GNU Linux-libre 4.14.328-gnu1
[releases.git] / arch / arm64 / mm / dma-mapping.c
1 /*
2  * SWIOTLB-based DMA API implementation
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/gfp.h>
21 #include <linux/acpi.h>
22 #include <linux/bootmem.h>
23 #include <linux/cache.h>
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/genalloc.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/vmalloc.h>
30 #include <linux/swiotlb.h>
31 #include <linux/pci.h>
32
33 #include <asm/cacheflush.h>
34
35 static int swiotlb __ro_after_init;
36
37 static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
38                                  bool coherent)
39 {
40         if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
41                 return pgprot_writecombine(prot);
42         return prot;
43 }
44
45 static struct gen_pool *atomic_pool __ro_after_init;
46
47 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
48 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
49
50 static int __init early_coherent_pool(char *p)
51 {
52         atomic_pool_size = memparse(p, &p);
53         return 0;
54 }
55 early_param("coherent_pool", early_coherent_pool);
56
57 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
58 {
59         unsigned long val;
60         void *ptr = NULL;
61
62         if (!atomic_pool) {
63                 WARN(1, "coherent pool not initialised!\n");
64                 return NULL;
65         }
66
67         val = gen_pool_alloc(atomic_pool, size);
68         if (val) {
69                 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
70
71                 *ret_page = phys_to_page(phys);
72                 ptr = (void *)val;
73                 memset(ptr, 0, size);
74         }
75
76         return ptr;
77 }
78
79 static bool __in_atomic_pool(void *start, size_t size)
80 {
81         return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
82 }
83
84 static int __free_from_pool(void *start, size_t size)
85 {
86         if (!__in_atomic_pool(start, size))
87                 return 0;
88
89         gen_pool_free(atomic_pool, (unsigned long)start, size);
90
91         return 1;
92 }
93
94 static void *__dma_alloc_coherent(struct device *dev, size_t size,
95                                   dma_addr_t *dma_handle, gfp_t flags,
96                                   unsigned long attrs)
97 {
98         if (IS_ENABLED(CONFIG_ZONE_DMA) &&
99             dev->coherent_dma_mask <= DMA_BIT_MASK(32))
100                 flags |= GFP_DMA;
101         if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) {
102                 struct page *page;
103                 void *addr;
104
105                 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
106                                                  get_order(size), flags);
107                 if (!page)
108                         return NULL;
109
110                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
111                 addr = page_address(page);
112                 memset(addr, 0, size);
113                 return addr;
114         } else {
115                 return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
116         }
117 }
118
119 static void __dma_free_coherent(struct device *dev, size_t size,
120                                 void *vaddr, dma_addr_t dma_handle,
121                                 unsigned long attrs)
122 {
123         bool freed;
124         phys_addr_t paddr = dma_to_phys(dev, dma_handle);
125
126
127         freed = dma_release_from_contiguous(dev,
128                                         phys_to_page(paddr),
129                                         size >> PAGE_SHIFT);
130         if (!freed)
131                 swiotlb_free_coherent(dev, size, vaddr, dma_handle);
132 }
133
134 static void *__dma_alloc(struct device *dev, size_t size,
135                          dma_addr_t *dma_handle, gfp_t flags,
136                          unsigned long attrs)
137 {
138         struct page *page;
139         void *ptr, *coherent_ptr;
140         bool coherent = is_device_dma_coherent(dev);
141         pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
142
143         size = PAGE_ALIGN(size);
144
145         if (!coherent && !gfpflags_allow_blocking(flags)) {
146                 struct page *page = NULL;
147                 void *addr = __alloc_from_pool(size, &page, flags);
148
149                 if (addr)
150                         *dma_handle = phys_to_dma(dev, page_to_phys(page));
151
152                 return addr;
153         }
154
155         ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
156         if (!ptr)
157                 goto no_mem;
158
159         /* no need for non-cacheable mapping if coherent */
160         if (coherent)
161                 return ptr;
162
163         /* remove any dirty cache lines on the kernel alias */
164         __dma_flush_area(ptr, size);
165
166         /* create a coherent mapping */
167         page = virt_to_page(ptr);
168         coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
169                                                    prot, NULL);
170         if (!coherent_ptr)
171                 goto no_map;
172
173         return coherent_ptr;
174
175 no_map:
176         __dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
177 no_mem:
178         return NULL;
179 }
180
181 static void __dma_free(struct device *dev, size_t size,
182                        void *vaddr, dma_addr_t dma_handle,
183                        unsigned long attrs)
184 {
185         void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
186
187         size = PAGE_ALIGN(size);
188
189         if (!is_device_dma_coherent(dev)) {
190                 if (__free_from_pool(vaddr, size))
191                         return;
192                 vunmap(vaddr);
193         }
194         __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
195 }
196
197 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
198                                      unsigned long offset, size_t size,
199                                      enum dma_data_direction dir,
200                                      unsigned long attrs)
201 {
202         dma_addr_t dev_addr;
203
204         dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
205         if (!is_device_dma_coherent(dev) &&
206             (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
207                 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
208
209         return dev_addr;
210 }
211
212
213 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
214                                  size_t size, enum dma_data_direction dir,
215                                  unsigned long attrs)
216 {
217         if (!is_device_dma_coherent(dev) &&
218             (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
219                 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
220         swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
221 }
222
223 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
224                                   int nelems, enum dma_data_direction dir,
225                                   unsigned long attrs)
226 {
227         struct scatterlist *sg;
228         int i, ret;
229
230         ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
231         if (!is_device_dma_coherent(dev) &&
232             (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
233                 for_each_sg(sgl, sg, ret, i)
234                         __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
235                                        sg->length, dir);
236
237         return ret;
238 }
239
240 static void __swiotlb_unmap_sg_attrs(struct device *dev,
241                                      struct scatterlist *sgl, int nelems,
242                                      enum dma_data_direction dir,
243                                      unsigned long attrs)
244 {
245         struct scatterlist *sg;
246         int i;
247
248         if (!is_device_dma_coherent(dev) &&
249             (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
250                 for_each_sg(sgl, sg, nelems, i)
251                         __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
252                                          sg->length, dir);
253         swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
254 }
255
256 static void __swiotlb_sync_single_for_cpu(struct device *dev,
257                                           dma_addr_t dev_addr, size_t size,
258                                           enum dma_data_direction dir)
259 {
260         if (!is_device_dma_coherent(dev))
261                 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
262         swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
263 }
264
265 static void __swiotlb_sync_single_for_device(struct device *dev,
266                                              dma_addr_t dev_addr, size_t size,
267                                              enum dma_data_direction dir)
268 {
269         swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
270         if (!is_device_dma_coherent(dev))
271                 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
272 }
273
274 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
275                                       struct scatterlist *sgl, int nelems,
276                                       enum dma_data_direction dir)
277 {
278         struct scatterlist *sg;
279         int i;
280
281         if (!is_device_dma_coherent(dev))
282                 for_each_sg(sgl, sg, nelems, i)
283                         __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
284                                          sg->length, dir);
285         swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
286 }
287
288 static void __swiotlb_sync_sg_for_device(struct device *dev,
289                                          struct scatterlist *sgl, int nelems,
290                                          enum dma_data_direction dir)
291 {
292         struct scatterlist *sg;
293         int i;
294
295         swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
296         if (!is_device_dma_coherent(dev))
297                 for_each_sg(sgl, sg, nelems, i)
298                         __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
299                                        sg->length, dir);
300 }
301
302 static int __swiotlb_mmap_pfn(struct vm_area_struct *vma,
303                               unsigned long pfn, size_t size)
304 {
305         int ret = -ENXIO;
306         unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
307                                         PAGE_SHIFT;
308         unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
309         unsigned long off = vma->vm_pgoff;
310
311         if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
312                 ret = remap_pfn_range(vma, vma->vm_start,
313                                       pfn + off,
314                                       vma->vm_end - vma->vm_start,
315                                       vma->vm_page_prot);
316         }
317
318         return ret;
319 }
320
321 static int __swiotlb_mmap(struct device *dev,
322                           struct vm_area_struct *vma,
323                           void *cpu_addr, dma_addr_t dma_addr, size_t size,
324                           unsigned long attrs)
325 {
326         int ret;
327         unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
328
329         vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
330                                              is_device_dma_coherent(dev));
331
332         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
333                 return ret;
334
335         return __swiotlb_mmap_pfn(vma, pfn, size);
336 }
337
338 static int __swiotlb_get_sgtable_page(struct sg_table *sgt,
339                                       struct page *page, size_t size)
340 {
341         int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
342
343         if (!ret)
344                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
345
346         return ret;
347 }
348
349 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
350                                  void *cpu_addr, dma_addr_t handle, size_t size,
351                                  unsigned long attrs)
352 {
353         struct page *page = phys_to_page(dma_to_phys(dev, handle));
354
355         return __swiotlb_get_sgtable_page(sgt, page, size);
356 }
357
358 static int __swiotlb_dma_supported(struct device *hwdev, u64 mask)
359 {
360         if (swiotlb)
361                 return swiotlb_dma_supported(hwdev, mask);
362         return 1;
363 }
364
365 static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr)
366 {
367         if (swiotlb)
368                 return swiotlb_dma_mapping_error(hwdev, addr);
369         return 0;
370 }
371
372 static const struct dma_map_ops swiotlb_dma_ops = {
373         .alloc = __dma_alloc,
374         .free = __dma_free,
375         .mmap = __swiotlb_mmap,
376         .get_sgtable = __swiotlb_get_sgtable,
377         .map_page = __swiotlb_map_page,
378         .unmap_page = __swiotlb_unmap_page,
379         .map_sg = __swiotlb_map_sg_attrs,
380         .unmap_sg = __swiotlb_unmap_sg_attrs,
381         .sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
382         .sync_single_for_device = __swiotlb_sync_single_for_device,
383         .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
384         .sync_sg_for_device = __swiotlb_sync_sg_for_device,
385         .dma_supported = __swiotlb_dma_supported,
386         .mapping_error = __swiotlb_dma_mapping_error,
387 };
388
389 static int __init atomic_pool_init(void)
390 {
391         pgprot_t prot = __pgprot(PROT_NORMAL_NC);
392         unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
393         struct page *page;
394         void *addr;
395         unsigned int pool_size_order = get_order(atomic_pool_size);
396
397         if (dev_get_cma_area(NULL))
398                 page = dma_alloc_from_contiguous(NULL, nr_pages,
399                                                  pool_size_order, GFP_KERNEL);
400         else
401                 page = alloc_pages(GFP_DMA, pool_size_order);
402
403         if (page) {
404                 int ret;
405                 void *page_addr = page_address(page);
406
407                 memset(page_addr, 0, atomic_pool_size);
408                 __dma_flush_area(page_addr, atomic_pool_size);
409
410                 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
411                 if (!atomic_pool)
412                         goto free_page;
413
414                 addr = dma_common_contiguous_remap(page, atomic_pool_size,
415                                         VM_USERMAP, prot, atomic_pool_init);
416
417                 if (!addr)
418                         goto destroy_genpool;
419
420                 ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
421                                         page_to_phys(page),
422                                         atomic_pool_size, -1);
423                 if (ret)
424                         goto remove_mapping;
425
426                 gen_pool_set_algo(atomic_pool,
427                                   gen_pool_first_fit_order_align,
428                                   NULL);
429
430                 pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
431                         atomic_pool_size / 1024);
432                 return 0;
433         }
434         goto out;
435
436 remove_mapping:
437         dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
438 destroy_genpool:
439         gen_pool_destroy(atomic_pool);
440         atomic_pool = NULL;
441 free_page:
442         if (!dma_release_from_contiguous(NULL, page, nr_pages))
443                 __free_pages(page, pool_size_order);
444 out:
445         pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
446                 atomic_pool_size / 1024);
447         return -ENOMEM;
448 }
449
450 /********************************************
451  * The following APIs are for dummy DMA ops *
452  ********************************************/
453
454 static void *__dummy_alloc(struct device *dev, size_t size,
455                            dma_addr_t *dma_handle, gfp_t flags,
456                            unsigned long attrs)
457 {
458         return NULL;
459 }
460
461 static void __dummy_free(struct device *dev, size_t size,
462                          void *vaddr, dma_addr_t dma_handle,
463                          unsigned long attrs)
464 {
465 }
466
467 static int __dummy_mmap(struct device *dev,
468                         struct vm_area_struct *vma,
469                         void *cpu_addr, dma_addr_t dma_addr, size_t size,
470                         unsigned long attrs)
471 {
472         return -ENXIO;
473 }
474
475 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
476                                    unsigned long offset, size_t size,
477                                    enum dma_data_direction dir,
478                                    unsigned long attrs)
479 {
480         return 0;
481 }
482
483 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
484                                size_t size, enum dma_data_direction dir,
485                                unsigned long attrs)
486 {
487 }
488
489 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
490                           int nelems, enum dma_data_direction dir,
491                           unsigned long attrs)
492 {
493         return 0;
494 }
495
496 static void __dummy_unmap_sg(struct device *dev,
497                              struct scatterlist *sgl, int nelems,
498                              enum dma_data_direction dir,
499                              unsigned long attrs)
500 {
501 }
502
503 static void __dummy_sync_single(struct device *dev,
504                                 dma_addr_t dev_addr, size_t size,
505                                 enum dma_data_direction dir)
506 {
507 }
508
509 static void __dummy_sync_sg(struct device *dev,
510                             struct scatterlist *sgl, int nelems,
511                             enum dma_data_direction dir)
512 {
513 }
514
515 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
516 {
517         return 1;
518 }
519
520 static int __dummy_dma_supported(struct device *hwdev, u64 mask)
521 {
522         return 0;
523 }
524
525 const struct dma_map_ops dummy_dma_ops = {
526         .alloc                  = __dummy_alloc,
527         .free                   = __dummy_free,
528         .mmap                   = __dummy_mmap,
529         .map_page               = __dummy_map_page,
530         .unmap_page             = __dummy_unmap_page,
531         .map_sg                 = __dummy_map_sg,
532         .unmap_sg               = __dummy_unmap_sg,
533         .sync_single_for_cpu    = __dummy_sync_single,
534         .sync_single_for_device = __dummy_sync_single,
535         .sync_sg_for_cpu        = __dummy_sync_sg,
536         .sync_sg_for_device     = __dummy_sync_sg,
537         .mapping_error          = __dummy_mapping_error,
538         .dma_supported          = __dummy_dma_supported,
539 };
540 EXPORT_SYMBOL(dummy_dma_ops);
541
542 static int __init arm64_dma_init(void)
543 {
544         if (swiotlb_force == SWIOTLB_FORCE ||
545             max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
546                 swiotlb = 1;
547
548         return atomic_pool_init();
549 }
550 arch_initcall(arm64_dma_init);
551
552 #define PREALLOC_DMA_DEBUG_ENTRIES      4096
553
554 static int __init dma_debug_do_init(void)
555 {
556         dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
557         return 0;
558 }
559 fs_initcall(dma_debug_do_init);
560
561
562 #ifdef CONFIG_IOMMU_DMA
563 #include <linux/dma-iommu.h>
564 #include <linux/platform_device.h>
565 #include <linux/amba/bus.h>
566
567 /* Thankfully, all cache ops are by VA so we can ignore phys here */
568 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
569 {
570         __dma_flush_area(virt, PAGE_SIZE);
571 }
572
573 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
574                                  dma_addr_t *handle, gfp_t gfp,
575                                  unsigned long attrs)
576 {
577         bool coherent = is_device_dma_coherent(dev);
578         int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
579         size_t iosize = size;
580         void *addr;
581
582         if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
583                 return NULL;
584
585         size = PAGE_ALIGN(size);
586
587         /*
588          * Some drivers rely on this, and we probably don't want the
589          * possibility of stale kernel data being read by devices anyway.
590          */
591         gfp |= __GFP_ZERO;
592
593         if (!gfpflags_allow_blocking(gfp)) {
594                 struct page *page;
595                 /*
596                  * In atomic context we can't remap anything, so we'll only
597                  * get the virtually contiguous buffer we need by way of a
598                  * physically contiguous allocation.
599                  */
600                 if (coherent) {
601                         page = alloc_pages(gfp, get_order(size));
602                         addr = page ? page_address(page) : NULL;
603                 } else {
604                         addr = __alloc_from_pool(size, &page, gfp);
605                 }
606                 if (!addr)
607                         return NULL;
608
609                 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
610                 if (iommu_dma_mapping_error(dev, *handle)) {
611                         if (coherent)
612                                 __free_pages(page, get_order(size));
613                         else
614                                 __free_from_pool(addr, size);
615                         addr = NULL;
616                 }
617         } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
618                 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
619                 struct page *page;
620
621                 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
622                                                  get_order(size), gfp);
623                 if (!page)
624                         return NULL;
625
626                 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
627                 if (iommu_dma_mapping_error(dev, *handle)) {
628                         dma_release_from_contiguous(dev, page,
629                                                     size >> PAGE_SHIFT);
630                         return NULL;
631                 }
632                 addr = dma_common_contiguous_remap(page, size, VM_USERMAP,
633                                                    prot,
634                                                    __builtin_return_address(0));
635                 if (addr) {
636                         if (!coherent)
637                                 __dma_flush_area(page_to_virt(page), iosize);
638                         memset(addr, 0, size);
639                 } else {
640                         iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs);
641                         dma_release_from_contiguous(dev, page,
642                                                     size >> PAGE_SHIFT);
643                 }
644         } else {
645                 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
646                 struct page **pages;
647
648                 pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
649                                         handle, flush_page);
650                 if (!pages)
651                         return NULL;
652
653                 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
654                                               __builtin_return_address(0));
655                 if (!addr)
656                         iommu_dma_free(dev, pages, iosize, handle);
657         }
658         return addr;
659 }
660
661 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
662                                dma_addr_t handle, unsigned long attrs)
663 {
664         size_t iosize = size;
665
666         size = PAGE_ALIGN(size);
667         /*
668          * @cpu_addr will be one of 4 things depending on how it was allocated:
669          * - A remapped array of pages for contiguous allocations.
670          * - A remapped array of pages from iommu_dma_alloc(), for all
671          *   non-atomic allocations.
672          * - A non-cacheable alias from the atomic pool, for atomic
673          *   allocations by non-coherent devices.
674          * - A normal lowmem address, for atomic allocations by
675          *   coherent devices.
676          * Hence how dodgy the below logic looks...
677          */
678         if (__in_atomic_pool(cpu_addr, size)) {
679                 iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
680                 __free_from_pool(cpu_addr, size);
681         } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
682                 struct page *page = vmalloc_to_page(cpu_addr);
683
684                 iommu_dma_unmap_page(dev, handle, iosize, 0, attrs);
685                 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
686                 dma_common_free_remap(cpu_addr, size, VM_USERMAP);
687         } else if (is_vmalloc_addr(cpu_addr)){
688                 struct vm_struct *area = find_vm_area(cpu_addr);
689
690                 if (WARN_ON(!area || !area->pages))
691                         return;
692                 iommu_dma_free(dev, area->pages, iosize, &handle);
693                 dma_common_free_remap(cpu_addr, size, VM_USERMAP);
694         } else {
695                 iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
696                 __free_pages(virt_to_page(cpu_addr), get_order(size));
697         }
698 }
699
700 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
701                               void *cpu_addr, dma_addr_t dma_addr, size_t size,
702                               unsigned long attrs)
703 {
704         struct vm_struct *area;
705         int ret;
706
707         vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
708                                              is_device_dma_coherent(dev));
709
710         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
711                 return ret;
712
713         if (!is_vmalloc_addr(cpu_addr)) {
714                 unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
715                 return __swiotlb_mmap_pfn(vma, pfn, size);
716         }
717
718         if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
719                 /*
720                  * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
721                  * hence in the vmalloc space.
722                  */
723                 unsigned long pfn = vmalloc_to_pfn(cpu_addr);
724                 return __swiotlb_mmap_pfn(vma, pfn, size);
725         }
726
727         area = find_vm_area(cpu_addr);
728         if (WARN_ON(!area || !area->pages))
729                 return -ENXIO;
730
731         return iommu_dma_mmap(area->pages, size, vma);
732 }
733
734 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
735                                void *cpu_addr, dma_addr_t dma_addr,
736                                size_t size, unsigned long attrs)
737 {
738         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
739         struct vm_struct *area = find_vm_area(cpu_addr);
740
741         if (!is_vmalloc_addr(cpu_addr)) {
742                 struct page *page = virt_to_page(cpu_addr);
743                 return __swiotlb_get_sgtable_page(sgt, page, size);
744         }
745
746         if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
747                 /*
748                  * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
749                  * hence in the vmalloc space.
750                  */
751                 struct page *page = vmalloc_to_page(cpu_addr);
752                 return __swiotlb_get_sgtable_page(sgt, page, size);
753         }
754
755         if (WARN_ON(!area || !area->pages))
756                 return -ENXIO;
757
758         return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
759                                          GFP_KERNEL);
760 }
761
762 static void __iommu_sync_single_for_cpu(struct device *dev,
763                                         dma_addr_t dev_addr, size_t size,
764                                         enum dma_data_direction dir)
765 {
766         phys_addr_t phys;
767
768         if (is_device_dma_coherent(dev))
769                 return;
770
771         phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
772         __dma_unmap_area(phys_to_virt(phys), size, dir);
773 }
774
775 static void __iommu_sync_single_for_device(struct device *dev,
776                                            dma_addr_t dev_addr, size_t size,
777                                            enum dma_data_direction dir)
778 {
779         phys_addr_t phys;
780
781         if (is_device_dma_coherent(dev))
782                 return;
783
784         phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
785         __dma_map_area(phys_to_virt(phys), size, dir);
786 }
787
788 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
789                                    unsigned long offset, size_t size,
790                                    enum dma_data_direction dir,
791                                    unsigned long attrs)
792 {
793         bool coherent = is_device_dma_coherent(dev);
794         int prot = dma_info_to_prot(dir, coherent, attrs);
795         dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
796
797         if (!iommu_dma_mapping_error(dev, dev_addr) &&
798             (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
799                 __iommu_sync_single_for_device(dev, dev_addr, size, dir);
800
801         return dev_addr;
802 }
803
804 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
805                                size_t size, enum dma_data_direction dir,
806                                unsigned long attrs)
807 {
808         if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
809                 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
810
811         iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
812 }
813
814 static void __iommu_sync_sg_for_cpu(struct device *dev,
815                                     struct scatterlist *sgl, int nelems,
816                                     enum dma_data_direction dir)
817 {
818         struct scatterlist *sg;
819         int i;
820
821         if (is_device_dma_coherent(dev))
822                 return;
823
824         for_each_sg(sgl, sg, nelems, i)
825                 __dma_unmap_area(sg_virt(sg), sg->length, dir);
826 }
827
828 static void __iommu_sync_sg_for_device(struct device *dev,
829                                        struct scatterlist *sgl, int nelems,
830                                        enum dma_data_direction dir)
831 {
832         struct scatterlist *sg;
833         int i;
834
835         if (is_device_dma_coherent(dev))
836                 return;
837
838         for_each_sg(sgl, sg, nelems, i)
839                 __dma_map_area(sg_virt(sg), sg->length, dir);
840 }
841
842 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
843                                 int nelems, enum dma_data_direction dir,
844                                 unsigned long attrs)
845 {
846         bool coherent = is_device_dma_coherent(dev);
847
848         if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
849                 __iommu_sync_sg_for_device(dev, sgl, nelems, dir);
850
851         return iommu_dma_map_sg(dev, sgl, nelems,
852                                 dma_info_to_prot(dir, coherent, attrs));
853 }
854
855 static void __iommu_unmap_sg_attrs(struct device *dev,
856                                    struct scatterlist *sgl, int nelems,
857                                    enum dma_data_direction dir,
858                                    unsigned long attrs)
859 {
860         if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
861                 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
862
863         iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
864 }
865
866 static const struct dma_map_ops iommu_dma_ops = {
867         .alloc = __iommu_alloc_attrs,
868         .free = __iommu_free_attrs,
869         .mmap = __iommu_mmap_attrs,
870         .get_sgtable = __iommu_get_sgtable,
871         .map_page = __iommu_map_page,
872         .unmap_page = __iommu_unmap_page,
873         .map_sg = __iommu_map_sg_attrs,
874         .unmap_sg = __iommu_unmap_sg_attrs,
875         .sync_single_for_cpu = __iommu_sync_single_for_cpu,
876         .sync_single_for_device = __iommu_sync_single_for_device,
877         .sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
878         .sync_sg_for_device = __iommu_sync_sg_for_device,
879         .map_resource = iommu_dma_map_resource,
880         .unmap_resource = iommu_dma_unmap_resource,
881         .mapping_error = iommu_dma_mapping_error,
882 };
883
884 static int __init __iommu_dma_init(void)
885 {
886         return iommu_dma_init();
887 }
888 arch_initcall(__iommu_dma_init);
889
890 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
891                                   const struct iommu_ops *ops)
892 {
893         struct iommu_domain *domain;
894
895         if (!ops)
896                 return;
897
898         /*
899          * The IOMMU core code allocates the default DMA domain, which the
900          * underlying IOMMU driver needs to support via the dma-iommu layer.
901          */
902         domain = iommu_get_domain_for_dev(dev);
903
904         if (!domain)
905                 goto out_err;
906
907         if (domain->type == IOMMU_DOMAIN_DMA) {
908                 if (iommu_dma_init_domain(domain, dma_base, size, dev))
909                         goto out_err;
910
911                 dev->dma_ops = &iommu_dma_ops;
912         }
913
914         return;
915
916 out_err:
917          pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
918                  dev_name(dev));
919 }
920
921 void arch_teardown_dma_ops(struct device *dev)
922 {
923         dev->dma_ops = NULL;
924 }
925
926 #else
927
928 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
929                                   const struct iommu_ops *iommu)
930 { }
931
932 #endif  /* CONFIG_IOMMU_DMA */
933
934 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
935                         const struct iommu_ops *iommu, bool coherent)
936 {
937         if (!dev->dma_ops)
938                 dev->dma_ops = &swiotlb_dma_ops;
939
940         dev->archdata.dma_coherent = coherent;
941         __iommu_setup_dma_ops(dev, dma_base, size, iommu);
942
943 #ifdef CONFIG_XEN
944         if (xen_initial_domain()) {
945                 dev->archdata.dev_dma_ops = dev->dma_ops;
946                 dev->dma_ops = xen_dma_ops;
947         }
948 #endif
949 }