMA_RESERVED_BYTES);
170         min_low_pfn = ARCH_PFN_OFFSET;
171         memblock_reserve(PFN_PHYS(max_low_pfn), DMA_RESERVED_BYTES);
172
173         printk(KERN_INFO "bootmem_startpg:  0x%08lx\n", bootmem_startpg);
174         printk(KERN_INFO "bootmem_lastpg:  0x%08lx\n", bootmem_lastpg);
175         printk(KERN_INFO "min_low_pfn:  0x%08lx\n", min_low_pfn);
176         printk(KERN_INFO "max_low_pfn:  0x%08lx\n", max_low_pfn);
177
178         /*
179          * The default VM page tables (will be) populated with
180          * VA=PA+PAGE_OFFSET mapping.  We go in and invalidate entries
181          * higher than what we have memory for.
182          */
183
184         /*  this is pointer arithmetic; each entry covers 4MB  */
185         segtable = segtable + (PAGE_OFFSET >> 22);
186
187         /*  this actually only goes to the end of the first gig  */
188         segtable_end = segtable + (1<<(30-22));
189
190         /*
191          * Move forward to the start of empty pages; take into account
192          * phys_offset shift.
193          */
194
195         segtable += (bootmem_lastpg-ARCH_PFN_OFFSET)>>(22-PAGE_SHIFT);
196         {
197                 int i;
198
199                 for (i = 1 ; i <= DMA_RESERVE ; i++)
200                         segtable[-i] = ((segtable[-i] & __HVM_PTE_PGMASK_4MB)
201                                 | __HVM_PTE_R | __HVM_PTE_W | __HVM_PTE_X
202                                 | __HEXAGON_C_UNC << 6
203                                 | __HVM_PDE_S_4MB);
204         }
205
206         printk(KERN_INFO "clearing segtable from %p to %p\n", segtable,
207                 segtable_end);
208         while (segtable < (segtable_end-8))
209                 *(segtable++) = __HVM_PDE_S_INVALID;
210         /* stop the pointer at the device I/O 4MB page  */
211
212         printk(KERN_INFO "segtable = %p (should be equal to _K_io_map)\n",
213                 segtable);
214
215 #if 0
216         /*  Other half of the early device table from vm_init_segtable. */
217         printk(KERN_INFO "&_K_init_devicetable = 0x%08x\n",
218                 (unsigned long) _K_init_devicetable-PAGE_OFFSET);
219         *segtable = ((u32) (unsigned long) _K_init_devicetable-PAGE_OFFSET) |
220                 __HVM_PDE_S_4KB;
221         printk(KERN_INFO "*segtable = 0x%08x\n", *segtable);
222 #endif
223
224         /*
225          *  The bootmem allocator seemingly just lives to feed memory
226          *  to the paging system
227          */
228         printk(KERN_INFO "PAGE_SIZE=%lu\n", PAGE_SIZE);
229         paging_init();  /*  See Gorman Book, 2.3  */
230
231         /*
232          *  At this point, the page allocator is kind of initialized, but
233          *  apparently no pages are available (just like with the bootmem
234          *  allocator), and need to be freed themselves via mem_init(),
235          *  which is called by start_kernel() later on in the process
236          */
237 }
238
239 static const pgprot_t protection_map[16] = {
240         [VM_NONE]                                       = __pgprot(_PAGE_PRESENT | _PAGE_USER |
241                                                                    CACHEDEF),
242         [VM_READ]                                       = __pgprot(_PAGE_PRESENT | _PAGE_USER |
243                                                                    _PAGE_READ | CACHEDEF),
244         [VM_WRITE]                                      = __pgprot(_PAGE_PRESENT | _PAGE_USER |
245                                                                    CACHEDEF),
246         [VM_WRITE | VM_READ]                            = __pgprot(_PAGE_PRESENT | _PAGE_USER |
247                                                                    _PAGE_READ | CACHEDEF),
248         [VM_EXEC]                                       = __pgprot(_PAGE_PRESENT | _PAGE_USER |
249                                                                    _PAGE_EXECUTE | CACHEDEF),
250         [VM_EXEC | VM_READ]                             = __pgprot(_PAGE_PRESENT | _PAGE_USER |
251                                                                    _PAGE_EXECUTE | _PAGE_READ |
252                                                                    CACHEDEF),
253         [VM_EXEC | VM_WRITE]                            = __pgprot(_PAGE_PRESENT | _PAGE_USER |
254                                                                    _PAGE_EXECUTE | CACHEDEF),
255         [VM_EXEC | VM_WRITE | VM_READ]                  = __pgprot(_PAGE_PRESENT | _PAGE_USER |
256                                                                    _PAGE_EXECUTE | _PAGE_READ |
257                                                                    CACHEDEF),
258         [VM_SHARED]                                     = __pgprot(_PAGE_PRESENT | _PAGE_USER |
259                                                                    CACHEDEF),
260         [VM_SHARED | VM_READ]                           = __pgprot(_PAGE_PRESENT | _PAGE_USER |
261                                                                    _PAGE_READ | CACHEDEF),
262         [VM_SHARED | VM_WRITE]                          = __pgprot(_PAGE_PRESENT | _PAGE_USER |
263                                                                    _PAGE_WRITE | CACHEDEF),
264         [VM_SHARED | VM_WRITE | VM_READ]                = __pgprot(_PAGE_PRESENT | _PAGE_USER |
265                                                                    _PAGE_READ | _PAGE_WRITE |
266                                                                    CACHEDEF),
267         [VM_SHARED | VM_EXEC]                           = __pgprot(_PAGE_PRESENT | _PAGE_USER |
268                                                                    _PAGE_EXECUTE | CACHEDEF),
269         [VM_SHARED | VM_EXEC | VM_READ]                 = __pgprot(_PAGE_PRESENT | _PAGE_USER |
270                                                                    _PAGE_EXECUTE | _PAGE_READ |
271                                                                    CACHEDEF),
272         [VM_SHARED | VM_EXEC | VM_WRITE]                = __pgprot(_PAGE_PRESENT | _PAGE_USER |
273                                                                    _PAGE_EXECUTE | _PAGE_WRITE |
274                                                                    CACHEDEF),
275         [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]      = __pgprot(_PAGE_PRESENT | _PAGE_USER |
276                                                                    _PAGE_READ | _PAGE_EXECUTE |
277                                                                    _PAGE_WRITE | CACHEDEF)
278 };
279 DECLARE_VM_GET_PAGE_PROT