Linux 6.7-rc7
[linux-modified.git] / arch / arm64 / kvm / vgic / vgic-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * GICv3 ITS emulation
4  *
5  * Copyright (C) 2015,2016 ARM Ltd.
6  * Author: Andre Przywara <andre.przywara@arm.com>
7  */
8
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16
17 #include <linux/irqchip/arm-gic-v3.h>
18
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25
26 static int vgic_its_save_tables_v0(struct vgic_its *its);
27 static int vgic_its_restore_tables_v0(struct vgic_its *its);
28 static int vgic_its_commit_v0(struct vgic_its *its);
29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30                              struct kvm_vcpu *filter_vcpu, bool needs_inv);
31
32 /*
33  * Creates a new (reference to a) struct vgic_irq for a given LPI.
34  * If this LPI is already mapped on another ITS, we increase its refcount
35  * and return a pointer to the existing structure.
36  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37  * This function returns a pointer to the _unlocked_ structure.
38  */
39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40                                      struct kvm_vcpu *vcpu)
41 {
42         struct vgic_dist *dist = &kvm->arch.vgic;
43         struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44         unsigned long flags;
45         int ret;
46
47         /* In this case there is no put, since we keep the reference. */
48         if (irq)
49                 return irq;
50
51         irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
52         if (!irq)
53                 return ERR_PTR(-ENOMEM);
54
55         INIT_LIST_HEAD(&irq->lpi_list);
56         INIT_LIST_HEAD(&irq->ap_list);
57         raw_spin_lock_init(&irq->irq_lock);
58
59         irq->config = VGIC_CONFIG_EDGE;
60         kref_init(&irq->refcount);
61         irq->intid = intid;
62         irq->target_vcpu = vcpu;
63         irq->group = 1;
64
65         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
66
67         /*
68          * There could be a race with another vgic_add_lpi(), so we need to
69          * check that we don't add a second list entry with the same LPI.
70          */
71         list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
72                 if (oldirq->intid != intid)
73                         continue;
74
75                 /* Someone was faster with adding this LPI, lets use that. */
76                 kfree(irq);
77                 irq = oldirq;
78
79                 /*
80                  * This increases the refcount, the caller is expected to
81                  * call vgic_put_irq() on the returned pointer once it's
82                  * finished with the IRQ.
83                  */
84                 vgic_get_irq_kref(irq);
85
86                 goto out_unlock;
87         }
88
89         list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
90         dist->lpi_list_count++;
91
92 out_unlock:
93         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
94
95         /*
96          * We "cache" the configuration table entries in our struct vgic_irq's.
97          * However we only have those structs for mapped IRQs, so we read in
98          * the respective config data from memory here upon mapping the LPI.
99          *
100          * Should any of these fail, behave as if we couldn't create the LPI
101          * by dropping the refcount and returning the error.
102          */
103         ret = update_lpi_config(kvm, irq, NULL, false);
104         if (ret) {
105                 vgic_put_irq(kvm, irq);
106                 return ERR_PTR(ret);
107         }
108
109         ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
110         if (ret) {
111                 vgic_put_irq(kvm, irq);
112                 return ERR_PTR(ret);
113         }
114
115         return irq;
116 }
117
118 struct its_device {
119         struct list_head dev_list;
120
121         /* the head for the list of ITTEs */
122         struct list_head itt_head;
123         u32 num_eventid_bits;
124         gpa_t itt_addr;
125         u32 device_id;
126 };
127
128 #define COLLECTION_NOT_MAPPED ((u32)~0)
129
130 struct its_collection {
131         struct list_head coll_list;
132
133         u32 collection_id;
134         u32 target_addr;
135 };
136
137 #define its_is_collection_mapped(coll) ((coll) && \
138                                 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
139
140 struct its_ite {
141         struct list_head ite_list;
142
143         struct vgic_irq *irq;
144         struct its_collection *collection;
145         u32 event_id;
146 };
147
148 struct vgic_translation_cache_entry {
149         struct list_head        entry;
150         phys_addr_t             db;
151         u32                     devid;
152         u32                     eventid;
153         struct vgic_irq         *irq;
154 };
155
156 /**
157  * struct vgic_its_abi - ITS abi ops and settings
158  * @cte_esz: collection table entry size
159  * @dte_esz: device table entry size
160  * @ite_esz: interrupt translation table entry size
161  * @save tables: save the ITS tables into guest RAM
162  * @restore_tables: restore the ITS internal structs from tables
163  *  stored in guest RAM
164  * @commit: initialize the registers which expose the ABI settings,
165  *  especially the entry sizes
166  */
167 struct vgic_its_abi {
168         int cte_esz;
169         int dte_esz;
170         int ite_esz;
171         int (*save_tables)(struct vgic_its *its);
172         int (*restore_tables)(struct vgic_its *its);
173         int (*commit)(struct vgic_its *its);
174 };
175
176 #define ABI_0_ESZ       8
177 #define ESZ_MAX         ABI_0_ESZ
178
179 static const struct vgic_its_abi its_table_abi_versions[] = {
180         [0] = {
181          .cte_esz = ABI_0_ESZ,
182          .dte_esz = ABI_0_ESZ,
183          .ite_esz = ABI_0_ESZ,
184          .save_tables = vgic_its_save_tables_v0,
185          .restore_tables = vgic_its_restore_tables_v0,
186          .commit = vgic_its_commit_v0,
187         },
188 };
189
190 #define NR_ITS_ABIS     ARRAY_SIZE(its_table_abi_versions)
191
192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
193 {
194         return &its_table_abi_versions[its->abi_rev];
195 }
196
197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
198 {
199         const struct vgic_its_abi *abi;
200
201         its->abi_rev = rev;
202         abi = vgic_its_get_abi(its);
203         return abi->commit(its);
204 }
205
206 /*
207  * Find and returns a device in the device table for an ITS.
208  * Must be called with the its_lock mutex held.
209  */
210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
211 {
212         struct its_device *device;
213
214         list_for_each_entry(device, &its->device_list, dev_list)
215                 if (device_id == device->device_id)
216                         return device;
217
218         return NULL;
219 }
220
221 /*
222  * Find and returns an interrupt translation table entry (ITTE) for a given
223  * Device ID/Event ID pair on an ITS.
224  * Must be called with the its_lock mutex held.
225  */
226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
227                                   u32 event_id)
228 {
229         struct its_device *device;
230         struct its_ite *ite;
231
232         device = find_its_device(its, device_id);
233         if (device == NULL)
234                 return NULL;
235
236         list_for_each_entry(ite, &device->itt_head, ite_list)
237                 if (ite->event_id == event_id)
238                         return ite;
239
240         return NULL;
241 }
242
243 /* To be used as an iterator this macro misses the enclosing parentheses */
244 #define for_each_lpi_its(dev, ite, its) \
245         list_for_each_entry(dev, &(its)->device_list, dev_list) \
246                 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
247
248 #define GIC_LPI_OFFSET 8192
249
250 #define VITS_TYPER_IDBITS 16
251 #define VITS_TYPER_DEVBITS 16
252 #define VITS_DTE_MAX_DEVID_OFFSET       (BIT(14) - 1)
253 #define VITS_ITE_MAX_EVENTID_OFFSET     (BIT(16) - 1)
254
255 /*
256  * Finds and returns a collection in the ITS collection table.
257  * Must be called with the its_lock mutex held.
258  */
259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
260 {
261         struct its_collection *collection;
262
263         list_for_each_entry(collection, &its->collection_list, coll_list) {
264                 if (coll_id == collection->collection_id)
265                         return collection;
266         }
267
268         return NULL;
269 }
270
271 #define LPI_PROP_ENABLE_BIT(p)  ((p) & LPI_PROP_ENABLED)
272 #define LPI_PROP_PRIORITY(p)    ((p) & 0xfc)
273
274 /*
275  * Reads the configuration data for a given LPI from guest memory and
276  * updates the fields in struct vgic_irq.
277  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
278  * VCPU. Unconditionally applies if filter_vcpu is NULL.
279  */
280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
281                              struct kvm_vcpu *filter_vcpu, bool needs_inv)
282 {
283         u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
284         u8 prop;
285         int ret;
286         unsigned long flags;
287
288         ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
289                                   &prop, 1);
290
291         if (ret)
292                 return ret;
293
294         raw_spin_lock_irqsave(&irq->irq_lock, flags);
295
296         if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
297                 irq->priority = LPI_PROP_PRIORITY(prop);
298                 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
299
300                 if (!irq->hw) {
301                         vgic_queue_irq_unlock(kvm, irq, flags);
302                         return 0;
303                 }
304         }
305
306         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
307
308         if (irq->hw)
309                 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
310
311         return 0;
312 }
313
314 /*
315  * Create a snapshot of the current LPIs targeting @vcpu, so that we can
316  * enumerate those LPIs without holding any lock.
317  * Returns their number and puts the kmalloc'ed array into intid_ptr.
318  */
319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
320 {
321         struct vgic_dist *dist = &kvm->arch.vgic;
322         struct vgic_irq *irq;
323         unsigned long flags;
324         u32 *intids;
325         int irq_count, i = 0;
326
327         /*
328          * There is an obvious race between allocating the array and LPIs
329          * being mapped/unmapped. If we ended up here as a result of a
330          * command, we're safe (locks are held, preventing another
331          * command). If coming from another path (such as enabling LPIs),
332          * we must be careful not to overrun the array.
333          */
334         irq_count = READ_ONCE(dist->lpi_list_count);
335         intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL_ACCOUNT);
336         if (!intids)
337                 return -ENOMEM;
338
339         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
340         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
341                 if (i == irq_count)
342                         break;
343                 /* We don't need to "get" the IRQ, as we hold the list lock. */
344                 if (vcpu && irq->target_vcpu != vcpu)
345                         continue;
346                 intids[i++] = irq->intid;
347         }
348         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
349
350         *intid_ptr = intids;
351         return i;
352 }
353
354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
355 {
356         int ret = 0;
357         unsigned long flags;
358
359         raw_spin_lock_irqsave(&irq->irq_lock, flags);
360         irq->target_vcpu = vcpu;
361         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
362
363         if (irq->hw) {
364                 struct its_vlpi_map map;
365
366                 ret = its_get_vlpi(irq->host_irq, &map);
367                 if (ret)
368                         return ret;
369
370                 if (map.vpe)
371                         atomic_dec(&map.vpe->vlpi_count);
372                 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
373                 atomic_inc(&map.vpe->vlpi_count);
374
375                 ret = its_map_vlpi(irq->host_irq, &map);
376         }
377
378         return ret;
379 }
380
381 static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm,
382                                            struct its_collection *col)
383 {
384         return kvm_get_vcpu_by_id(kvm, col->target_addr);
385 }
386
387 /*
388  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
389  * is targeting) to the VGIC's view, which deals with target VCPUs.
390  * Needs to be called whenever either the collection for a LPIs has
391  * changed or the collection itself got retargeted.
392  */
393 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
394 {
395         struct kvm_vcpu *vcpu;
396
397         if (!its_is_collection_mapped(ite->collection))
398                 return;
399
400         vcpu = collection_to_vcpu(kvm, ite->collection);
401         update_affinity(ite->irq, vcpu);
402 }
403
404 /*
405  * Updates the target VCPU for every LPI targeting this collection.
406  * Must be called with the its_lock mutex held.
407  */
408 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
409                                        struct its_collection *coll)
410 {
411         struct its_device *device;
412         struct its_ite *ite;
413
414         for_each_lpi_its(device, ite, its) {
415                 if (ite->collection != coll)
416                         continue;
417
418                 update_affinity_ite(kvm, ite);
419         }
420 }
421
422 static u32 max_lpis_propbaser(u64 propbaser)
423 {
424         int nr_idbits = (propbaser & 0x1f) + 1;
425
426         return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
427 }
428
429 /*
430  * Sync the pending table pending bit of LPIs targeting @vcpu
431  * with our own data structures. This relies on the LPI being
432  * mapped before.
433  */
434 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
435 {
436         gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
437         struct vgic_irq *irq;
438         int last_byte_offset = -1;
439         int ret = 0;
440         u32 *intids;
441         int nr_irqs, i;
442         unsigned long flags;
443         u8 pendmask;
444
445         nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
446         if (nr_irqs < 0)
447                 return nr_irqs;
448
449         for (i = 0; i < nr_irqs; i++) {
450                 int byte_offset, bit_nr;
451
452                 byte_offset = intids[i] / BITS_PER_BYTE;
453                 bit_nr = intids[i] % BITS_PER_BYTE;
454
455                 /*
456                  * For contiguously allocated LPIs chances are we just read
457                  * this very same byte in the last iteration. Reuse that.
458                  */
459                 if (byte_offset != last_byte_offset) {
460                         ret = kvm_read_guest_lock(vcpu->kvm,
461                                                   pendbase + byte_offset,
462                                                   &pendmask, 1);
463                         if (ret) {
464                                 kfree(intids);
465                                 return ret;
466                         }
467                         last_byte_offset = byte_offset;
468                 }
469
470                 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
471                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
472                 irq->pending_latch = pendmask & (1U << bit_nr);
473                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
474                 vgic_put_irq(vcpu->kvm, irq);
475         }
476
477         kfree(intids);
478
479         return ret;
480 }
481
482 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
483                                               struct vgic_its *its,
484                                               gpa_t addr, unsigned int len)
485 {
486         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
487         u64 reg = GITS_TYPER_PLPIS;
488
489         /*
490          * We use linear CPU numbers for redistributor addressing,
491          * so GITS_TYPER.PTA is 0.
492          * Also we force all PROPBASER registers to be the same, so
493          * CommonLPIAff is 0 as well.
494          * To avoid memory waste in the guest, we keep the number of IDBits and
495          * DevBits low - as least for the time being.
496          */
497         reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
498         reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
499         reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
500
501         return extract_bytes(reg, addr & 7, len);
502 }
503
504 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
505                                              struct vgic_its *its,
506                                              gpa_t addr, unsigned int len)
507 {
508         u32 val;
509
510         val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
511         val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
512         return val;
513 }
514
515 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
516                                             struct vgic_its *its,
517                                             gpa_t addr, unsigned int len,
518                                             unsigned long val)
519 {
520         u32 rev = GITS_IIDR_REV(val);
521
522         if (rev >= NR_ITS_ABIS)
523                 return -EINVAL;
524         return vgic_its_set_abi(its, rev);
525 }
526
527 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
528                                                struct vgic_its *its,
529                                                gpa_t addr, unsigned int len)
530 {
531         switch (addr & 0xffff) {
532         case GITS_PIDR0:
533                 return 0x92;    /* part number, bits[7:0] */
534         case GITS_PIDR1:
535                 return 0xb4;    /* part number, bits[11:8] */
536         case GITS_PIDR2:
537                 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
538         case GITS_PIDR4:
539                 return 0x40;    /* This is a 64K software visible page */
540         /* The following are the ID registers for (any) GIC. */
541         case GITS_CIDR0:
542                 return 0x0d;
543         case GITS_CIDR1:
544                 return 0xf0;
545         case GITS_CIDR2:
546                 return 0x05;
547         case GITS_CIDR3:
548                 return 0xb1;
549         }
550
551         return 0;
552 }
553
554 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
555                                                phys_addr_t db,
556                                                u32 devid, u32 eventid)
557 {
558         struct vgic_translation_cache_entry *cte;
559
560         list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
561                 /*
562                  * If we hit a NULL entry, there is nothing after this
563                  * point.
564                  */
565                 if (!cte->irq)
566                         break;
567
568                 if (cte->db != db || cte->devid != devid ||
569                     cte->eventid != eventid)
570                         continue;
571
572                 /*
573                  * Move this entry to the head, as it is the most
574                  * recently used.
575                  */
576                 if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
577                         list_move(&cte->entry, &dist->lpi_translation_cache);
578
579                 return cte->irq;
580         }
581
582         return NULL;
583 }
584
585 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
586                                              u32 devid, u32 eventid)
587 {
588         struct vgic_dist *dist = &kvm->arch.vgic;
589         struct vgic_irq *irq;
590         unsigned long flags;
591
592         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
593         irq = __vgic_its_check_cache(dist, db, devid, eventid);
594         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
595
596         return irq;
597 }
598
599 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
600                                        u32 devid, u32 eventid,
601                                        struct vgic_irq *irq)
602 {
603         struct vgic_dist *dist = &kvm->arch.vgic;
604         struct vgic_translation_cache_entry *cte;
605         unsigned long flags;
606         phys_addr_t db;
607
608         /* Do not cache a directly injected interrupt */
609         if (irq->hw)
610                 return;
611
612         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
613
614         if (unlikely(list_empty(&dist->lpi_translation_cache)))
615                 goto out;
616
617         /*
618          * We could have raced with another CPU caching the same
619          * translation behind our back, so let's check it is not in
620          * already
621          */
622         db = its->vgic_its_base + GITS_TRANSLATER;
623         if (__vgic_its_check_cache(dist, db, devid, eventid))
624                 goto out;
625
626         /* Always reuse the last entry (LRU policy) */
627         cte = list_last_entry(&dist->lpi_translation_cache,
628                               typeof(*cte), entry);
629
630         /*
631          * Caching the translation implies having an extra reference
632          * to the interrupt, so drop the potential reference on what
633          * was in the cache, and increment it on the new interrupt.
634          */
635         if (cte->irq)
636                 __vgic_put_lpi_locked(kvm, cte->irq);
637
638         vgic_get_irq_kref(irq);
639
640         cte->db         = db;
641         cte->devid      = devid;
642         cte->eventid    = eventid;
643         cte->irq        = irq;
644
645         /* Move the new translation to the head of the list */
646         list_move(&cte->entry, &dist->lpi_translation_cache);
647
648 out:
649         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
650 }
651
652 void vgic_its_invalidate_cache(struct kvm *kvm)
653 {
654         struct vgic_dist *dist = &kvm->arch.vgic;
655         struct vgic_translation_cache_entry *cte;
656         unsigned long flags;
657
658         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
659
660         list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
661                 /*
662                  * If we hit a NULL entry, there is nothing after this
663                  * point.
664                  */
665                 if (!cte->irq)
666                         break;
667
668                 __vgic_put_lpi_locked(kvm, cte->irq);
669                 cte->irq = NULL;
670         }
671
672         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
673 }
674
675 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
676                          u32 devid, u32 eventid, struct vgic_irq **irq)
677 {
678         struct kvm_vcpu *vcpu;
679         struct its_ite *ite;
680
681         if (!its->enabled)
682                 return -EBUSY;
683
684         ite = find_ite(its, devid, eventid);
685         if (!ite || !its_is_collection_mapped(ite->collection))
686                 return E_ITS_INT_UNMAPPED_INTERRUPT;
687
688         vcpu = collection_to_vcpu(kvm, ite->collection);
689         if (!vcpu)
690                 return E_ITS_INT_UNMAPPED_INTERRUPT;
691
692         if (!vgic_lpis_enabled(vcpu))
693                 return -EBUSY;
694
695         vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
696
697         *irq = ite->irq;
698         return 0;
699 }
700
701 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
702 {
703         u64 address;
704         struct kvm_io_device *kvm_io_dev;
705         struct vgic_io_device *iodev;
706
707         if (!vgic_has_its(kvm))
708                 return ERR_PTR(-ENODEV);
709
710         if (!(msi->flags & KVM_MSI_VALID_DEVID))
711                 return ERR_PTR(-EINVAL);
712
713         address = (u64)msi->address_hi << 32 | msi->address_lo;
714
715         kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
716         if (!kvm_io_dev)
717                 return ERR_PTR(-EINVAL);
718
719         if (kvm_io_dev->ops != &kvm_io_gic_ops)
720                 return ERR_PTR(-EINVAL);
721
722         iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
723         if (iodev->iodev_type != IODEV_ITS)
724                 return ERR_PTR(-EINVAL);
725
726         return iodev->its;
727 }
728
729 /*
730  * Find the target VCPU and the LPI number for a given devid/eventid pair
731  * and make this IRQ pending, possibly injecting it.
732  * Must be called with the its_lock mutex held.
733  * Returns 0 on success, a positive error value for any ITS mapping
734  * related errors and negative error values for generic errors.
735  */
736 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
737                                 u32 devid, u32 eventid)
738 {
739         struct vgic_irq *irq = NULL;
740         unsigned long flags;
741         int err;
742
743         err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
744         if (err)
745                 return err;
746
747         if (irq->hw)
748                 return irq_set_irqchip_state(irq->host_irq,
749                                              IRQCHIP_STATE_PENDING, true);
750
751         raw_spin_lock_irqsave(&irq->irq_lock, flags);
752         irq->pending_latch = true;
753         vgic_queue_irq_unlock(kvm, irq, flags);
754
755         return 0;
756 }
757
758 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
759 {
760         struct vgic_irq *irq;
761         unsigned long flags;
762         phys_addr_t db;
763
764         db = (u64)msi->address_hi << 32 | msi->address_lo;
765         irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
766         if (!irq)
767                 return -EWOULDBLOCK;
768
769         raw_spin_lock_irqsave(&irq->irq_lock, flags);
770         irq->pending_latch = true;
771         vgic_queue_irq_unlock(kvm, irq, flags);
772
773         return 0;
774 }
775
776 /*
777  * Queries the KVM IO bus framework to get the ITS pointer from the given
778  * doorbell address.
779  * We then call vgic_its_trigger_msi() with the decoded data.
780  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
781  */
782 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
783 {
784         struct vgic_its *its;
785         int ret;
786
787         if (!vgic_its_inject_cached_translation(kvm, msi))
788                 return 1;
789
790         its = vgic_msi_to_its(kvm, msi);
791         if (IS_ERR(its))
792                 return PTR_ERR(its);
793
794         mutex_lock(&its->its_lock);
795         ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
796         mutex_unlock(&its->its_lock);
797
798         if (ret < 0)
799                 return ret;
800
801         /*
802          * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
803          * if the guest has blocked the MSI. So we map any LPI mapping
804          * related error to that.
805          */
806         if (ret)
807                 return 0;
808         else
809                 return 1;
810 }
811
812 /* Requires the its_lock to be held. */
813 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
814 {
815         list_del(&ite->ite_list);
816
817         /* This put matches the get in vgic_add_lpi. */
818         if (ite->irq) {
819                 if (ite->irq->hw)
820                         WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
821
822                 vgic_put_irq(kvm, ite->irq);
823         }
824
825         kfree(ite);
826 }
827
828 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
829 {
830         return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
831 }
832
833 #define its_cmd_get_command(cmd)        its_cmd_mask_field(cmd, 0,  0,  8)
834 #define its_cmd_get_deviceid(cmd)       its_cmd_mask_field(cmd, 0, 32, 32)
835 #define its_cmd_get_size(cmd)           (its_cmd_mask_field(cmd, 1,  0,  5) + 1)
836 #define its_cmd_get_id(cmd)             its_cmd_mask_field(cmd, 1,  0, 32)
837 #define its_cmd_get_physical_id(cmd)    its_cmd_mask_field(cmd, 1, 32, 32)
838 #define its_cmd_get_collection(cmd)     its_cmd_mask_field(cmd, 2,  0, 16)
839 #define its_cmd_get_ittaddr(cmd)        (its_cmd_mask_field(cmd, 2,  8, 44) << 8)
840 #define its_cmd_get_target_addr(cmd)    its_cmd_mask_field(cmd, 2, 16, 32)
841 #define its_cmd_get_validbit(cmd)       its_cmd_mask_field(cmd, 2, 63,  1)
842
843 /*
844  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
845  * Must be called with the its_lock mutex held.
846  */
847 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
848                                        u64 *its_cmd)
849 {
850         u32 device_id = its_cmd_get_deviceid(its_cmd);
851         u32 event_id = its_cmd_get_id(its_cmd);
852         struct its_ite *ite;
853
854         ite = find_ite(its, device_id, event_id);
855         if (ite && its_is_collection_mapped(ite->collection)) {
856                 /*
857                  * Though the spec talks about removing the pending state, we
858                  * don't bother here since we clear the ITTE anyway and the
859                  * pending state is a property of the ITTE struct.
860                  */
861                 vgic_its_invalidate_cache(kvm);
862
863                 its_free_ite(kvm, ite);
864                 return 0;
865         }
866
867         return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
868 }
869
870 /*
871  * The MOVI command moves an ITTE to a different collection.
872  * Must be called with the its_lock mutex held.
873  */
874 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
875                                     u64 *its_cmd)
876 {
877         u32 device_id = its_cmd_get_deviceid(its_cmd);
878         u32 event_id = its_cmd_get_id(its_cmd);
879         u32 coll_id = its_cmd_get_collection(its_cmd);
880         struct kvm_vcpu *vcpu;
881         struct its_ite *ite;
882         struct its_collection *collection;
883
884         ite = find_ite(its, device_id, event_id);
885         if (!ite)
886                 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
887
888         if (!its_is_collection_mapped(ite->collection))
889                 return E_ITS_MOVI_UNMAPPED_COLLECTION;
890
891         collection = find_collection(its, coll_id);
892         if (!its_is_collection_mapped(collection))
893                 return E_ITS_MOVI_UNMAPPED_COLLECTION;
894
895         ite->collection = collection;
896         vcpu = collection_to_vcpu(kvm, collection);
897
898         vgic_its_invalidate_cache(kvm);
899
900         return update_affinity(ite->irq, vcpu);
901 }
902
903 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
904 {
905         gfn_t gfn = gpa >> PAGE_SHIFT;
906         int idx;
907         bool ret;
908
909         idx = srcu_read_lock(&its->dev->kvm->srcu);
910         ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
911         srcu_read_unlock(&its->dev->kvm->srcu, idx);
912         return ret;
913 }
914
915 /*
916  * Check whether an ID can be stored into the corresponding guest table.
917  * For a direct table this is pretty easy, but gets a bit nasty for
918  * indirect tables. We check whether the resulting guest physical address
919  * is actually valid (covered by a memslot and guest accessible).
920  * For this we have to read the respective first level entry.
921  */
922 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
923                               gpa_t *eaddr)
924 {
925         int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
926         u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
927         phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
928         int esz = GITS_BASER_ENTRY_SIZE(baser);
929         int index;
930
931         switch (type) {
932         case GITS_BASER_TYPE_DEVICE:
933                 if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
934                         return false;
935                 break;
936         case GITS_BASER_TYPE_COLLECTION:
937                 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
938                 if (id >= BIT_ULL(16))
939                         return false;
940                 break;
941         default:
942                 return false;
943         }
944
945         if (!(baser & GITS_BASER_INDIRECT)) {
946                 phys_addr_t addr;
947
948                 if (id >= (l1_tbl_size / esz))
949                         return false;
950
951                 addr = base + id * esz;
952
953                 if (eaddr)
954                         *eaddr = addr;
955
956                 return __is_visible_gfn_locked(its, addr);
957         }
958
959         /* calculate and check the index into the 1st level */
960         index = id / (SZ_64K / esz);
961         if (index >= (l1_tbl_size / sizeof(u64)))
962                 return false;
963
964         /* Each 1st level entry is represented by a 64-bit value. */
965         if (kvm_read_guest_lock(its->dev->kvm,
966                            base + index * sizeof(indirect_ptr),
967                            &indirect_ptr, sizeof(indirect_ptr)))
968                 return false;
969
970         indirect_ptr = le64_to_cpu(indirect_ptr);
971
972         /* check the valid bit of the first level entry */
973         if (!(indirect_ptr & BIT_ULL(63)))
974                 return false;
975
976         /* Mask the guest physical address and calculate the frame number. */
977         indirect_ptr &= GENMASK_ULL(51, 16);
978
979         /* Find the address of the actual entry */
980         index = id % (SZ_64K / esz);
981         indirect_ptr += index * esz;
982
983         if (eaddr)
984                 *eaddr = indirect_ptr;
985
986         return __is_visible_gfn_locked(its, indirect_ptr);
987 }
988
989 /*
990  * Check whether an event ID can be stored in the corresponding Interrupt
991  * Translation Table, which starts at device->itt_addr.
992  */
993 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
994                 u32 event_id)
995 {
996         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
997         int ite_esz = abi->ite_esz;
998         gpa_t gpa;
999
1000         /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
1001         if (event_id >= BIT_ULL(device->num_eventid_bits))
1002                 return false;
1003
1004         gpa = device->itt_addr + event_id * ite_esz;
1005         return __is_visible_gfn_locked(its, gpa);
1006 }
1007
1008 /*
1009  * Add a new collection into the ITS collection table.
1010  * Returns 0 on success, and a negative error value for generic errors.
1011  */
1012 static int vgic_its_alloc_collection(struct vgic_its *its,
1013                                      struct its_collection **colp,
1014                                      u32 coll_id)
1015 {
1016         struct its_collection *collection;
1017
1018         collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
1019         if (!collection)
1020                 return -ENOMEM;
1021
1022         collection->collection_id = coll_id;
1023         collection->target_addr = COLLECTION_NOT_MAPPED;
1024
1025         list_add_tail(&collection->coll_list, &its->collection_list);
1026         *colp = collection;
1027
1028         return 0;
1029 }
1030
1031 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
1032 {
1033         struct its_collection *collection;
1034         struct its_device *device;
1035         struct its_ite *ite;
1036
1037         /*
1038          * Clearing the mapping for that collection ID removes the
1039          * entry from the list. If there wasn't any before, we can
1040          * go home early.
1041          */
1042         collection = find_collection(its, coll_id);
1043         if (!collection)
1044                 return;
1045
1046         for_each_lpi_its(device, ite, its)
1047                 if (ite->collection &&
1048                     ite->collection->collection_id == coll_id)
1049                         ite->collection = NULL;
1050
1051         list_del(&collection->coll_list);
1052         kfree(collection);
1053 }
1054
1055 /* Must be called with its_lock mutex held */
1056 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1057                                           struct its_collection *collection,
1058                                           u32 event_id)
1059 {
1060         struct its_ite *ite;
1061
1062         ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
1063         if (!ite)
1064                 return ERR_PTR(-ENOMEM);
1065
1066         ite->event_id   = event_id;
1067         ite->collection = collection;
1068
1069         list_add_tail(&ite->ite_list, &device->itt_head);
1070         return ite;
1071 }
1072
1073 /*
1074  * The MAPTI and MAPI commands map LPIs to ITTEs.
1075  * Must be called with its_lock mutex held.
1076  */
1077 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1078                                     u64 *its_cmd)
1079 {
1080         u32 device_id = its_cmd_get_deviceid(its_cmd);
1081         u32 event_id = its_cmd_get_id(its_cmd);
1082         u32 coll_id = its_cmd_get_collection(its_cmd);
1083         struct its_ite *ite;
1084         struct kvm_vcpu *vcpu = NULL;
1085         struct its_device *device;
1086         struct its_collection *collection, *new_coll = NULL;
1087         struct vgic_irq *irq;
1088         int lpi_nr;
1089
1090         device = find_its_device(its, device_id);
1091         if (!device)
1092                 return E_ITS_MAPTI_UNMAPPED_DEVICE;
1093
1094         if (!vgic_its_check_event_id(its, device, event_id))
1095                 return E_ITS_MAPTI_ID_OOR;
1096
1097         if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1098                 lpi_nr = its_cmd_get_physical_id(its_cmd);
1099         else
1100                 lpi_nr = event_id;
1101         if (lpi_nr < GIC_LPI_OFFSET ||
1102             lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1103                 return E_ITS_MAPTI_PHYSICALID_OOR;
1104
1105         /* If there is an existing mapping, behavior is UNPREDICTABLE. */
1106         if (find_ite(its, device_id, event_id))
1107                 return 0;
1108
1109         collection = find_collection(its, coll_id);
1110         if (!collection) {
1111                 int ret;
1112
1113                 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
1114                         return E_ITS_MAPC_COLLECTION_OOR;
1115
1116                 ret = vgic_its_alloc_collection(its, &collection, coll_id);
1117                 if (ret)
1118                         return ret;
1119                 new_coll = collection;
1120         }
1121
1122         ite = vgic_its_alloc_ite(device, collection, event_id);
1123         if (IS_ERR(ite)) {
1124                 if (new_coll)
1125                         vgic_its_free_collection(its, coll_id);
1126                 return PTR_ERR(ite);
1127         }
1128
1129         if (its_is_collection_mapped(collection))
1130                 vcpu = collection_to_vcpu(kvm, collection);
1131
1132         irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1133         if (IS_ERR(irq)) {
1134                 if (new_coll)
1135                         vgic_its_free_collection(its, coll_id);
1136                 its_free_ite(kvm, ite);
1137                 return PTR_ERR(irq);
1138         }
1139         ite->irq = irq;
1140
1141         return 0;
1142 }
1143
1144 /* Requires the its_lock to be held. */
1145 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1146 {
1147         struct its_ite *ite, *temp;
1148
1149         /*
1150          * The spec says that unmapping a device with still valid
1151          * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1152          * since we cannot leave the memory unreferenced.
1153          */
1154         list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1155                 its_free_ite(kvm, ite);
1156
1157         vgic_its_invalidate_cache(kvm);
1158
1159         list_del(&device->dev_list);
1160         kfree(device);
1161 }
1162
1163 /* its lock must be held */
1164 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1165 {
1166         struct its_device *cur, *temp;
1167
1168         list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1169                 vgic_its_free_device(kvm, cur);
1170 }
1171
1172 /* its lock must be held */
1173 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1174 {
1175         struct its_collection *cur, *temp;
1176
1177         list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1178                 vgic_its_free_collection(its, cur->collection_id);
1179 }
1180
1181 /* Must be called with its_lock mutex held */
1182 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1183                                                 u32 device_id, gpa_t itt_addr,
1184                                                 u8 num_eventid_bits)
1185 {
1186         struct its_device *device;
1187
1188         device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
1189         if (!device)
1190                 return ERR_PTR(-ENOMEM);
1191
1192         device->device_id = device_id;
1193         device->itt_addr = itt_addr;
1194         device->num_eventid_bits = num_eventid_bits;
1195         INIT_LIST_HEAD(&device->itt_head);
1196
1197         list_add_tail(&device->dev_list, &its->device_list);
1198         return device;
1199 }
1200
1201 /*
1202  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1203  * Must be called with the its_lock mutex held.
1204  */
1205 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1206                                     u64 *its_cmd)
1207 {
1208         u32 device_id = its_cmd_get_deviceid(its_cmd);
1209         bool valid = its_cmd_get_validbit(its_cmd);
1210         u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1211         gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1212         struct its_device *device;
1213
1214         if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1215                 return E_ITS_MAPD_DEVICE_OOR;
1216
1217         if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1218                 return E_ITS_MAPD_ITTSIZE_OOR;
1219
1220         device = find_its_device(its, device_id);
1221
1222         /*
1223          * The spec says that calling MAPD on an already mapped device
1224          * invalidates all cached data for this device. We implement this
1225          * by removing the mapping and re-establishing it.
1226          */
1227         if (device)
1228                 vgic_its_free_device(kvm, device);
1229
1230         /*
1231          * The spec does not say whether unmapping a not-mapped device
1232          * is an error, so we are done in any case.
1233          */
1234         if (!valid)
1235                 return 0;
1236
1237         device = vgic_its_alloc_device(its, device_id, itt_addr,
1238                                        num_eventid_bits);
1239
1240         return PTR_ERR_OR_ZERO(device);
1241 }
1242
1243 /*
1244  * The MAPC command maps collection IDs to redistributors.
1245  * Must be called with the its_lock mutex held.
1246  */
1247 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1248                                     u64 *its_cmd)
1249 {
1250         u16 coll_id;
1251         struct its_collection *collection;
1252         bool valid;
1253
1254         valid = its_cmd_get_validbit(its_cmd);
1255         coll_id = its_cmd_get_collection(its_cmd);
1256
1257         if (!valid) {
1258                 vgic_its_free_collection(its, coll_id);
1259                 vgic_its_invalidate_cache(kvm);
1260         } else {
1261                 struct kvm_vcpu *vcpu;
1262
1263                 vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1264                 if (!vcpu)
1265                         return E_ITS_MAPC_PROCNUM_OOR;
1266
1267                 collection = find_collection(its, coll_id);
1268
1269                 if (!collection) {
1270                         int ret;
1271
1272                         if (!vgic_its_check_id(its, its->baser_coll_table,
1273                                                 coll_id, NULL))
1274                                 return E_ITS_MAPC_COLLECTION_OOR;
1275
1276                         ret = vgic_its_alloc_collection(its, &collection,
1277                                                         coll_id);
1278                         if (ret)
1279                                 return ret;
1280                         collection->target_addr = vcpu->vcpu_id;
1281                 } else {
1282                         collection->target_addr = vcpu->vcpu_id;
1283                         update_affinity_collection(kvm, its, collection);
1284                 }
1285         }
1286
1287         return 0;
1288 }
1289
1290 /*
1291  * The CLEAR command removes the pending state for a particular LPI.
1292  * Must be called with the its_lock mutex held.
1293  */
1294 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1295                                      u64 *its_cmd)
1296 {
1297         u32 device_id = its_cmd_get_deviceid(its_cmd);
1298         u32 event_id = its_cmd_get_id(its_cmd);
1299         struct its_ite *ite;
1300
1301
1302         ite = find_ite(its, device_id, event_id);
1303         if (!ite)
1304                 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1305
1306         ite->irq->pending_latch = false;
1307
1308         if (ite->irq->hw)
1309                 return irq_set_irqchip_state(ite->irq->host_irq,
1310                                              IRQCHIP_STATE_PENDING, false);
1311
1312         return 0;
1313 }
1314
1315 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
1316 {
1317         return update_lpi_config(kvm, irq, NULL, true);
1318 }
1319
1320 /*
1321  * The INV command syncs the configuration bits from the memory table.
1322  * Must be called with the its_lock mutex held.
1323  */
1324 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1325                                    u64 *its_cmd)
1326 {
1327         u32 device_id = its_cmd_get_deviceid(its_cmd);
1328         u32 event_id = its_cmd_get_id(its_cmd);
1329         struct its_ite *ite;
1330
1331
1332         ite = find_ite(its, device_id, event_id);
1333         if (!ite)
1334                 return E_ITS_INV_UNMAPPED_INTERRUPT;
1335
1336         return vgic_its_inv_lpi(kvm, ite->irq);
1337 }
1338
1339 /**
1340  * vgic_its_invall - invalidate all LPIs targetting a given vcpu
1341  * @vcpu: the vcpu for which the RD is targetted by an invalidation
1342  *
1343  * Contrary to the INVALL command, this targets a RD instead of a
1344  * collection, and we don't need to hold the its_lock, since no ITS is
1345  * involved here.
1346  */
1347 int vgic_its_invall(struct kvm_vcpu *vcpu)
1348 {
1349         struct kvm *kvm = vcpu->kvm;
1350         int irq_count, i = 0;
1351         u32 *intids;
1352
1353         irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1354         if (irq_count < 0)
1355                 return irq_count;
1356
1357         for (i = 0; i < irq_count; i++) {
1358                 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intids[i]);
1359                 if (!irq)
1360                         continue;
1361                 update_lpi_config(kvm, irq, vcpu, false);
1362                 vgic_put_irq(kvm, irq);
1363         }
1364
1365         kfree(intids);
1366
1367         if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1368                 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1369
1370         return 0;
1371 }
1372
1373 /*
1374  * The INVALL command requests flushing of all IRQ data in this collection.
1375  * Find the VCPU mapped to that collection, then iterate over the VM's list
1376  * of mapped LPIs and update the configuration for each IRQ which targets
1377  * the specified vcpu. The configuration will be read from the in-memory
1378  * configuration table.
1379  * Must be called with the its_lock mutex held.
1380  */
1381 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1382                                       u64 *its_cmd)
1383 {
1384         u32 coll_id = its_cmd_get_collection(its_cmd);
1385         struct its_collection *collection;
1386         struct kvm_vcpu *vcpu;
1387
1388         collection = find_collection(its, coll_id);
1389         if (!its_is_collection_mapped(collection))
1390                 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1391
1392         vcpu = collection_to_vcpu(kvm, collection);
1393         vgic_its_invall(vcpu);
1394
1395         return 0;
1396 }
1397
1398 /*
1399  * The MOVALL command moves the pending state of all IRQs targeting one
1400  * redistributor to another. We don't hold the pending state in the VCPUs,
1401  * but in the IRQs instead, so there is really not much to do for us here.
1402  * However the spec says that no IRQ must target the old redistributor
1403  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1404  * This command affects all LPIs in the system that target that redistributor.
1405  */
1406 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1407                                       u64 *its_cmd)
1408 {
1409         struct kvm_vcpu *vcpu1, *vcpu2;
1410         struct vgic_irq *irq;
1411         u32 *intids;
1412         int irq_count, i;
1413
1414         /* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */
1415         vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1416         vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32));
1417
1418         if (!vcpu1 || !vcpu2)
1419                 return E_ITS_MOVALL_PROCNUM_OOR;
1420
1421         if (vcpu1 == vcpu2)
1422                 return 0;
1423
1424         irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1425         if (irq_count < 0)
1426                 return irq_count;
1427
1428         for (i = 0; i < irq_count; i++) {
1429                 irq = vgic_get_irq(kvm, NULL, intids[i]);
1430
1431                 update_affinity(irq, vcpu2);
1432
1433                 vgic_put_irq(kvm, irq);
1434         }
1435
1436         vgic_its_invalidate_cache(kvm);
1437
1438         kfree(intids);
1439         return 0;
1440 }
1441
1442 /*
1443  * The INT command injects the LPI associated with that DevID/EvID pair.
1444  * Must be called with the its_lock mutex held.
1445  */
1446 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1447                                    u64 *its_cmd)
1448 {
1449         u32 msi_data = its_cmd_get_id(its_cmd);
1450         u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1451
1452         return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1453 }
1454
1455 /*
1456  * This function is called with the its_cmd lock held, but the ITS data
1457  * structure lock dropped.
1458  */
1459 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1460                                    u64 *its_cmd)
1461 {
1462         int ret = -ENODEV;
1463
1464         mutex_lock(&its->its_lock);
1465         switch (its_cmd_get_command(its_cmd)) {
1466         case GITS_CMD_MAPD:
1467                 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1468                 break;
1469         case GITS_CMD_MAPC:
1470                 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1471                 break;
1472         case GITS_CMD_MAPI:
1473                 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1474                 break;
1475         case GITS_CMD_MAPTI:
1476                 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1477                 break;
1478         case GITS_CMD_MOVI:
1479                 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1480                 break;
1481         case GITS_CMD_DISCARD:
1482                 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1483                 break;
1484         case GITS_CMD_CLEAR:
1485                 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1486                 break;
1487         case GITS_CMD_MOVALL:
1488                 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1489                 break;
1490         case GITS_CMD_INT:
1491                 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1492                 break;
1493         case GITS_CMD_INV:
1494                 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1495                 break;
1496         case GITS_CMD_INVALL:
1497                 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1498                 break;
1499         case GITS_CMD_SYNC:
1500                 /* we ignore this command: we are in sync all of the time */
1501                 ret = 0;
1502                 break;
1503         }
1504         mutex_unlock(&its->its_lock);
1505
1506         return ret;
1507 }
1508
1509 static u64 vgic_sanitise_its_baser(u64 reg)
1510 {
1511         reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1512                                   GITS_BASER_SHAREABILITY_SHIFT,
1513                                   vgic_sanitise_shareability);
1514         reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1515                                   GITS_BASER_INNER_CACHEABILITY_SHIFT,
1516                                   vgic_sanitise_inner_cacheability);
1517         reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1518                                   GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1519                                   vgic_sanitise_outer_cacheability);
1520
1521         /* We support only one (ITS) page size: 64K */
1522         reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1523
1524         return reg;
1525 }
1526
1527 static u64 vgic_sanitise_its_cbaser(u64 reg)
1528 {
1529         reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1530                                   GITS_CBASER_SHAREABILITY_SHIFT,
1531                                   vgic_sanitise_shareability);
1532         reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1533                                   GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1534                                   vgic_sanitise_inner_cacheability);
1535         reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1536                                   GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1537                                   vgic_sanitise_outer_cacheability);
1538
1539         /* Sanitise the physical address to be 64k aligned. */
1540         reg &= ~GENMASK_ULL(15, 12);
1541
1542         return reg;
1543 }
1544
1545 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1546                                                struct vgic_its *its,
1547                                                gpa_t addr, unsigned int len)
1548 {
1549         return extract_bytes(its->cbaser, addr & 7, len);
1550 }
1551
1552 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1553                                        gpa_t addr, unsigned int len,
1554                                        unsigned long val)
1555 {
1556         /* When GITS_CTLR.Enable is 1, this register is RO. */
1557         if (its->enabled)
1558                 return;
1559
1560         mutex_lock(&its->cmd_lock);
1561         its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1562         its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1563         its->creadr = 0;
1564         /*
1565          * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1566          * it to CREADR to make sure we start with an empty command buffer.
1567          */
1568         its->cwriter = its->creadr;
1569         mutex_unlock(&its->cmd_lock);
1570 }
1571
1572 #define ITS_CMD_BUFFER_SIZE(baser)      ((((baser) & 0xff) + 1) << 12)
1573 #define ITS_CMD_SIZE                    32
1574 #define ITS_CMD_OFFSET(reg)             ((reg) & GENMASK(19, 5))
1575
1576 /* Must be called with the cmd_lock held. */
1577 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1578 {
1579         gpa_t cbaser;
1580         u64 cmd_buf[4];
1581
1582         /* Commands are only processed when the ITS is enabled. */
1583         if (!its->enabled)
1584                 return;
1585
1586         cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1587
1588         while (its->cwriter != its->creadr) {
1589                 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1590                                               cmd_buf, ITS_CMD_SIZE);
1591                 /*
1592                  * If kvm_read_guest() fails, this could be due to the guest
1593                  * programming a bogus value in CBASER or something else going
1594                  * wrong from which we cannot easily recover.
1595                  * According to section 6.3.2 in the GICv3 spec we can just
1596                  * ignore that command then.
1597                  */
1598                 if (!ret)
1599                         vgic_its_handle_command(kvm, its, cmd_buf);
1600
1601                 its->creadr += ITS_CMD_SIZE;
1602                 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1603                         its->creadr = 0;
1604         }
1605 }
1606
1607 /*
1608  * By writing to CWRITER the guest announces new commands to be processed.
1609  * To avoid any races in the first place, we take the its_cmd lock, which
1610  * protects our ring buffer variables, so that there is only one user
1611  * per ITS handling commands at a given time.
1612  */
1613 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1614                                         gpa_t addr, unsigned int len,
1615                                         unsigned long val)
1616 {
1617         u64 reg;
1618
1619         if (!its)
1620                 return;
1621
1622         mutex_lock(&its->cmd_lock);
1623
1624         reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1625         reg = ITS_CMD_OFFSET(reg);
1626         if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1627                 mutex_unlock(&its->cmd_lock);
1628                 return;
1629         }
1630         its->cwriter = reg;
1631
1632         vgic_its_process_commands(kvm, its);
1633
1634         mutex_unlock(&its->cmd_lock);
1635 }
1636
1637 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1638                                                 struct vgic_its *its,
1639                                                 gpa_t addr, unsigned int len)
1640 {
1641         return extract_bytes(its->cwriter, addr & 0x7, len);
1642 }
1643
1644 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1645                                                struct vgic_its *its,
1646                                                gpa_t addr, unsigned int len)
1647 {
1648         return extract_bytes(its->creadr, addr & 0x7, len);
1649 }
1650
1651 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1652                                               struct vgic_its *its,
1653                                               gpa_t addr, unsigned int len,
1654                                               unsigned long val)
1655 {
1656         u32 cmd_offset;
1657         int ret = 0;
1658
1659         mutex_lock(&its->cmd_lock);
1660
1661         if (its->enabled) {
1662                 ret = -EBUSY;
1663                 goto out;
1664         }
1665
1666         cmd_offset = ITS_CMD_OFFSET(val);
1667         if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1668                 ret = -EINVAL;
1669                 goto out;
1670         }
1671
1672         its->creadr = cmd_offset;
1673 out:
1674         mutex_unlock(&its->cmd_lock);
1675         return ret;
1676 }
1677
1678 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1679 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1680                                               struct vgic_its *its,
1681                                               gpa_t addr, unsigned int len)
1682 {
1683         u64 reg;
1684
1685         switch (BASER_INDEX(addr)) {
1686         case 0:
1687                 reg = its->baser_device_table;
1688                 break;
1689         case 1:
1690                 reg = its->baser_coll_table;
1691                 break;
1692         default:
1693                 reg = 0;
1694                 break;
1695         }
1696
1697         return extract_bytes(reg, addr & 7, len);
1698 }
1699
1700 #define GITS_BASER_RO_MASK      (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1701 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1702                                       struct vgic_its *its,
1703                                       gpa_t addr, unsigned int len,
1704                                       unsigned long val)
1705 {
1706         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1707         u64 entry_size, table_type;
1708         u64 reg, *regptr, clearbits = 0;
1709
1710         /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1711         if (its->enabled)
1712                 return;
1713
1714         switch (BASER_INDEX(addr)) {
1715         case 0:
1716                 regptr = &its->baser_device_table;
1717                 entry_size = abi->dte_esz;
1718                 table_type = GITS_BASER_TYPE_DEVICE;
1719                 break;
1720         case 1:
1721                 regptr = &its->baser_coll_table;
1722                 entry_size = abi->cte_esz;
1723                 table_type = GITS_BASER_TYPE_COLLECTION;
1724                 clearbits = GITS_BASER_INDIRECT;
1725                 break;
1726         default:
1727                 return;
1728         }
1729
1730         reg = update_64bit_reg(*regptr, addr & 7, len, val);
1731         reg &= ~GITS_BASER_RO_MASK;
1732         reg &= ~clearbits;
1733
1734         reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1735         reg |= table_type << GITS_BASER_TYPE_SHIFT;
1736         reg = vgic_sanitise_its_baser(reg);
1737
1738         *regptr = reg;
1739
1740         if (!(reg & GITS_BASER_VALID)) {
1741                 /* Take the its_lock to prevent a race with a save/restore */
1742                 mutex_lock(&its->its_lock);
1743                 switch (table_type) {
1744                 case GITS_BASER_TYPE_DEVICE:
1745                         vgic_its_free_device_list(kvm, its);
1746                         break;
1747                 case GITS_BASER_TYPE_COLLECTION:
1748                         vgic_its_free_collection_list(kvm, its);
1749                         break;
1750                 }
1751                 mutex_unlock(&its->its_lock);
1752         }
1753 }
1754
1755 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1756                                              struct vgic_its *its,
1757                                              gpa_t addr, unsigned int len)
1758 {
1759         u32 reg = 0;
1760
1761         mutex_lock(&its->cmd_lock);
1762         if (its->creadr == its->cwriter)
1763                 reg |= GITS_CTLR_QUIESCENT;
1764         if (its->enabled)
1765                 reg |= GITS_CTLR_ENABLE;
1766         mutex_unlock(&its->cmd_lock);
1767
1768         return reg;
1769 }
1770
1771 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1772                                      gpa_t addr, unsigned int len,
1773                                      unsigned long val)
1774 {
1775         mutex_lock(&its->cmd_lock);
1776
1777         /*
1778          * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1779          * device/collection BASER are invalid
1780          */
1781         if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1782                 (!(its->baser_device_table & GITS_BASER_VALID) ||
1783                  !(its->baser_coll_table & GITS_BASER_VALID) ||
1784                  !(its->cbaser & GITS_CBASER_VALID)))
1785                 goto out;
1786
1787         its->enabled = !!(val & GITS_CTLR_ENABLE);
1788         if (!its->enabled)
1789                 vgic_its_invalidate_cache(kvm);
1790
1791         /*
1792          * Try to process any pending commands. This function bails out early
1793          * if the ITS is disabled or no commands have been queued.
1794          */
1795         vgic_its_process_commands(kvm, its);
1796
1797 out:
1798         mutex_unlock(&its->cmd_lock);
1799 }
1800
1801 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)             \
1802 {                                                               \
1803         .reg_offset = off,                                      \
1804         .len = length,                                          \
1805         .access_flags = acc,                                    \
1806         .its_read = rd,                                         \
1807         .its_write = wr,                                        \
1808 }
1809
1810 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1811 {                                                               \
1812         .reg_offset = off,                                      \
1813         .len = length,                                          \
1814         .access_flags = acc,                                    \
1815         .its_read = rd,                                         \
1816         .its_write = wr,                                        \
1817         .uaccess_its_write = uwr,                               \
1818 }
1819
1820 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1821                               gpa_t addr, unsigned int len, unsigned long val)
1822 {
1823         /* Ignore */
1824 }
1825
1826 static struct vgic_register_region its_registers[] = {
1827         REGISTER_ITS_DESC(GITS_CTLR,
1828                 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1829                 VGIC_ACCESS_32bit),
1830         REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1831                 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1832                 vgic_mmio_uaccess_write_its_iidr, 4,
1833                 VGIC_ACCESS_32bit),
1834         REGISTER_ITS_DESC(GITS_TYPER,
1835                 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1836                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1837         REGISTER_ITS_DESC(GITS_CBASER,
1838                 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1839                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1840         REGISTER_ITS_DESC(GITS_CWRITER,
1841                 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1842                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1843         REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1844                 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1845                 vgic_mmio_uaccess_write_its_creadr, 8,
1846                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1847         REGISTER_ITS_DESC(GITS_BASER,
1848                 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1849                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1850         REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1851                 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1852                 VGIC_ACCESS_32bit),
1853 };
1854
1855 /* This is called on setting the LPI enable bit in the redistributor. */
1856 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1857 {
1858         if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1859                 its_sync_lpi_pending_table(vcpu);
1860 }
1861
1862 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1863                                    u64 addr)
1864 {
1865         struct vgic_io_device *iodev = &its->iodev;
1866         int ret;
1867
1868         mutex_lock(&kvm->slots_lock);
1869         if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1870                 ret = -EBUSY;
1871                 goto out;
1872         }
1873
1874         its->vgic_its_base = addr;
1875         iodev->regions = its_registers;
1876         iodev->nr_regions = ARRAY_SIZE(its_registers);
1877         kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1878
1879         iodev->base_addr = its->vgic_its_base;
1880         iodev->iodev_type = IODEV_ITS;
1881         iodev->its = its;
1882         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1883                                       KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1884 out:
1885         mutex_unlock(&kvm->slots_lock);
1886
1887         return ret;
1888 }
1889
1890 /* Default is 16 cached LPIs per vcpu */
1891 #define LPI_DEFAULT_PCPU_CACHE_SIZE     16
1892
1893 void vgic_lpi_translation_cache_init(struct kvm *kvm)
1894 {
1895         struct vgic_dist *dist = &kvm->arch.vgic;
1896         unsigned int sz;
1897         int i;
1898
1899         if (!list_empty(&dist->lpi_translation_cache))
1900                 return;
1901
1902         sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1903
1904         for (i = 0; i < sz; i++) {
1905                 struct vgic_translation_cache_entry *cte;
1906
1907                 /* An allocation failure is not fatal */
1908                 cte = kzalloc(sizeof(*cte), GFP_KERNEL_ACCOUNT);
1909                 if (WARN_ON(!cte))
1910                         break;
1911
1912                 INIT_LIST_HEAD(&cte->entry);
1913                 list_add(&cte->entry, &dist->lpi_translation_cache);
1914         }
1915 }
1916
1917 void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1918 {
1919         struct vgic_dist *dist = &kvm->arch.vgic;
1920         struct vgic_translation_cache_entry *cte, *tmp;
1921
1922         vgic_its_invalidate_cache(kvm);
1923
1924         list_for_each_entry_safe(cte, tmp,
1925                                  &dist->lpi_translation_cache, entry) {
1926                 list_del(&cte->entry);
1927                 kfree(cte);
1928         }
1929 }
1930
1931 #define INITIAL_BASER_VALUE                                               \
1932         (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)                | \
1933          GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)         | \
1934          GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)             | \
1935          GITS_BASER_PAGE_SIZE_64K)
1936
1937 #define INITIAL_PROPBASER_VALUE                                           \
1938         (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)            | \
1939          GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)     | \
1940          GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1941
1942 static int vgic_its_create(struct kvm_device *dev, u32 type)
1943 {
1944         int ret;
1945         struct vgic_its *its;
1946
1947         if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1948                 return -ENODEV;
1949
1950         its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
1951         if (!its)
1952                 return -ENOMEM;
1953
1954         mutex_lock(&dev->kvm->arch.config_lock);
1955
1956         if (vgic_initialized(dev->kvm)) {
1957                 ret = vgic_v4_init(dev->kvm);
1958                 if (ret < 0) {
1959                         mutex_unlock(&dev->kvm->arch.config_lock);
1960                         kfree(its);
1961                         return ret;
1962                 }
1963
1964                 vgic_lpi_translation_cache_init(dev->kvm);
1965         }
1966
1967         mutex_init(&its->its_lock);
1968         mutex_init(&its->cmd_lock);
1969
1970         /* Yep, even more trickery for lock ordering... */
1971 #ifdef CONFIG_LOCKDEP
1972         mutex_lock(&its->cmd_lock);
1973         mutex_lock(&its->its_lock);
1974         mutex_unlock(&its->its_lock);
1975         mutex_unlock(&its->cmd_lock);
1976 #endif
1977
1978         its->vgic_its_base = VGIC_ADDR_UNDEF;
1979
1980         INIT_LIST_HEAD(&its->device_list);
1981         INIT_LIST_HEAD(&its->collection_list);
1982
1983         dev->kvm->arch.vgic.msis_require_devid = true;
1984         dev->kvm->arch.vgic.has_its = true;
1985         its->enabled = false;
1986         its->dev = dev;
1987
1988         its->baser_device_table = INITIAL_BASER_VALUE                   |
1989                 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1990         its->baser_coll_table = INITIAL_BASER_VALUE |
1991                 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1992         dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1993
1994         dev->private = its;
1995
1996         ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1997
1998         mutex_unlock(&dev->kvm->arch.config_lock);
1999
2000         return ret;
2001 }
2002
2003 static void vgic_its_destroy(struct kvm_device *kvm_dev)
2004 {
2005         struct kvm *kvm = kvm_dev->kvm;
2006         struct vgic_its *its = kvm_dev->private;
2007
2008         mutex_lock(&its->its_lock);
2009
2010         vgic_its_free_device_list(kvm, its);
2011         vgic_its_free_collection_list(kvm, its);
2012
2013         mutex_unlock(&its->its_lock);
2014         kfree(its);
2015         kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
2016 }
2017
2018 static int vgic_its_has_attr_regs(struct kvm_device *dev,
2019                                   struct kvm_device_attr *attr)
2020 {
2021         const struct vgic_register_region *region;
2022         gpa_t offset = attr->attr;
2023         int align;
2024
2025         align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
2026
2027         if (offset & align)
2028                 return -EINVAL;
2029
2030         region = vgic_find_mmio_region(its_registers,
2031                                        ARRAY_SIZE(its_registers),
2032                                        offset);
2033         if (!region)
2034                 return -ENXIO;
2035
2036         return 0;
2037 }
2038
2039 static int vgic_its_attr_regs_access(struct kvm_device *dev,
2040                                      struct kvm_device_attr *attr,
2041                                      u64 *reg, bool is_write)
2042 {
2043         const struct vgic_register_region *region;
2044         struct vgic_its *its;
2045         gpa_t addr, offset;
2046         unsigned int len;
2047         int align, ret = 0;
2048
2049         its = dev->private;
2050         offset = attr->attr;
2051
2052         /*
2053          * Although the spec supports upper/lower 32-bit accesses to
2054          * 64-bit ITS registers, the userspace ABI requires 64-bit
2055          * accesses to all 64-bit wide registers. We therefore only
2056          * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
2057          * registers
2058          */
2059         if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
2060                 align = 0x3;
2061         else
2062                 align = 0x7;
2063
2064         if (offset & align)
2065                 return -EINVAL;
2066
2067         mutex_lock(&dev->kvm->lock);
2068
2069         if (!lock_all_vcpus(dev->kvm)) {
2070                 mutex_unlock(&dev->kvm->lock);
2071                 return -EBUSY;
2072         }
2073
2074         mutex_lock(&dev->kvm->arch.config_lock);
2075
2076         if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
2077                 ret = -ENXIO;
2078                 goto out;
2079         }
2080
2081         region = vgic_find_mmio_region(its_registers,
2082                                        ARRAY_SIZE(its_registers),
2083                                        offset);
2084         if (!region) {
2085                 ret = -ENXIO;
2086                 goto out;
2087         }
2088
2089         addr = its->vgic_its_base + offset;
2090
2091         len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2092
2093         if (is_write) {
2094                 if (region->uaccess_its_write)
2095                         ret = region->uaccess_its_write(dev->kvm, its, addr,
2096                                                         len, *reg);
2097                 else
2098                         region->its_write(dev->kvm, its, addr, len, *reg);
2099         } else {
2100                 *reg = region->its_read(dev->kvm, its, addr, len);
2101         }
2102 out:
2103         mutex_unlock(&dev->kvm->arch.config_lock);
2104         unlock_all_vcpus(dev->kvm);
2105         mutex_unlock(&dev->kvm->lock);
2106         return ret;
2107 }
2108
2109 static u32 compute_next_devid_offset(struct list_head *h,
2110                                      struct its_device *dev)
2111 {
2112         struct its_device *next;
2113         u32 next_offset;
2114
2115         if (list_is_last(&dev->dev_list, h))
2116                 return 0;
2117         next = list_next_entry(dev, dev_list);
2118         next_offset = next->device_id - dev->device_id;
2119
2120         return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2121 }
2122
2123 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2124 {
2125         struct its_ite *next;
2126         u32 next_offset;
2127
2128         if (list_is_last(&ite->ite_list, h))
2129                 return 0;
2130         next = list_next_entry(ite, ite_list);
2131         next_offset = next->event_id - ite->event_id;
2132
2133         return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2134 }
2135
2136 /**
2137  * entry_fn_t - Callback called on a table entry restore path
2138  * @its: its handle
2139  * @id: id of the entry
2140  * @entry: pointer to the entry
2141  * @opaque: pointer to an opaque data
2142  *
2143  * Return: < 0 on error, 0 if last element was identified, id offset to next
2144  * element otherwise
2145  */
2146 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2147                           void *opaque);
2148
2149 /**
2150  * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2151  * to each entry
2152  *
2153  * @its: its handle
2154  * @base: base gpa of the table
2155  * @size: size of the table in bytes
2156  * @esz: entry size in bytes
2157  * @start_id: the ID of the first entry in the table
2158  * (non zero for 2d level tables)
2159  * @fn: function to apply on each entry
2160  *
2161  * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2162  * (the last element may not be found on second level tables)
2163  */
2164 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2165                           int start_id, entry_fn_t fn, void *opaque)
2166 {
2167         struct kvm *kvm = its->dev->kvm;
2168         unsigned long len = size;
2169         int id = start_id;
2170         gpa_t gpa = base;
2171         char entry[ESZ_MAX];
2172         int ret;
2173
2174         memset(entry, 0, esz);
2175
2176         while (true) {
2177                 int next_offset;
2178                 size_t byte_offset;
2179
2180                 ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2181                 if (ret)
2182                         return ret;
2183
2184                 next_offset = fn(its, id, entry, opaque);
2185                 if (next_offset <= 0)
2186                         return next_offset;
2187
2188                 byte_offset = next_offset * esz;
2189                 if (byte_offset >= len)
2190                         break;
2191
2192                 id += next_offset;
2193                 gpa += byte_offset;
2194                 len -= byte_offset;
2195         }
2196         return 1;
2197 }
2198
2199 /**
2200  * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2201  */
2202 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2203                               struct its_ite *ite, gpa_t gpa, int ite_esz)
2204 {
2205         struct kvm *kvm = its->dev->kvm;
2206         u32 next_offset;
2207         u64 val;
2208
2209         next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2210         val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2211                ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2212                 ite->collection->collection_id;
2213         val = cpu_to_le64(val);
2214         return vgic_write_guest_lock(kvm, gpa, &val, ite_esz);
2215 }
2216
2217 /**
2218  * vgic_its_restore_ite - restore an interrupt translation entry
2219  * @event_id: id used for indexing
2220  * @ptr: pointer to the ITE entry
2221  * @opaque: pointer to the its_device
2222  */
2223 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2224                                 void *ptr, void *opaque)
2225 {
2226         struct its_device *dev = opaque;
2227         struct its_collection *collection;
2228         struct kvm *kvm = its->dev->kvm;
2229         struct kvm_vcpu *vcpu = NULL;
2230         u64 val;
2231         u64 *p = (u64 *)ptr;
2232         struct vgic_irq *irq;
2233         u32 coll_id, lpi_id;
2234         struct its_ite *ite;
2235         u32 offset;
2236
2237         val = *p;
2238
2239         val = le64_to_cpu(val);
2240
2241         coll_id = val & KVM_ITS_ITE_ICID_MASK;
2242         lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2243
2244         if (!lpi_id)
2245                 return 1; /* invalid entry, no choice but to scan next entry */
2246
2247         if (lpi_id < VGIC_MIN_LPI)
2248                 return -EINVAL;
2249
2250         offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2251         if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2252                 return -EINVAL;
2253
2254         collection = find_collection(its, coll_id);
2255         if (!collection)
2256                 return -EINVAL;
2257
2258         if (!vgic_its_check_event_id(its, dev, event_id))
2259                 return -EINVAL;
2260
2261         ite = vgic_its_alloc_ite(dev, collection, event_id);
2262         if (IS_ERR(ite))
2263                 return PTR_ERR(ite);
2264
2265         if (its_is_collection_mapped(collection))
2266                 vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr);
2267
2268         irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2269         if (IS_ERR(irq)) {
2270                 its_free_ite(kvm, ite);
2271                 return PTR_ERR(irq);
2272         }
2273         ite->irq = irq;
2274
2275         return offset;
2276 }
2277
2278 static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2279                             const struct list_head *b)
2280 {
2281         struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2282         struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2283
2284         if (itea->event_id < iteb->event_id)
2285                 return -1;
2286         else
2287                 return 1;
2288 }
2289
2290 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2291 {
2292         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2293         gpa_t base = device->itt_addr;
2294         struct its_ite *ite;
2295         int ret;
2296         int ite_esz = abi->ite_esz;
2297
2298         list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2299
2300         list_for_each_entry(ite, &device->itt_head, ite_list) {
2301                 gpa_t gpa = base + ite->event_id * ite_esz;
2302
2303                 /*
2304                  * If an LPI carries the HW bit, this means that this
2305                  * interrupt is controlled by GICv4, and we do not
2306                  * have direct access to that state without GICv4.1.
2307                  * Let's simply fail the save operation...
2308                  */
2309                 if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
2310                         return -EACCES;
2311
2312                 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2313                 if (ret)
2314                         return ret;
2315         }
2316         return 0;
2317 }
2318
2319 /**
2320  * vgic_its_restore_itt - restore the ITT of a device
2321  *
2322  * @its: its handle
2323  * @dev: device handle
2324  *
2325  * Return 0 on success, < 0 on error
2326  */
2327 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2328 {
2329         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2330         gpa_t base = dev->itt_addr;
2331         int ret;
2332         int ite_esz = abi->ite_esz;
2333         size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2334
2335         ret = scan_its_table(its, base, max_size, ite_esz, 0,
2336                              vgic_its_restore_ite, dev);
2337
2338         /* scan_its_table returns +1 if all ITEs are invalid */
2339         if (ret > 0)
2340                 ret = 0;
2341
2342         return ret;
2343 }
2344
2345 /**
2346  * vgic_its_save_dte - Save a device table entry at a given GPA
2347  *
2348  * @its: ITS handle
2349  * @dev: ITS device
2350  * @ptr: GPA
2351  */
2352 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2353                              gpa_t ptr, int dte_esz)
2354 {
2355         struct kvm *kvm = its->dev->kvm;
2356         u64 val, itt_addr_field;
2357         u32 next_offset;
2358
2359         itt_addr_field = dev->itt_addr >> 8;
2360         next_offset = compute_next_devid_offset(&its->device_list, dev);
2361         val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2362                ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2363                (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2364                 (dev->num_eventid_bits - 1));
2365         val = cpu_to_le64(val);
2366         return vgic_write_guest_lock(kvm, ptr, &val, dte_esz);
2367 }
2368
2369 /**
2370  * vgic_its_restore_dte - restore a device table entry
2371  *
2372  * @its: its handle
2373  * @id: device id the DTE corresponds to
2374  * @ptr: kernel VA where the 8 byte DTE is located
2375  * @opaque: unused
2376  *
2377  * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2378  * next dte otherwise
2379  */
2380 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2381                                 void *ptr, void *opaque)
2382 {
2383         struct its_device *dev;
2384         u64 baser = its->baser_device_table;
2385         gpa_t itt_addr;
2386         u8 num_eventid_bits;
2387         u64 entry = *(u64 *)ptr;
2388         bool valid;
2389         u32 offset;
2390         int ret;
2391
2392         entry = le64_to_cpu(entry);
2393
2394         valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2395         num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2396         itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2397                         >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2398
2399         if (!valid)
2400                 return 1;
2401
2402         /* dte entry is valid */
2403         offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2404
2405         if (!vgic_its_check_id(its, baser, id, NULL))
2406                 return -EINVAL;
2407
2408         dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2409         if (IS_ERR(dev))
2410                 return PTR_ERR(dev);
2411
2412         ret = vgic_its_restore_itt(its, dev);
2413         if (ret) {
2414                 vgic_its_free_device(its->dev->kvm, dev);
2415                 return ret;
2416         }
2417
2418         return offset;
2419 }
2420
2421 static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2422                                const struct list_head *b)
2423 {
2424         struct its_device *deva = container_of(a, struct its_device, dev_list);
2425         struct its_device *devb = container_of(b, struct its_device, dev_list);
2426
2427         if (deva->device_id < devb->device_id)
2428                 return -1;
2429         else
2430                 return 1;
2431 }
2432
2433 /**
2434  * vgic_its_save_device_tables - Save the device table and all ITT
2435  * into guest RAM
2436  *
2437  * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2438  * returns the GPA of the device entry
2439  */
2440 static int vgic_its_save_device_tables(struct vgic_its *its)
2441 {
2442         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2443         u64 baser = its->baser_device_table;
2444         struct its_device *dev;
2445         int dte_esz = abi->dte_esz;
2446
2447         if (!(baser & GITS_BASER_VALID))
2448                 return 0;
2449
2450         list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2451
2452         list_for_each_entry(dev, &its->device_list, dev_list) {
2453                 int ret;
2454                 gpa_t eaddr;
2455
2456                 if (!vgic_its_check_id(its, baser,
2457                                        dev->device_id, &eaddr))
2458                         return -EINVAL;
2459
2460                 ret = vgic_its_save_itt(its, dev);
2461                 if (ret)
2462                         return ret;
2463
2464                 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2465                 if (ret)
2466                         return ret;
2467         }
2468         return 0;
2469 }
2470
2471 /**
2472  * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2473  *
2474  * @its: its handle
2475  * @id: index of the entry in the L1 table
2476  * @addr: kernel VA
2477  * @opaque: unused
2478  *
2479  * L1 table entries are scanned by steps of 1 entry
2480  * Return < 0 if error, 0 if last dte was found when scanning the L2
2481  * table, +1 otherwise (meaning next L1 entry must be scanned)
2482  */
2483 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2484                          void *opaque)
2485 {
2486         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2487         int l2_start_id = id * (SZ_64K / abi->dte_esz);
2488         u64 entry = *(u64 *)addr;
2489         int dte_esz = abi->dte_esz;
2490         gpa_t gpa;
2491         int ret;
2492
2493         entry = le64_to_cpu(entry);
2494
2495         if (!(entry & KVM_ITS_L1E_VALID_MASK))
2496                 return 1;
2497
2498         gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2499
2500         ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2501                              l2_start_id, vgic_its_restore_dte, NULL);
2502
2503         return ret;
2504 }
2505
2506 /**
2507  * vgic_its_restore_device_tables - Restore the device table and all ITT
2508  * from guest RAM to internal data structs
2509  */
2510 static int vgic_its_restore_device_tables(struct vgic_its *its)
2511 {
2512         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2513         u64 baser = its->baser_device_table;
2514         int l1_esz, ret;
2515         int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2516         gpa_t l1_gpa;
2517
2518         if (!(baser & GITS_BASER_VALID))
2519                 return 0;
2520
2521         l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2522
2523         if (baser & GITS_BASER_INDIRECT) {
2524                 l1_esz = GITS_LVL1_ENTRY_SIZE;
2525                 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2526                                      handle_l1_dte, NULL);
2527         } else {
2528                 l1_esz = abi->dte_esz;
2529                 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2530                                      vgic_its_restore_dte, NULL);
2531         }
2532
2533         /* scan_its_table returns +1 if all entries are invalid */
2534         if (ret > 0)
2535                 ret = 0;
2536
2537         if (ret < 0)
2538                 vgic_its_free_device_list(its->dev->kvm, its);
2539
2540         return ret;
2541 }
2542
2543 static int vgic_its_save_cte(struct vgic_its *its,
2544                              struct its_collection *collection,
2545                              gpa_t gpa, int esz)
2546 {
2547         u64 val;
2548
2549         val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2550                ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2551                collection->collection_id);
2552         val = cpu_to_le64(val);
2553         return vgic_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2554 }
2555
2556 /*
2557  * Restore a collection entry into the ITS collection table.
2558  * Return +1 on success, 0 if the entry was invalid (which should be
2559  * interpreted as end-of-table), and a negative error value for generic errors.
2560  */
2561 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2562 {
2563         struct its_collection *collection;
2564         struct kvm *kvm = its->dev->kvm;
2565         u32 target_addr, coll_id;
2566         u64 val;
2567         int ret;
2568
2569         BUG_ON(esz > sizeof(val));
2570         ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2571         if (ret)
2572                 return ret;
2573         val = le64_to_cpu(val);
2574         if (!(val & KVM_ITS_CTE_VALID_MASK))
2575                 return 0;
2576
2577         target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2578         coll_id = val & KVM_ITS_CTE_ICID_MASK;
2579
2580         if (target_addr != COLLECTION_NOT_MAPPED &&
2581             !kvm_get_vcpu_by_id(kvm, target_addr))
2582                 return -EINVAL;
2583
2584         collection = find_collection(its, coll_id);
2585         if (collection)
2586                 return -EEXIST;
2587
2588         if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
2589                 return -EINVAL;
2590
2591         ret = vgic_its_alloc_collection(its, &collection, coll_id);
2592         if (ret)
2593                 return ret;
2594         collection->target_addr = target_addr;
2595         return 1;
2596 }
2597
2598 /**
2599  * vgic_its_save_collection_table - Save the collection table into
2600  * guest RAM
2601  */
2602 static int vgic_its_save_collection_table(struct vgic_its *its)
2603 {
2604         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2605         u64 baser = its->baser_coll_table;
2606         gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2607         struct its_collection *collection;
2608         u64 val;
2609         size_t max_size, filled = 0;
2610         int ret, cte_esz = abi->cte_esz;
2611
2612         if (!(baser & GITS_BASER_VALID))
2613                 return 0;
2614
2615         max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2616
2617         list_for_each_entry(collection, &its->collection_list, coll_list) {
2618                 ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2619                 if (ret)
2620                         return ret;
2621                 gpa += cte_esz;
2622                 filled += cte_esz;
2623         }
2624
2625         if (filled == max_size)
2626                 return 0;
2627
2628         /*
2629          * table is not fully filled, add a last dummy element
2630          * with valid bit unset
2631          */
2632         val = 0;
2633         BUG_ON(cte_esz > sizeof(val));
2634         ret = vgic_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2635         return ret;
2636 }
2637
2638 /**
2639  * vgic_its_restore_collection_table - reads the collection table
2640  * in guest memory and restores the ITS internal state. Requires the
2641  * BASER registers to be restored before.
2642  */
2643 static int vgic_its_restore_collection_table(struct vgic_its *its)
2644 {
2645         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2646         u64 baser = its->baser_coll_table;
2647         int cte_esz = abi->cte_esz;
2648         size_t max_size, read = 0;
2649         gpa_t gpa;
2650         int ret;
2651
2652         if (!(baser & GITS_BASER_VALID))
2653                 return 0;
2654
2655         gpa = GITS_BASER_ADDR_48_to_52(baser);
2656
2657         max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2658
2659         while (read < max_size) {
2660                 ret = vgic_its_restore_cte(its, gpa, cte_esz);
2661                 if (ret <= 0)
2662                         break;
2663                 gpa += cte_esz;
2664                 read += cte_esz;
2665         }
2666
2667         if (ret > 0)
2668                 return 0;
2669
2670         if (ret < 0)
2671                 vgic_its_free_collection_list(its->dev->kvm, its);
2672
2673         return ret;
2674 }
2675
2676 /**
2677  * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2678  * according to v0 ABI
2679  */
2680 static int vgic_its_save_tables_v0(struct vgic_its *its)
2681 {
2682         int ret;
2683
2684         ret = vgic_its_save_device_tables(its);
2685         if (ret)
2686                 return ret;
2687
2688         return vgic_its_save_collection_table(its);
2689 }
2690
2691 /**
2692  * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2693  * to internal data structs according to V0 ABI
2694  *
2695  */
2696 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2697 {
2698         int ret;
2699
2700         ret = vgic_its_restore_collection_table(its);
2701         if (ret)
2702                 return ret;
2703
2704         ret = vgic_its_restore_device_tables(its);
2705         if (ret)
2706                 vgic_its_free_collection_list(its->dev->kvm, its);
2707         return ret;
2708 }
2709
2710 static int vgic_its_commit_v0(struct vgic_its *its)
2711 {
2712         const struct vgic_its_abi *abi;
2713
2714         abi = vgic_its_get_abi(its);
2715         its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2716         its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2717
2718         its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2719                                         << GITS_BASER_ENTRY_SIZE_SHIFT);
2720
2721         its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2722                                         << GITS_BASER_ENTRY_SIZE_SHIFT);
2723         return 0;
2724 }
2725
2726 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2727 {
2728         /* We need to keep the ABI specific field values */
2729         its->baser_coll_table &= ~GITS_BASER_VALID;
2730         its->baser_device_table &= ~GITS_BASER_VALID;
2731         its->cbaser = 0;
2732         its->creadr = 0;
2733         its->cwriter = 0;
2734         its->enabled = 0;
2735         vgic_its_free_device_list(kvm, its);
2736         vgic_its_free_collection_list(kvm, its);
2737 }
2738
2739 static int vgic_its_has_attr(struct kvm_device *dev,
2740                              struct kvm_device_attr *attr)
2741 {
2742         switch (attr->group) {
2743         case KVM_DEV_ARM_VGIC_GRP_ADDR:
2744                 switch (attr->attr) {
2745                 case KVM_VGIC_ITS_ADDR_TYPE:
2746                         return 0;
2747                 }
2748                 break;
2749         case KVM_DEV_ARM_VGIC_GRP_CTRL:
2750                 switch (attr->attr) {
2751                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2752                         return 0;
2753                 case KVM_DEV_ARM_ITS_CTRL_RESET:
2754                         return 0;
2755                 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2756                         return 0;
2757                 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2758                         return 0;
2759                 }
2760                 break;
2761         case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2762                 return vgic_its_has_attr_regs(dev, attr);
2763         }
2764         return -ENXIO;
2765 }
2766
2767 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2768 {
2769         const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2770         int ret = 0;
2771
2772         if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2773                 return 0;
2774
2775         mutex_lock(&kvm->lock);
2776
2777         if (!lock_all_vcpus(kvm)) {
2778                 mutex_unlock(&kvm->lock);
2779                 return -EBUSY;
2780         }
2781
2782         mutex_lock(&kvm->arch.config_lock);
2783         mutex_lock(&its->its_lock);
2784
2785         switch (attr) {
2786         case KVM_DEV_ARM_ITS_CTRL_RESET:
2787                 vgic_its_reset(kvm, its);
2788                 break;
2789         case KVM_DEV_ARM_ITS_SAVE_TABLES:
2790                 ret = abi->save_tables(its);
2791                 break;
2792         case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2793                 ret = abi->restore_tables(its);
2794                 break;
2795         }
2796
2797         mutex_unlock(&its->its_lock);
2798         mutex_unlock(&kvm->arch.config_lock);
2799         unlock_all_vcpus(kvm);
2800         mutex_unlock(&kvm->lock);
2801         return ret;
2802 }
2803
2804 /*
2805  * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
2806  * without the running VCPU when dirty ring is enabled.
2807  *
2808  * The running VCPU is required to track dirty guest pages when dirty ring
2809  * is enabled. Otherwise, the backup bitmap should be used to track the
2810  * dirty guest pages. When vgic/its tables are being saved, the backup
2811  * bitmap is used to track the dirty guest pages due to the missed running
2812  * VCPU in the period.
2813  */
2814 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
2815 {
2816         struct vgic_dist *dist = &kvm->arch.vgic;
2817
2818         return dist->table_write_in_progress;
2819 }
2820
2821 static int vgic_its_set_attr(struct kvm_device *dev,
2822                              struct kvm_device_attr *attr)
2823 {
2824         struct vgic_its *its = dev->private;
2825         int ret;
2826
2827         switch (attr->group) {
2828         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2829                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2830                 unsigned long type = (unsigned long)attr->attr;
2831                 u64 addr;
2832
2833                 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2834                         return -ENODEV;
2835
2836                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2837                         return -EFAULT;
2838
2839                 ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
2840                                          addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
2841                 if (ret)
2842                         return ret;
2843
2844                 return vgic_register_its_iodev(dev->kvm, its, addr);
2845         }
2846         case KVM_DEV_ARM_VGIC_GRP_CTRL:
2847                 return vgic_its_ctrl(dev->kvm, its, attr->attr);
2848         case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2849                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2850                 u64 reg;
2851
2852                 if (get_user(reg, uaddr))
2853                         return -EFAULT;
2854
2855                 return vgic_its_attr_regs_access(dev, attr, &reg, true);
2856         }
2857         }
2858         return -ENXIO;
2859 }
2860
2861 static int vgic_its_get_attr(struct kvm_device *dev,
2862                              struct kvm_device_attr *attr)
2863 {
2864         switch (attr->group) {
2865         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2866                 struct vgic_its *its = dev->private;
2867                 u64 addr = its->vgic_its_base;
2868                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2869                 unsigned long type = (unsigned long)attr->attr;
2870
2871                 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2872                         return -ENODEV;
2873
2874                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2875                         return -EFAULT;
2876                 break;
2877         }
2878         case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2879                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2880                 u64 reg;
2881                 int ret;
2882
2883                 ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2884                 if (ret)
2885                         return ret;
2886                 return put_user(reg, uaddr);
2887         }
2888         default:
2889                 return -ENXIO;
2890         }
2891
2892         return 0;
2893 }
2894
2895 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2896         .name = "kvm-arm-vgic-its",
2897         .create = vgic_its_create,
2898         .destroy = vgic_its_destroy,
2899         .set_attr = vgic_its_set_attr,
2900         .get_attr = vgic_its_get_attr,
2901         .has_attr = vgic_its_has_attr,
2902 };
2903
2904 int kvm_vgic_register_its_device(void)
2905 {
2906         return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2907                                        KVM_DEV_TYPE_ARM_VGIC_ITS);
2908 }