GNU Linux-libre 6.8.7-gnu
[releases.git] / arch / arm64 / kvm / vgic / vgic-mmio-v3.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGICv3 MMIO handling functions
4  */
5
6 #include <linux/bitfield.h>
7 #include <linux/irqchip/arm-gic-v3.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17
18 #include "vgic.h"
19 #include "vgic-mmio.h"
20
21 /* extract @num bytes at @offset bytes offset in data */
22 unsigned long extract_bytes(u64 data, unsigned int offset,
23                             unsigned int num)
24 {
25         return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26 }
27
28 /* allows updates of any half of a 64-bit register (or the whole thing) */
29 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30                      unsigned long val)
31 {
32         int lower = (offset & 4) * 8;
33         int upper = lower + 8 * len - 1;
34
35         reg &= ~GENMASK_ULL(upper, lower);
36         val &= GENMASK_ULL(len * 8 - 1, 0);
37
38         return reg | ((u64)val << lower);
39 }
40
41 bool vgic_has_its(struct kvm *kvm)
42 {
43         struct vgic_dist *dist = &kvm->arch.vgic;
44
45         if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46                 return false;
47
48         return dist->has_its;
49 }
50
51 bool vgic_supports_direct_msis(struct kvm *kvm)
52 {
53         return (kvm_vgic_global_state.has_gicv4_1 ||
54                 (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
55 }
56
57 /*
58  * The Revision field in the IIDR have the following meanings:
59  *
60  * Revision 2: Interrupt groups are guest-configurable and signaled using
61  *             their configured groups.
62  */
63
64 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
65                                             gpa_t addr, unsigned int len)
66 {
67         struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
68         u32 value = 0;
69
70         switch (addr & 0x0c) {
71         case GICD_CTLR:
72                 if (vgic->enabled)
73                         value |= GICD_CTLR_ENABLE_SS_G1;
74                 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
75                 if (vgic->nassgireq)
76                         value |= GICD_CTLR_nASSGIreq;
77                 break;
78         case GICD_TYPER:
79                 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
80                 value = (value >> 5) - 1;
81                 if (vgic_has_its(vcpu->kvm)) {
82                         value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
83                         value |= GICD_TYPER_LPIS;
84                 } else {
85                         value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
86                 }
87                 break;
88         case GICD_TYPER2:
89                 if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
90                         value = GICD_TYPER2_nASSGIcap;
91                 break;
92         case GICD_IIDR:
93                 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
94                         (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
95                         (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
96                 break;
97         default:
98                 return 0;
99         }
100
101         return value;
102 }
103
104 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
105                                     gpa_t addr, unsigned int len,
106                                     unsigned long val)
107 {
108         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
109
110         switch (addr & 0x0c) {
111         case GICD_CTLR: {
112                 bool was_enabled, is_hwsgi;
113
114                 mutex_lock(&vcpu->kvm->arch.config_lock);
115
116                 was_enabled = dist->enabled;
117                 is_hwsgi = dist->nassgireq;
118
119                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
120
121                 /* Not a GICv4.1? No HW SGIs */
122                 if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
123                         val &= ~GICD_CTLR_nASSGIreq;
124
125                 /* Dist stays enabled? nASSGIreq is RO */
126                 if (was_enabled && dist->enabled) {
127                         val &= ~GICD_CTLR_nASSGIreq;
128                         val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
129                 }
130
131                 /* Switching HW SGIs? */
132                 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
133                 if (is_hwsgi != dist->nassgireq)
134                         vgic_v4_configure_vsgis(vcpu->kvm);
135
136                 if (kvm_vgic_global_state.has_gicv4_1 &&
137                     was_enabled != dist->enabled)
138                         kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
139                 else if (!was_enabled && dist->enabled)
140                         vgic_kick_vcpus(vcpu->kvm);
141
142                 mutex_unlock(&vcpu->kvm->arch.config_lock);
143                 break;
144         }
145         case GICD_TYPER:
146         case GICD_TYPER2:
147         case GICD_IIDR:
148                 /* This is at best for documentation purposes... */
149                 return;
150         }
151 }
152
153 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
154                                            gpa_t addr, unsigned int len,
155                                            unsigned long val)
156 {
157         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
158         u32 reg;
159
160         switch (addr & 0x0c) {
161         case GICD_TYPER2:
162                 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
163                         return -EINVAL;
164                 return 0;
165         case GICD_IIDR:
166                 reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
167                 if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
168                         return -EINVAL;
169
170                 reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
171                 switch (reg) {
172                 case KVM_VGIC_IMP_REV_2:
173                 case KVM_VGIC_IMP_REV_3:
174                         dist->implementation_rev = reg;
175                         return 0;
176                 default:
177                         return -EINVAL;
178                 }
179         case GICD_CTLR:
180                 /* Not a GICv4.1? No HW SGIs */
181                 if (!kvm_vgic_global_state.has_gicv4_1)
182                         val &= ~GICD_CTLR_nASSGIreq;
183
184                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
185                 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
186                 return 0;
187         }
188
189         vgic_mmio_write_v3_misc(vcpu, addr, len, val);
190         return 0;
191 }
192
193 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
194                                             gpa_t addr, unsigned int len)
195 {
196         int intid = VGIC_ADDR_TO_INTID(addr, 64);
197         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
198         unsigned long ret = 0;
199
200         if (!irq)
201                 return 0;
202
203         /* The upper word is RAZ for us. */
204         if (!(addr & 4))
205                 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
206
207         vgic_put_irq(vcpu->kvm, irq);
208         return ret;
209 }
210
211 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
212                                     gpa_t addr, unsigned int len,
213                                     unsigned long val)
214 {
215         int intid = VGIC_ADDR_TO_INTID(addr, 64);
216         struct vgic_irq *irq;
217         unsigned long flags;
218
219         /* The upper word is WI for us since we don't implement Aff3. */
220         if (addr & 4)
221                 return;
222
223         irq = vgic_get_irq(vcpu->kvm, NULL, intid);
224
225         if (!irq)
226                 return;
227
228         raw_spin_lock_irqsave(&irq->irq_lock, flags);
229
230         /* We only care about and preserve Aff0, Aff1 and Aff2. */
231         irq->mpidr = val & GENMASK(23, 0);
232         irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
233
234         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
235         vgic_put_irq(vcpu->kvm, irq);
236 }
237
238 bool vgic_lpis_enabled(struct kvm_vcpu *vcpu)
239 {
240         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
241
242         return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS;
243 }
244
245 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
246                                              gpa_t addr, unsigned int len)
247 {
248         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
249         unsigned long val;
250
251         val = atomic_read(&vgic_cpu->ctlr);
252         if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3)
253                 val |= GICR_CTLR_IR | GICR_CTLR_CES;
254
255         return val;
256 }
257
258 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
259                                      gpa_t addr, unsigned int len,
260                                      unsigned long val)
261 {
262         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
263         u32 ctlr;
264
265         if (!vgic_has_its(vcpu->kvm))
266                 return;
267
268         if (!(val & GICR_CTLR_ENABLE_LPIS)) {
269                 /*
270                  * Don't disable if RWP is set, as there already an
271                  * ongoing disable. Funky guest...
272                  */
273                 ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr,
274                                               GICR_CTLR_ENABLE_LPIS,
275                                               GICR_CTLR_RWP);
276                 if (ctlr != GICR_CTLR_ENABLE_LPIS)
277                         return;
278
279                 vgic_flush_pending_lpis(vcpu);
280                 vgic_its_invalidate_cache(vcpu->kvm);
281                 atomic_set_release(&vgic_cpu->ctlr, 0);
282         } else {
283                 ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0,
284                                               GICR_CTLR_ENABLE_LPIS);
285                 if (ctlr != 0)
286                         return;
287
288                 vgic_enable_lpis(vcpu);
289         }
290 }
291
292 static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
293 {
294         struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
295         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
296         struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
297
298         if (!rdreg)
299                 return false;
300
301         if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
302                 return false;
303         } else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
304                 struct list_head *rd_regions = &vgic->rd_regions;
305                 gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
306
307                 /*
308                  * the rdist is the last one of the redist region,
309                  * check whether there is no other contiguous rdist region
310                  */
311                 list_for_each_entry(iter, rd_regions, list) {
312                         if (iter->base == end && iter->free_index > 0)
313                                 return false;
314                 }
315         }
316         return true;
317 }
318
319 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
320                                               gpa_t addr, unsigned int len)
321 {
322         unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
323         int target_vcpu_id = vcpu->vcpu_id;
324         u64 value;
325
326         value = (u64)(mpidr & GENMASK(23, 0)) << 32;
327         value |= ((target_vcpu_id & 0xffff) << 8);
328
329         if (vgic_has_its(vcpu->kvm))
330                 value |= GICR_TYPER_PLPIS;
331
332         if (vgic_mmio_vcpu_rdist_is_last(vcpu))
333                 value |= GICR_TYPER_LAST;
334
335         return extract_bytes(value, addr & 7, len);
336 }
337
338 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
339                                              gpa_t addr, unsigned int len)
340 {
341         return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
342 }
343
344 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
345                                               gpa_t addr, unsigned int len)
346 {
347         switch (addr & 0xffff) {
348         case GICD_PIDR2:
349                 /* report a GICv3 compliant implementation */
350                 return 0x3b;
351         }
352
353         return 0;
354 }
355
356 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
357                                          gpa_t addr, unsigned int len,
358                                          unsigned long val)
359 {
360         int ret;
361
362         ret = vgic_uaccess_write_spending(vcpu, addr, len, val);
363         if (ret)
364                 return ret;
365
366         return vgic_uaccess_write_cpending(vcpu, addr, len, ~val);
367 }
368
369 /* We want to avoid outer shareable. */
370 u64 vgic_sanitise_shareability(u64 field)
371 {
372         switch (field) {
373         case GIC_BASER_OuterShareable:
374                 return GIC_BASER_InnerShareable;
375         default:
376                 return field;
377         }
378 }
379
380 /* Avoid any inner non-cacheable mapping. */
381 u64 vgic_sanitise_inner_cacheability(u64 field)
382 {
383         switch (field) {
384         case GIC_BASER_CACHE_nCnB:
385         case GIC_BASER_CACHE_nC:
386                 return GIC_BASER_CACHE_RaWb;
387         default:
388                 return field;
389         }
390 }
391
392 /* Non-cacheable or same-as-inner are OK. */
393 u64 vgic_sanitise_outer_cacheability(u64 field)
394 {
395         switch (field) {
396         case GIC_BASER_CACHE_SameAsInner:
397         case GIC_BASER_CACHE_nC:
398                 return field;
399         default:
400                 return GIC_BASER_CACHE_SameAsInner;
401         }
402 }
403
404 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
405                         u64 (*sanitise_fn)(u64))
406 {
407         u64 field = (reg & field_mask) >> field_shift;
408
409         field = sanitise_fn(field) << field_shift;
410         return (reg & ~field_mask) | field;
411 }
412
413 #define PROPBASER_RES0_MASK                                             \
414         (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
415 #define PENDBASER_RES0_MASK                                             \
416         (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |      \
417          GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
418
419 static u64 vgic_sanitise_pendbaser(u64 reg)
420 {
421         reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
422                                   GICR_PENDBASER_SHAREABILITY_SHIFT,
423                                   vgic_sanitise_shareability);
424         reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
425                                   GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
426                                   vgic_sanitise_inner_cacheability);
427         reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
428                                   GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
429                                   vgic_sanitise_outer_cacheability);
430
431         reg &= ~PENDBASER_RES0_MASK;
432
433         return reg;
434 }
435
436 static u64 vgic_sanitise_propbaser(u64 reg)
437 {
438         reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
439                                   GICR_PROPBASER_SHAREABILITY_SHIFT,
440                                   vgic_sanitise_shareability);
441         reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
442                                   GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
443                                   vgic_sanitise_inner_cacheability);
444         reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
445                                   GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
446                                   vgic_sanitise_outer_cacheability);
447
448         reg &= ~PROPBASER_RES0_MASK;
449         return reg;
450 }
451
452 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
453                                              gpa_t addr, unsigned int len)
454 {
455         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
456
457         return extract_bytes(dist->propbaser, addr & 7, len);
458 }
459
460 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
461                                      gpa_t addr, unsigned int len,
462                                      unsigned long val)
463 {
464         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
465         u64 old_propbaser, propbaser;
466
467         /* Storing a value with LPIs already enabled is undefined */
468         if (vgic_lpis_enabled(vcpu))
469                 return;
470
471         do {
472                 old_propbaser = READ_ONCE(dist->propbaser);
473                 propbaser = old_propbaser;
474                 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
475                 propbaser = vgic_sanitise_propbaser(propbaser);
476         } while (cmpxchg64(&dist->propbaser, old_propbaser,
477                            propbaser) != old_propbaser);
478 }
479
480 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
481                                              gpa_t addr, unsigned int len)
482 {
483         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
484         u64 value = vgic_cpu->pendbaser;
485
486         value &= ~GICR_PENDBASER_PTZ;
487
488         return extract_bytes(value, addr & 7, len);
489 }
490
491 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
492                                      gpa_t addr, unsigned int len,
493                                      unsigned long val)
494 {
495         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
496         u64 old_pendbaser, pendbaser;
497
498         /* Storing a value with LPIs already enabled is undefined */
499         if (vgic_lpis_enabled(vcpu))
500                 return;
501
502         do {
503                 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
504                 pendbaser = old_pendbaser;
505                 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
506                 pendbaser = vgic_sanitise_pendbaser(pendbaser);
507         } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
508                            pendbaser) != old_pendbaser);
509 }
510
511 static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu,
512                                          gpa_t addr, unsigned int len)
513 {
514         return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy);
515 }
516
517 static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy)
518 {
519         if (busy) {
520                 atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy);
521                 smp_mb__after_atomic();
522         } else {
523                 smp_mb__before_atomic();
524                 atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy);
525         }
526 }
527
528 static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu,
529                                    gpa_t addr, unsigned int len,
530                                    unsigned long val)
531 {
532         struct vgic_irq *irq;
533
534         /*
535          * If the guest wrote only to the upper 32bit part of the
536          * register, drop the write on the floor, as it is only for
537          * vPEs (which we don't support for obvious reasons).
538          *
539          * Also discard the access if LPIs are not enabled.
540          */
541         if ((addr & 4) || !vgic_lpis_enabled(vcpu))
542                 return;
543
544         vgic_set_rdist_busy(vcpu, true);
545
546         irq = vgic_get_irq(vcpu->kvm, NULL, lower_32_bits(val));
547         if (irq) {
548                 vgic_its_inv_lpi(vcpu->kvm, irq);
549                 vgic_put_irq(vcpu->kvm, irq);
550         }
551
552         vgic_set_rdist_busy(vcpu, false);
553 }
554
555 static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu,
556                                    gpa_t addr, unsigned int len,
557                                    unsigned long val)
558 {
559         /* See vgic_mmio_write_invlpi() for the early return rationale */
560         if ((addr & 4) || !vgic_lpis_enabled(vcpu))
561                 return;
562
563         vgic_set_rdist_busy(vcpu, true);
564         vgic_its_invall(vcpu);
565         vgic_set_rdist_busy(vcpu, false);
566 }
567
568 /*
569  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
570  * redistributors, while SPIs are covered by registers in the distributor
571  * block. Trying to set private IRQs in this block gets ignored.
572  * We take some special care here to fix the calculation of the register
573  * offset.
574  */
575 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
576         {                                                               \
577                 .reg_offset = off,                                      \
578                 .bits_per_irq = bpi,                                    \
579                 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,                \
580                 .access_flags = acc,                                    \
581                 .read = vgic_mmio_read_raz,                             \
582                 .write = vgic_mmio_write_wi,                            \
583         }, {                                                            \
584                 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,   \
585                 .bits_per_irq = bpi,                                    \
586                 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,       \
587                 .access_flags = acc,                                    \
588                 .read = rd,                                             \
589                 .write = wr,                                            \
590                 .uaccess_read = ur,                                     \
591                 .uaccess_write = uw,                                    \
592         }
593
594 static const struct vgic_register_region vgic_v3_dist_registers[] = {
595         REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
596                 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
597                 NULL, vgic_mmio_uaccess_write_v3_misc,
598                 16, VGIC_ACCESS_32bit),
599         REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
600                 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
601                 VGIC_ACCESS_32bit),
602         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
603                 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
604                 VGIC_ACCESS_32bit),
605         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
606                 vgic_mmio_read_enable, vgic_mmio_write_senable,
607                 NULL, vgic_uaccess_write_senable, 1,
608                 VGIC_ACCESS_32bit),
609         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
610                 vgic_mmio_read_enable, vgic_mmio_write_cenable,
611                NULL, vgic_uaccess_write_cenable, 1,
612                 VGIC_ACCESS_32bit),
613         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
614                 vgic_mmio_read_pending, vgic_mmio_write_spending,
615                 vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
616                 VGIC_ACCESS_32bit),
617         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
618                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
619                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
620                 VGIC_ACCESS_32bit),
621         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
622                 vgic_mmio_read_active, vgic_mmio_write_sactive,
623                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
624                 VGIC_ACCESS_32bit),
625         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
626                 vgic_mmio_read_active, vgic_mmio_write_cactive,
627                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
628                 1, VGIC_ACCESS_32bit),
629         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
630                 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
631                 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
632         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
633                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
634                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
635         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
636                 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
637                 VGIC_ACCESS_32bit),
638         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
639                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
640                 VGIC_ACCESS_32bit),
641         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
642                 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
643                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
644         REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
645                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
646                 VGIC_ACCESS_32bit),
647 };
648
649 static const struct vgic_register_region vgic_v3_rd_registers[] = {
650         /* RD_base registers */
651         REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
652                 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
653                 VGIC_ACCESS_32bit),
654         REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
655                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
656                 VGIC_ACCESS_32bit),
657         REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
658                 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
659                 VGIC_ACCESS_32bit),
660         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
661                 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
662                 NULL, vgic_mmio_uaccess_write_wi, 8,
663                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
664         REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
665                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
666                 VGIC_ACCESS_32bit),
667         REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
668                 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
669                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
670         REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
671                 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
672                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
673         REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR,
674                 vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8,
675                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
676         REGISTER_DESC_WITH_LENGTH(GICR_INVALLR,
677                 vgic_mmio_read_raz, vgic_mmio_write_invall, 8,
678                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
679         REGISTER_DESC_WITH_LENGTH(GICR_SYNCR,
680                 vgic_mmio_read_sync, vgic_mmio_write_wi, 4,
681                 VGIC_ACCESS_32bit),
682         REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
683                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
684                 VGIC_ACCESS_32bit),
685         /* SGI_base registers */
686         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
687                 vgic_mmio_read_group, vgic_mmio_write_group, 4,
688                 VGIC_ACCESS_32bit),
689         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
690                 vgic_mmio_read_enable, vgic_mmio_write_senable,
691                 NULL, vgic_uaccess_write_senable, 4,
692                 VGIC_ACCESS_32bit),
693         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
694                 vgic_mmio_read_enable, vgic_mmio_write_cenable,
695                 NULL, vgic_uaccess_write_cenable, 4,
696                 VGIC_ACCESS_32bit),
697         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
698                 vgic_mmio_read_pending, vgic_mmio_write_spending,
699                 vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
700                 VGIC_ACCESS_32bit),
701         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
702                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
703                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
704                 VGIC_ACCESS_32bit),
705         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
706                 vgic_mmio_read_active, vgic_mmio_write_sactive,
707                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
708                 VGIC_ACCESS_32bit),
709         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
710                 vgic_mmio_read_active, vgic_mmio_write_cactive,
711                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
712                 VGIC_ACCESS_32bit),
713         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
714                 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
715                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
716         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
717                 vgic_mmio_read_config, vgic_mmio_write_config, 8,
718                 VGIC_ACCESS_32bit),
719         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
720                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
721                 VGIC_ACCESS_32bit),
722         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
723                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
724                 VGIC_ACCESS_32bit),
725 };
726
727 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
728 {
729         dev->regions = vgic_v3_dist_registers;
730         dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
731
732         kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
733
734         return SZ_64K;
735 }
736
737 /**
738  * vgic_register_redist_iodev - register a single redist iodev
739  * @vcpu:    The VCPU to which the redistributor belongs
740  *
741  * Register a KVM iodev for this VCPU's redistributor using the address
742  * provided.
743  *
744  * Return 0 on success, -ERRNO otherwise.
745  */
746 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
747 {
748         struct kvm *kvm = vcpu->kvm;
749         struct vgic_dist *vgic = &kvm->arch.vgic;
750         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
751         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
752         struct vgic_redist_region *rdreg;
753         gpa_t rd_base;
754         int ret = 0;
755
756         lockdep_assert_held(&kvm->slots_lock);
757         mutex_lock(&kvm->arch.config_lock);
758
759         if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
760                 goto out_unlock;
761
762         /*
763          * We may be creating VCPUs before having set the base address for the
764          * redistributor region, in which case we will come back to this
765          * function for all VCPUs when the base address is set.  Just return
766          * without doing any work for now.
767          */
768         rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
769         if (!rdreg)
770                 goto out_unlock;
771
772         if (!vgic_v3_check_base(kvm)) {
773                 ret = -EINVAL;
774                 goto out_unlock;
775         }
776
777         vgic_cpu->rdreg = rdreg;
778         vgic_cpu->rdreg_index = rdreg->free_index;
779
780         rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
781
782         kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
783         rd_dev->base_addr = rd_base;
784         rd_dev->iodev_type = IODEV_REDIST;
785         rd_dev->regions = vgic_v3_rd_registers;
786         rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
787         rd_dev->redist_vcpu = vcpu;
788
789         mutex_unlock(&kvm->arch.config_lock);
790
791         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
792                                       2 * SZ_64K, &rd_dev->dev);
793         if (ret)
794                 return ret;
795
796         /* Protected by slots_lock */
797         rdreg->free_index++;
798         return 0;
799
800 out_unlock:
801         mutex_unlock(&kvm->arch.config_lock);
802         return ret;
803 }
804
805 void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
806 {
807         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
808
809         kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
810 }
811
812 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
813 {
814         struct kvm_vcpu *vcpu;
815         unsigned long c;
816         int ret = 0;
817
818         lockdep_assert_held(&kvm->slots_lock);
819
820         kvm_for_each_vcpu(c, vcpu, kvm) {
821                 ret = vgic_register_redist_iodev(vcpu);
822                 if (ret)
823                         break;
824         }
825
826         if (ret) {
827                 /* The current c failed, so iterate over the previous ones. */
828                 int i;
829
830                 for (i = 0; i < c; i++) {
831                         vcpu = kvm_get_vcpu(kvm, i);
832                         vgic_unregister_redist_iodev(vcpu);
833                 }
834         }
835
836         return ret;
837 }
838
839 /**
840  * vgic_v3_alloc_redist_region - Allocate a new redistributor region
841  *
842  * Performs various checks before inserting the rdist region in the list.
843  * Those tests depend on whether the size of the rdist region is known
844  * (ie. count != 0). The list is sorted by rdist region index.
845  *
846  * @kvm: kvm handle
847  * @index: redist region index
848  * @base: base of the new rdist region
849  * @count: number of redistributors the region is made of (0 in the old style
850  * single region, whose size is induced from the number of vcpus)
851  *
852  * Return 0 on success, < 0 otherwise
853  */
854 static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
855                                        gpa_t base, uint32_t count)
856 {
857         struct vgic_dist *d = &kvm->arch.vgic;
858         struct vgic_redist_region *rdreg;
859         struct list_head *rd_regions = &d->rd_regions;
860         int nr_vcpus = atomic_read(&kvm->online_vcpus);
861         size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
862                             : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
863         int ret;
864
865         /* cross the end of memory ? */
866         if (base + size < base)
867                 return -EINVAL;
868
869         if (list_empty(rd_regions)) {
870                 if (index != 0)
871                         return -EINVAL;
872         } else {
873                 rdreg = list_last_entry(rd_regions,
874                                         struct vgic_redist_region, list);
875
876                 /* Don't mix single region and discrete redist regions */
877                 if (!count && rdreg->count)
878                         return -EINVAL;
879
880                 if (!count)
881                         return -EEXIST;
882
883                 if (index != rdreg->index + 1)
884                         return -EINVAL;
885         }
886
887         /*
888          * For legacy single-region redistributor regions (!count),
889          * check that the redistributor region does not overlap with the
890          * distributor's address space.
891          */
892         if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
893                 vgic_dist_overlap(kvm, base, size))
894                 return -EINVAL;
895
896         /* collision with any other rdist region? */
897         if (vgic_v3_rdist_overlap(kvm, base, size))
898                 return -EINVAL;
899
900         rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
901         if (!rdreg)
902                 return -ENOMEM;
903
904         rdreg->base = VGIC_ADDR_UNDEF;
905
906         ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
907         if (ret)
908                 goto free;
909
910         rdreg->base = base;
911         rdreg->count = count;
912         rdreg->free_index = 0;
913         rdreg->index = index;
914
915         list_add_tail(&rdreg->list, rd_regions);
916         return 0;
917 free:
918         kfree(rdreg);
919         return ret;
920 }
921
922 void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg)
923 {
924         list_del(&rdreg->list);
925         kfree(rdreg);
926 }
927
928 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
929 {
930         int ret;
931
932         mutex_lock(&kvm->arch.config_lock);
933         ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
934         mutex_unlock(&kvm->arch.config_lock);
935         if (ret)
936                 return ret;
937
938         /*
939          * Register iodevs for each existing VCPU.  Adding more VCPUs
940          * afterwards will register the iodevs when needed.
941          */
942         ret = vgic_register_all_redist_iodevs(kvm);
943         if (ret) {
944                 struct vgic_redist_region *rdreg;
945
946                 mutex_lock(&kvm->arch.config_lock);
947                 rdreg = vgic_v3_rdist_region_from_index(kvm, index);
948                 vgic_v3_free_redist_region(rdreg);
949                 mutex_unlock(&kvm->arch.config_lock);
950                 return ret;
951         }
952
953         return 0;
954 }
955
956 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
957 {
958         const struct vgic_register_region *region;
959         struct vgic_io_device iodev;
960         struct vgic_reg_attr reg_attr;
961         struct kvm_vcpu *vcpu;
962         gpa_t addr;
963         int ret;
964
965         ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
966         if (ret)
967                 return ret;
968
969         vcpu = reg_attr.vcpu;
970         addr = reg_attr.addr;
971
972         switch (attr->group) {
973         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
974                 iodev.regions = vgic_v3_dist_registers;
975                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
976                 iodev.base_addr = 0;
977                 break;
978         case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
979                 iodev.regions = vgic_v3_rd_registers;
980                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
981                 iodev.base_addr = 0;
982                 break;
983         }
984         case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
985                 return vgic_v3_has_cpu_sysregs_attr(vcpu, attr);
986         default:
987                 return -ENXIO;
988         }
989
990         /* We only support aligned 32-bit accesses. */
991         if (addr & 3)
992                 return -ENXIO;
993
994         region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
995         if (!region)
996                 return -ENXIO;
997
998         return 0;
999 }
1000
1001 /*
1002  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
1003  * so provide a wrapper to use the existing defines to isolate a certain
1004  * affinity level.
1005  */
1006 #define SGI_AFFINITY_LEVEL(reg, level) \
1007         ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
1008         >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
1009
1010 static void vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, u32 sgi, bool allow_group1)
1011 {
1012         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, sgi);
1013         unsigned long flags;
1014
1015         raw_spin_lock_irqsave(&irq->irq_lock, flags);
1016
1017         /*
1018          * An access targeting Group0 SGIs can only generate
1019          * those, while an access targeting Group1 SGIs can
1020          * generate interrupts of either group.
1021          */
1022         if (!irq->group || allow_group1) {
1023                 if (!irq->hw) {
1024                         irq->pending_latch = true;
1025                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1026                 } else {
1027                         /* HW SGI? Ask the GIC to inject it */
1028                         int err;
1029                         err = irq_set_irqchip_state(irq->host_irq,
1030                                                     IRQCHIP_STATE_PENDING,
1031                                                     true);
1032                         WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1033                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1034                 }
1035         } else {
1036                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1037         }
1038
1039         vgic_put_irq(vcpu->kvm, irq);
1040 }
1041
1042 /**
1043  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
1044  * @vcpu: The VCPU requesting a SGI
1045  * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
1046  * @allow_group1: Does the sysreg access allow generation of G1 SGIs
1047  *
1048  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
1049  * This will trap in sys_regs.c and call this function.
1050  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
1051  * target processors as well as a bitmask of 16 Aff0 CPUs.
1052  *
1053  * If the interrupt routing mode bit is not set, we iterate over the Aff0
1054  * bits and signal the VCPUs matching the provided Aff{3,2,1}.
1055  *
1056  * If this bit is set, we signal all, but not the calling VCPU.
1057  */
1058 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
1059 {
1060         struct kvm *kvm = vcpu->kvm;
1061         struct kvm_vcpu *c_vcpu;
1062         unsigned long target_cpus;
1063         u64 mpidr;
1064         u32 sgi, aff0;
1065         unsigned long c;
1066
1067         sgi = FIELD_GET(ICC_SGI1R_SGI_ID_MASK, reg);
1068
1069         /* Broadcast */
1070         if (unlikely(reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT))) {
1071                 kvm_for_each_vcpu(c, c_vcpu, kvm) {
1072                         /* Don't signal the calling VCPU */
1073                         if (c_vcpu == vcpu)
1074                                 continue;
1075
1076                         vgic_v3_queue_sgi(c_vcpu, sgi, allow_group1);
1077                 }
1078
1079                 return;
1080         }
1081
1082         /* We iterate over affinities to find the corresponding vcpus */
1083         mpidr = SGI_AFFINITY_LEVEL(reg, 3);
1084         mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
1085         mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
1086         target_cpus = FIELD_GET(ICC_SGI1R_TARGET_LIST_MASK, reg);
1087
1088         for_each_set_bit(aff0, &target_cpus, hweight_long(ICC_SGI1R_TARGET_LIST_MASK)) {
1089                 c_vcpu = kvm_mpidr_to_vcpu(kvm, mpidr | aff0);
1090                 if (c_vcpu)
1091                         vgic_v3_queue_sgi(c_vcpu, sgi, allow_group1);
1092         }
1093 }
1094
1095 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1096                          int offset, u32 *val)
1097 {
1098         struct vgic_io_device dev = {
1099                 .regions = vgic_v3_dist_registers,
1100                 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1101         };
1102
1103         return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1104 }
1105
1106 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1107                            int offset, u32 *val)
1108 {
1109         struct vgic_io_device rd_dev = {
1110                 .regions = vgic_v3_rd_registers,
1111                 .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1112         };
1113
1114         return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1115 }
1116
1117 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1118                                     u32 intid, u32 *val)
1119 {
1120         if (intid % 32)
1121                 return -EINVAL;
1122
1123         if (is_write)
1124                 vgic_write_irq_line_level_info(vcpu, intid, *val);
1125         else
1126                 *val = vgic_read_irq_line_level_info(vcpu, intid);
1127
1128         return 0;
1129 }