GNU Linux-libre 6.1.90-gnu
[releases.git] / arch / hexagon / mm / init.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory subsystem initialization for Hexagon
4  *
5  * Copyright (c) 2010-2013, The Linux Foundation. All rights reserved.
6  */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/memblock.h>
11 #include <asm/atomic.h>
12 #include <linux/highmem.h>
13 #include <asm/tlb.h>
14 #include <asm/sections.h>
15 #include <asm/vm_mmu.h>
16
17 /*
18  * Define a startpg just past the end of the kernel image and a lastpg
19  * that corresponds to the end of real or simulated platform memory.
20  */
21 #define bootmem_startpg (PFN_UP(((unsigned long) _end) - PAGE_OFFSET + PHYS_OFFSET))
22
23 unsigned long bootmem_lastpg;   /*  Should be set by platform code  */
24 unsigned long __phys_offset;    /*  physical kernel offset >> 12  */
25
26 /*  Set as variable to limit PMD copies  */
27 int max_kernel_seg = 0x303;
28
29 /*  indicate pfn's of high memory  */
30 unsigned long highstart_pfn, highend_pfn;
31
32 /* Default cache attribute for newly created page tables */
33 unsigned long _dflt_cache_att = CACHEDEF;
34
35 /*
36  * The current "generation" of kernel map, which should not roll
37  * over until Hell freezes over.  Actual bound in years needs to be
38  * calculated to confirm.
39  */
40 DEFINE_SPINLOCK(kmap_gen_lock);
41
42 /*  checkpatch says don't init this to 0.  */
43 unsigned long long kmap_generation;
44
45 /*
46  * mem_init - initializes memory
47  *
48  * Frees up bootmem
49  * Fixes up more stuff for HIGHMEM
50  * Calculates and displays memory available/used
51  */
52 void __init mem_init(void)
53 {
54         /*  No idea where this is actually declared.  Seems to evade LXR.  */
55         memblock_free_all();
56
57         /*
58          *  To-Do:  someone somewhere should wipe out the bootmem map
59          *  after we're done?
60          */
61
62         /*
63          * This can be moved to some more virtual-memory-specific
64          * initialization hook at some point.  Set the init_mm
65          * descriptors "context" value to point to the initial
66          * kernel segment table's physical address.
67          */
68         init_mm.context.ptbase = __pa(init_mm.pgd);
69 }
70
71 void sync_icache_dcache(pte_t pte)
72 {
73         unsigned long addr;
74         struct page *page;
75
76         page = pte_page(pte);
77         addr = (unsigned long) page_address(page);
78
79         __vmcache_idsync(addr, PAGE_SIZE);
80 }
81
82 /*
83  * In order to set up page allocator "nodes",
84  * somebody has to call free_area_init() for UMA.
85  *
86  * In this mode, we only have one pg_data_t
87  * structure: contig_mem_data.
88  */
89 void __init paging_init(void)
90 {
91         unsigned long max_zone_pfn[MAX_NR_ZONES] = {0, };
92
93         /*
94          *  This is not particularly well documented anywhere, but
95          *  give ZONE_NORMAL all the memory, including the big holes
96          *  left by the kernel+bootmem_map which are already left as reserved
97          *  in the bootmem_map; free_area_init should see those bits and
98          *  adjust accordingly.
99          */
100
101         max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
102
103         free_area_init(max_zone_pfn);  /*  sets up the zonelists and mem_map  */
104
105         /*
106          * Start of high memory area.  Will probably need something more
107          * fancy if we...  get more fancy.
108          */
109         high_memory = (void *)((bootmem_lastpg + 1) << PAGE_SHIFT);
110 }
111
112 #ifndef DMA_RESERVE
113 #define DMA_RESERVE             (4)
114 #endif
115
116 #define DMA_CHUNKSIZE           (1<<22)
117 #define DMA_RESERVED_BYTES      (DMA_RESERVE * DMA_CHUNKSIZE)
118
119 /*
120  * Pick out the memory size.  We look for mem=size,
121  * where size is "size[KkMm]"
122  */
123 static int __init early_mem(char *p)
124 {
125         unsigned long size;
126         char *endp;
127
128         size = memparse(p, &endp);
129
130         bootmem_lastpg = PFN_DOWN(size);
131
132         return 0;
133 }
134 early_param("mem", early_mem);
135
136 size_t hexagon_coherent_pool_size = (size_t) (DMA_RESERVE << 22);
137
138 void __init setup_arch_memory(void)
139 {
140         /*  XXX Todo: this probably should be cleaned up  */
141         u32 *segtable = (u32 *) &swapper_pg_dir[0];
142         u32 *segtable_end;
143
144         /*
145          * Set up boot memory allocator
146          *
147          * The Gorman book also talks about these functions.
148          * This needs to change for highmem setups.
149          */
150
151         /*  Prior to this, bootmem_lastpg is actually mem size  */
152         bootmem_lastpg += ARCH_PFN_OFFSET;
153
154         /* Memory size needs to be a multiple of 16M */
155         bootmem_lastpg = PFN_DOWN((bootmem_lastpg << PAGE_SHIFT) &
156                 ~((BIG_KERNEL_PAGE_SIZE) - 1));
157
158         memblock_add(PHYS_OFFSET,
159                      (bootmem_lastpg - ARCH_PFN_OFFSET) << PAGE_SHIFT);
160
161         /* Reserve kernel text/data/bss */
162         memblock_reserve(PHYS_OFFSET,
163                          (bootmem_startpg - ARCH_PFN_OFFSET) << PAGE_SHIFT);
164         /*
165          * Reserve the top DMA_RESERVE bytes of RAM for DMA (uncached)
166          * memory allocation
167          */
168         max_low_pfn = bootmem_lastpg - PFN_DOWN(DMA_RESERVED_BYTES);
169         min_low_pfn = ARCH_PFN_OFFSET;
170         memblock_reserve(PFN_PHYS(max_low_pfn), DMA_RESERVED_BYTES);
171
172         printk(KERN_INFO "bootmem_startpg:  0x%08lx\n", bootmem_startpg);
173         printk(KERN_INFO "bootmem_lastpg:  0x%08lx\n", bootmem_lastpg);
174         printk(KERN_INFO "min_low_pfn:  0x%08lx\n", min_low_pfn);
175         printk(KERN_INFO "max_low_pfn:  0x%08lx\n", max_low_pfn);
176
177         /*
178          * The default VM page tables (will be) populated with
179          * VA=PA+PAGE_OFFSET mapping.  We go in and invalidate entries
180          * higher than what we have memory for.
181          */
182
183         /*  this is pointer arithmetic; each entry covers 4MB  */
184         segtable = segtable + (PAGE_OFFSET >> 22);
185
186         /*  this actually only goes to the end of the first gig  */
187         segtable_end = segtable + (1<<(30-22));
188
189         /*
190          * Move forward to the start of empty pages; take into account
191          * phys_offset shift.
192          */
193
194         segtable += (bootmem_lastpg-ARCH_PFN_OFFSET)>>(22-PAGE_SHIFT);
195         {
196                 int i;
197
198                 for (i = 1 ; i <= DMA_RESERVE ; i++)
199                         segtable[-i] = ((segtable[-i] & __HVM_PTE_PGMASK_4MB)
200                                 | __HVM_PTE_R | __HVM_PTE_W | __HVM_PTE_X
201                                 | __HEXAGON_C_UNC << 6
202                                 | __HVM_PDE_S_4MB);
203         }
204
205         printk(KERN_INFO "clearing segtable from %p to %p\n", segtable,
206                 segtable_end);
207         while (segtable < (segtable_end-8))
208                 *(segtable++) = __HVM_PDE_S_INVALID;
209         /* stop the pointer at the device I/O 4MB page  */
210
211         printk(KERN_INFO "segtable = %p (should be equal to _K_io_map)\n",
212                 segtable);
213
214 #if 0
215         /*  Other half of the early device table from vm_init_segtable. */
216         printk(KERN_INFO "&_K_init_devicetable = 0x%08x\n",
217                 (unsigned long) _K_init_devicetable-PAGE_OFFSET);
218         *segtable = ((u32) (unsigned long) _K_init_devicetable-PAGE_OFFSET) |
219                 __HVM_PDE_S_4KB;
220         printk(KERN_INFO "*segtable = 0x%08x\n", *segtable);
221 #endif
222
223         /*
224          *  The bootmem allocator seemingly just lives to feed memory
225          *  to the paging system
226          */
227         printk(KERN_INFO "PAGE_SIZE=%lu\n", PAGE_SIZE);
228         paging_init();  /*  See Gorman Book, 2.3  */
229
230         /*
231          *  At this point, the page allocator is kind of initialized, but
232          *  apparently no pages are available (just like with the bootmem
233          *  allocator), and need to be freed themselves via mem_init(),
234          *  which is called by start_kernel() later on in the process
235          */
236 }
237
238 static const pgprot_t protection_map[16] = {
239         [VM_NONE]                                       = __pgprot(_PAGE_PRESENT | _PAGE_USER |
240                                                                    CACHEDEF),
241         [VM_READ]                                       = __pgprot(_PAGE_PRESENT | _PAGE_USER |
242                                                                    _PAGE_READ | CACHEDEF),
243         [VM_WRITE]                                      = __pgprot(_PAGE_PRESENT | _PAGE_USER |
244                                                                    CACHEDEF),
245         [VM_WRITE | VM_READ]                            = __pgprot(_PAGE_PRESENT | _PAGE_USER |
246                                                                    _PAGE_READ | CACHEDEF),
247         [VM_EXEC]                                       = __pgprot(_PAGE_PRESENT | _PAGE_USER |
248                                                                    _PAGE_EXECUTE | CACHEDEF),
249         [VM_EXEC | VM_READ]                             = __pgprot(_PAGE_PRESENT | _PAGE_USER |
250                                                                    _PAGE_EXECUTE | _PAGE_READ |
251                                                                    CACHEDEF),
252         [VM_EXEC | VM_WRITE]                            = __pgprot(_PAGE_PRESENT | _PAGE_USER |
253                                                                    _PAGE_EXECUTE | CACHEDEF),
254         [VM_EXEC | VM_WRITE | VM_READ]                  = __pgprot(_PAGE_PRESENT | _PAGE_USER |
255                                                                    _PAGE_EXECUTE | _PAGE_READ |
256                                                                    CACHEDEF),
257         [VM_SHARED]                                     = __pgprot(_PAGE_PRESENT | _PAGE_USER |
258                                                                    CACHEDEF),
259         [VM_SHARED | VM_READ]                           = __pgprot(_PAGE_PRESENT | _PAGE_USER |
260                                                                    _PAGE_READ | CACHEDEF),
261         [VM_SHARED | VM_WRITE]                          = __pgprot(_PAGE_PRESENT | _PAGE_USER |
262                                                                    _PAGE_WRITE | CACHEDEF),
263         [VM_SHARED | VM_WRITE | VM_READ]                = __pgprot(_PAGE_PRESENT | _PAGE_USER |
264                                                                    _PAGE_READ | _PAGE_WRITE |
265                                                                    CACHEDEF),
266         [VM_SHARED | VM_EXEC]                           = __pgprot(_PAGE_PRESENT | _PAGE_USER |
267                                                                    _PAGE_EXECUTE | CACHEDEF),
268         [VM_SHARED | VM_EXEC | VM_READ]                 = __pgprot(_PAGE_PRESENT | _PAGE_USER |
269                                                                    _PAGE_EXECUTE | _PAGE_READ |
270                                                                    CACHEDEF),
271         [VM_SHARED | VM_EXEC | VM_WRITE]                = __pgprot(_PAGE_PRESENT | _PAGE_USER |
272                                                                    _PAGE_EXECUTE | _PAGE_WRITE |
273                                                                    CACHEDEF),
274         [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]      = __pgprot(_PAGE_PRESENT | _PAGE_USER |
275                                                                    _PAGE_READ | _PAGE_EXECUTE |
276                                                                    _PAGE_WRITE | CACHEDEF)
277 };
278 DECLARE_VM_GET_PAGE_PROT